SE518473C2 - Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas - Google Patents

Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas

Info

Publication number
SE518473C2
SE518473C2 SE0100370A SE0100370A SE518473C2 SE 518473 C2 SE518473 C2 SE 518473C2 SE 0100370 A SE0100370 A SE 0100370A SE 0100370 A SE0100370 A SE 0100370A SE 518473 C2 SE518473 C2 SE 518473C2
Authority
SE
Sweden
Prior art keywords
processor
inlet
air
vortex
outlet
Prior art date
Application number
SE0100370A
Other languages
Swedish (sv)
Other versions
SE0100370D0 (en
SE0100370L (en
Inventor
Conrad Vineyard
Original Assignee
Conrad Vineyard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conrad Vineyard filed Critical Conrad Vineyard
Priority to SE0100370A priority Critical patent/SE518473C2/en
Publication of SE0100370D0 publication Critical patent/SE0100370D0/en
Priority to PCT/SE2002/000873 priority patent/WO2003092898A1/en
Publication of SE0100370L publication Critical patent/SE0100370L/en
Publication of SE518473C2 publication Critical patent/SE518473C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0012Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C19/186Use of cold or heat for disintegrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B1/00Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids
    • F26B1/005Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids by means of disintegrating, e.g. crushing, shredding, milling the materials to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers
    • F26B17/107Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers pneumatically inducing within the drying enclosure a curved flow path, e.g. circular, spiral, helical; Cyclone or Vortex dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/041Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum for drying flowable materials, e.g. suspensions, bulk goods, in a continuous operation, e.g. with locks or other air tight arrangements for charging/discharging

Abstract

Material is delivered to the centre of a vortex of a compressed gas, which is used to strip and heat the material, which is converted into a dry powder. A method for dewatering a material and breaking it up into particles comprises delivering the material to the centre of a vortex of compressed gas (e.g. air). The vortex generates a vacuum (21) with the aid of a processor comprising an inlet part (16), a tubular conical part and an outlet part at the narrow end of the conical part. The compressed medium is forced to rotate in a spiral manner through the processor, around the conical part periphery and onwards, in order to carry the material whilst it is being heated. The material is then made to explode or burnt whilst simultaneously dewatering it and drying, forming a dry powder which can be removed from the outlet part of the processor. An Independent claim is also included for the apparatus used to carry out this method, the inlet part having a compressed medium inlet oriented at a tangent to its periphery.

Description

518 473 ett kontinuerligt flöde av vakuum genom en kammare som tillåter materialet att matas in i ena änden, passera genom kammaren och matas ut i nwtsatta änden. Anordningen enligt uppfinningen utgörs av en processor som innefattar en kammare i tre delar nämligen en inloppsdel, som kan vara rörformig och övergår i en rörformad, konisk del samt en vid den koniska delens smala parti befintlig utloppsdel med en utloppsöppning. Inloppsdelen uppvisar en, ett inlopp bildande koniskt utformad tratt för inmatning i processorn av det material som skall bearbetas. 518 473 a continuous flow of vacuum through a chamber which allows the material to be fed into one end, pass through the chamber and discharged at the inserted end. The device according to the invention consists of a processor which comprises a chamber in three parts, namely an inlet part, which can be tubular and merge into a tubular, conical part and an outlet part located at the narrow portion of the conical part with an outlet opening. The inlet part has a cone-shaped cone-shaped funnel for feeding into the processor the material to be processed.

Vidare är en stryphylsa anordnad tangentiellt till inlopps- delens omkrets, genom vilken komprimerad luft eller andra gaser matas in 5. processorn för' att. åstadkomma. ett spiralformat luftflöde in i processorns rörformade, koniska del.Furthermore, a throttle sleeve is arranged tangentially to the circumference of the inlet part, through which compressed air or other gases are fed into the processor to. achieve. a helical air flow into the tubular conical portion of the processor.

Vid förfarandet enligt uppfinningen inmatas komprimerad luft i processorns inloppsdel genom dess tangentiellt belägna inlopp i.den avvägda volym som krävs och med ett tryck som behövs i det aktuella fallet för att bringa luften att passera genom stryphylsan och åstadkomma en erforderlig linjär hastighet för att producera en kontinuerlig, i spiral förlöpande, slangformad bana av luft genom den koniska delens utsträckning. Den radiella hastigheten på luften bringar densamma att pressas i riktning mot den koniska delens omkrets för att åstadkomma en temperaturökning av luften och en utsugning av processorns centrum, vilket resulterar i att ett fortlöpande vakuum upp- rätthålls genom processorn. Då det material som skall bearbetas bringas att passera genom inloppstratten in i processorn och nämnda material kommer i kontakt med den radiella luftströmmen, som har hög hastighet, överförs den radiella hastigheten till varje materialpartikel och bringar partikeln att explodera för bildande av mycket små partiklar, vilket kraftigt ökar mate- rialets fria ytor och därigenom utsätter samtliga våta ytor för den höga lufttemperaturen, vilket resulterar i en omedelbar torkning av de sönderslagna partiklarna. Tack vare den höga vakuumnivån minskas fuktens kokpunkt, vilket i mycket stor om- s 1 s 473 fattning gynnar avvattningsprocessen. Härigenom åstadkommes en produkt som består av ett fint pulver utan aktivt biologiskt, organiskt eller giftigt innehåll.In the method according to the invention, compressed air is fed into the inlet part of the processor through its tangentially located inlet in the balanced volume required and with a pressure needed in the present case to cause the air to pass through the choke sleeve and provide a required linear velocity to produce a continuous, spirally extending, tubular path of air through the extent of the conical part. The radial velocity of the air causes it to be forced in the direction of the circumference of the conical part to produce an increase in the temperature of the air and an extraction of the center of the processor, which results in a continuous vacuum being maintained through the processor. As the material to be processed is passed through the inlet funnel into the processor and said material comes into contact with the high velocity radial air stream, the radial velocity is transferred to each material particle and causes the particle to explode to form very small particles, which greatly increases the free surfaces of the material and thereby exposes all wet surfaces to the high air temperature, which results in an immediate drying of the broken particles. Thanks to the high vacuum level, the boiling point of the moisture is reduced, which in a very large extent favors the dewatering process. This produces a product which consists of a fine powder without active biological, organic or toxic content.

Uppfinningen beskrivs närmare nedan med hjälp av ett föredraget utföringsexempel under hänvisning till bifogade ritningar, på vilka fig. 1 visar en schematisk tvärsektionsvy av en föredragen utföringsform av processorn enligt uppfinningen, fig. 2 visar schematiskt en perspektivvy av en spiral av luft eller gas, som alstras i processorn, fig. 3 visar en schematisk vy delvis i ett uppskuret skick av luft- eller gasspiralen enligt fig. 2 och av vilken figur även framgår det område, i vilket vakuumet al- stras samt utformningen av processorns inloppsdel, fig. 4 visar schematiskt ett utskuret stycke av luft- eller gasspiralen, av vilken tryckområdena inuti spiralen framgår, fig. 5 visar ett diagram angående stegring av vakuum och temperatur samt dimensionerna hos en processor enligt en utföringsform av uppfinningen och. fig. 6 visar schematiskt en tvârsektion av en föredragen ut- föringsform av uppbyggnaden av en processor enligt uppfinningen.The invention is described in more detail below with the aid of a preferred embodiment with reference to the accompanying drawings, in which Fig. 1 shows a schematic cross-sectional view of a preferred embodiment of the processor according to the invention, Fig. 2 schematically shows a perspective view of a spiral of air or gas, Fig. 3 shows a schematic view partly in a cut-away condition of the air or gas coil according to Fig. 2 and from which figure also appears the area in which the vacuum is generated and the design of the inlet part of the processor, Fig. 4 shows schematically a cut-out piece of the air or gas coil, from which the pressure ranges inside the coil appear, Fig. 5 shows a diagram concerning the increase of vacuum and temperature and the dimensions of a processor according to an embodiment of the invention and. Fig. 6 schematically shows a cross section of a preferred embodiment of the construction of a processor according to the invention.

Såsom närmare framgår av ritningarna och särskilt fig. 1 visas här en föredragen utföringsform av en processor 10 enligt upp- finningen, i vilken en virvel av luft eller gas alstras och i det föredragna exemplet utgörs denna virvel av luft. Luften ma- v. a . ø ø nu u .u .q . n ~ u n o 518 473 .m 2 = tas till processorn 10 med hjälp av en på ritningen icke visad luftkompressor via en på ritningen icke visad luftledning till processorns inlopp 13. Enligt den föredragna utföringsformen är processorn 10 av enåi huvudsak cylindrisk utformning med ett ytterhölje 12, nämnda inlopp 13 för ett komprimerat medium av luft eller gas, en, ett inlopp 20 bildande koniskt utformad tratt 14 för det material som skall bearbetas och ett utlopp 17 för det utmatade, fârdigbearbetade materialet. Processorns 10 inre utgöres av en i huvudsak stympat koniskt utformad, konisk del 11. En konisk ventil 15 finns i utloppsdelen 18 för att re- glera både utloppsflöde genom utloppet 17 liksom ett bakåt- strömmande luftflöde 24. En inloppsdel 16 finns i processorn* 10, i vilken den komprimerade luften inmatas via inloppet 13, vid vilket luften omdirigeras till en spiralformation. Inlopps- delen 16 innefattar även organ för att ta emot det material som skall bearbetas i ett resulterande vakuumområde i luftvirveln.As can be seen in more detail from the drawings and in particular Fig. 1, a preferred embodiment of a processor 10 according to the invention is shown here, in which a vortex of air or gas is generated and in the preferred example this vortex is constituted by air. The air ma- v. A. ø ø now u .u .q. n ~ uno 518 473 .m 2 = is taken to the processor 10 by means of an air compressor not shown in the drawing via an air line (not shown in the drawing) to the inlet 13 of the processor. According to the preferred embodiment, the processor 10 is of a substantially cylindrical design with an outer casing 12 , said inlet 13 for a compressed medium of air or gas, an inlet 20 forming a conically shaped funnel 14 for the material to be processed and an outlet 17 for the discharged, finished material. The interior of the processor 10 consists of a substantially truncated conically shaped, conical part 11. A conical valve 15 is located in the outlet part 18 to regulate both outlet flow through the outlet 17 as well as a backflowing air flow 24. An inlet part 16 is located in the processor * 10 , in which the compressed air is fed via the inlet 13, at which the air is redirected to a spiral formation. The inlet part 16 also comprises means for receiving the material to be processed in a resulting vacuum area in the air vortex.

I fig. 2 och 3 visas närmare luftvirvelns verkan.Figures 2 and 3 show in more detail the action of the air vortex.

I en föredragen utföringsform av uppfinningen innefattar pro- cessorn 10 ett ytterhölje 12 av metallplåt, som är valsad och svetsad för bildande av nämnda hölje. Processorns 10 inre, ko- niska del 11 utgörs av en plåt, som tål hög temperatur och är svetsad och bearbetad för att bilda en jämn övergång från in- loppsdelen 16 till utloppsdelen 18. Mellan den koniska delen 11 och höljet 12 finns en isolerande fyllning 19, vilken kan ut- göras av glasfiber.In a preferred embodiment of the invention, the processor 10 comprises an outer casing 12 of sheet metal, which is rolled and welded to form said casing. The inner, conical part 11 of the processor 10 consists of a plate which can withstand high temperature and is welded and machined to form a smooth transition from the inlet part 16 to the outlet part 18. Between the conical part 11 and the housing 12 there is an insulating filling 19, which can be made of fiberglass.

I fig. 2 visas hur en luftspiral beter sig då denna matas in och formar sig i spiraler i processorns 10 inre. Det inmatade mediet, som här utgörs av matarluft 25 inmatas i processorn 10 från luftinloppet 13. I det föredragna exemplet inmatas matar- luften 25 i processorn 10 med ett tryck av 125 psi. Så snart matarluften 25 kommer i kontakt med inmatningstratten 14 för det material som skall bearbetas och den koniska delen 11 omriktas matarluften 25 för att gå i en radiell bana till den .nju- o | v n au n U n - ø n a n n 518 473 ..;:-fi f koniska delen och bildar därigenom. en luftspiral 22. Då luftspiralen 22 rör sig genom processorn 10 utövar den en centrifugalkraft 23 mot den koniska delen 11. Denna centri- fugalkraft 23, som utövas mot den koniska delen 11, alstrar en temperaturökning genom processorn 10. Vidare minskas luft- spiralen 22 kraftigt till sin diameter allteftersom den rör sig genom processorn 10. I den föredragna utföringsformen av uppfinningen reduceras den yttre diametern på spiralen 22 från 16 tum (40,64 cm) vid inloppsdelen 16 till 8 tum (20,32 cm) vid utloppsdelen 18. Denna forcerade minskning av luftspiralens 22 diameter accelererar ytterligare luftens radiella hastighet och ökar därigenom temperaturen. Då den i spiral strömmande luften tvingas mot den koniska delen 11 evakueras processorns 10 cen- trala del på luft, för att därigenom alstra ett vakuumtryck 21, som tenderar att dra in luft och material som skall bearbetas i processorn 10 genom inloppsdelens 16 inlopp 20. Enligt den föredragna utföringsformen är vakuumtrycket vid inloppet 20 un- gefär 11,76 tum (29,87 cm) kvicksilver och vakuumtrycket vid utloppsdelens 18 utlopp 17 ungefär 18,05 tum (45,85 cm) kvick- silver. Samtidigt alstras av luftvirveln temperaturer från 299° F (148,3° C) vid inloppsdelen 16 pà upp till 834° F (445,6° C) vid utloppsdelens 18 utlopp 17. Eftersom kokpunkten på vatten vid havsytan utan. vakuum är 212° F' (100° C) och eftersom vakuumeffekten sänker kokpunkten på vattnet blir resultatet av denna kombination av vakuum och temperatur på vattnet att en blixtsnabb, nästan momentan föràngning sker. Resultatet på det material som avvattnas och sönderslås blir då att man erhåller ett pulviserat, torrt material, som kan ha minskat sin volym så mycket som 95% beroende på dess ursprungliga vattenkoncen- tration. Det avvattnade materialet utmatas tillsammans med ång- or eller gaser genom utloppet 17. En del luft tvingas tillbaka in i processorn genom samverkan med ventilen 15 och diametern på utloppet 17. Denna bakåtströmmande luft åstadkommer ett tillbakaströmmande tryck av luft 24. 513 473 ~' Fig. 3 visar en schematisk vy av processorn 10 delvis i ett frilagt skick av luftspiralen 22, som visar området 21 med vakuum inuti spiralen och som ytterligare visar inloppsdelen 16 i detalj. Inloppsdelen 16 är väsentlig för omdirigeringen av den inkommande luften 25 till den radiella spiralen 22. In- loppet 20 för det material som skall bearbetas innefattar en tratt 14, en yttre vägg 31 och en luftavkännare 33. Tratten 14 har en konisk form för att centrera det inmatade materialet till det alstrade vakuumet. I den föredragna utföringsformen av uppfinningen har inloppstratten 14 en vinkel inåt från det horisontella planet på cirka 21°. Härigenom åstadkommes en maximal acceleration av det inmatade materialet och vakuum- luften.Fig. 2 shows how an air coil behaves when it is fed in and forms in spirals in the interior of the processor 10. The feed medium, which here consists of feed air 25, is fed into the processor 10 from the air inlet 13. In the preferred example, the feed air 25 is fed into the processor 10 at a pressure of 125 psi. As soon as the feed air 25 comes into contact with the feed hopper 14 of the material to be processed and the conical part 11, the feed air 25 is redirected to go in a radial path to the new surface. v n au n U n - ø n a n n 518 473 ..;: - fi f the conical part and thereby forms. an air coil 22. As the air coil 22 moves through the processor 10, it exerts a centrifugal force 23 against the conical part 11. This centrifugal force 23, which is exerted against the conical part 11, generates a temperature increase through the processor 10. Furthermore, the air coil 22 is reduced. sharply to its diameter as it moves through the processor 10. In the preferred embodiment of the invention, the outer diameter of the coil 22 is reduced from 16 inches (40.64 cm) at the inlet portion 16 to 8 inches (20.32 cm) at the outlet portion 18. This forced decrease in the diameter of the air coil 22 further accelerates the radial velocity of the air and thereby increases the temperature. When the spirally flowing air is forced against the conical part 11, the central part of the processor 10 is evacuated to air, thereby generating a vacuum pressure 21, which tends to draw in air and material to be processed in the processor 10 through the inlet part 16 of the inlet part 16. According to the preferred embodiment, the vacuum pressure at the inlet 20 is approximately 11.76 inches (29.87 cm) of mercury and the vacuum pressure at the outlet 17 of the outlet portion 18 is approximately 18.05 inches (45.85 cm) of mercury. At the same time, the air vortex generates temperatures from 299 ° F (148.3 ° C) at inlet section 16 up to 834 ° F (445.6 ° C) at outlet section 18 outlet 17. Since the boiling point of water at sea level without. vacuum is 212 ° F '(100 ° C) and since the vacuum effect lowers the boiling point of the water, the result of this combination of vacuum and temperature of the water is that a lightning-fast, almost instantaneous evaporation takes place. The result of the material being dewatered and decomposed is then that a powdered, dry material is obtained, which may have reduced its volume as much as 95% depending on its original water concentration. The dewatered material is discharged together with vapors or gases through the outlet 17. Some air is forced back into the processor by co-operation with the valve 15 and the diameter of the outlet 17. This backflowing air produces a backflowing pressure of air 24. 513 473 ~ 'Fig 3 shows a schematic view of the processor 10 partly in an exposed condition of the air coil 22, which shows the area 21 with vacuum inside the coil and which further shows the inlet part 16 in detail. The inlet part 16 is essential for the redirection of the incoming air 25 to the radial spiral 22. The inlet 20 for the material to be processed comprises a funnel 14, an outer wall 31 and an air sensor 33. The funnel 14 has a conical shape for centering. the feed material to the generated vacuum. In the preferred embodiment of the invention, the inlet funnel 14 has an inward angle from the horizontal plane of about 21 °. This achieves a maximum acceleration of the fed material and the vacuum air.

I fig. 4 visas en partiell delvy i form av en tårtbit av spi-~ ralen. Det område 41, i' vilket vakuum förefinnes, omger virvelns centrumlinje 42. Tvärsektionen 44 av luftspiralen om- ger omràdet 41 med vakuum. Den i spiral matade luften alstrar en centrifugalkraft 43 i riktning mot den koniska delen 11.Fig. 4 shows a partial partial view in the form of a piece of cake of the spiral. The area 41 in which the vacuum is present surrounds the center line 42 of the vortex. The cross section 44 of the air coil surrounds the area 41 with vacuum. The spirally supplied air generates a centrifugal force 43 in the direction of the conical part 11.

I fig. 5 visas ett representativt schema över uppmätta värden på vakuum och temperatur i en processor 10 enligt uppfinningen.Fig. 5 shows a representative diagram of measured values of vacuum and temperature in a processor 10 according to the invention.

I inloppsdelen 16 är processorns 10 inre diameter 16 tum (40,64 cm) och trycket på den inmatade luften 25 mätt inuti inloppsdelen 16 är 123,43 psi. Vid övergàngspunkten 51 mellan inloppsdelen 16 och den koniska delen 11 är vakuumtrycken mätt till 11,76 tum (29,87 cm) kvicksilver och temperaturen på 299° F (l48,3° C). vakuumtrycket mätt till 15,05 tum (38,23 cm) kvicksilver och temperaturen till 546° F (285,6° C). Vid övergångspunkten 53 mellan den koniska delen 11 och utloppsdelen 18 är vakuum- trycket mätt till 18,05 tum (45,85 cm) kvicksilver och tempe~ Vid mittpunkten 52 av den koniska delen 11 är raturen 834? F (445,6° C). Kombinationen vakuumtryck och de' höga temperaturerna medför att all fuktighet hos det material som bearbetas snabbt förångas. s 1 s 473 I fig. 6 visas en tvärsektionsvy av föredragen utföringsform av processorn 10. Här framgår närmare hur utloppet 17 är utformat i utloppsdelen 18 med sin justerbara ventil 15. Ventilen 15 är justerbart uppburen av en axel 64, vilken är förbunden med ett reglerorgan 61 på processorns 10 utsida för att medge antingen manuell eller automatisk reglering av flödet genom processorn 10. Över processorns utloppdel 18 sitter ett hölje 63 av stål.In the inlet portion 16, the inner diameter of the processor 10 is 16 inches (40.64 cm) and the pressure of the supplied air 25 measured inside the inlet portion 16 is 123.43 psi. At the transition point 51 between the inlet portion 16 and the conical portion 11, the vacuum pressures are measured at 11.76 inches (29.87 cm) of mercury and the temperature at 299 ° F (148.3 ° C). the vacuum pressure measured to 15.05 inches (38.23 cm) of mercury and the temperature to 546 ° F (285.6 ° C). At the transition point 53 between the conical part 11 and the outlet part 18, the vacuum pressure is measured at 18.05 inches (45.85 cm) of mercury and temperature. At the center point 52 of the conical part 11, the temperature is 834? F (445.6 ° C). The combination of vacuum pressure and the high temperatures means that all the moisture of the material being processed evaporates quickly. Fig. 6 shows a cross-sectional view of the preferred embodiment of the processor 10. Here it is shown in more detail how the outlet 17 is formed in the outlet part 18 with its adjustable valve 15. The valve 15 is adjustably supported by a shaft 64, which is connected to a control means 61 on the outside of the processor 10 to allow either manual or automatic control of the flow through the processor 10. Above the processor outlet portion 18 is a steel housing 63.

Claims (4)

518 473 f Patentkrav518 473 f Patent claims 1. Förfarande för avvattning och partikelsönderslagning av ett material, kânnetecknat av att materialet matas in i centrum av en virvel av ett komprimerat medium av luft eller gas, vilken virvel alstrar ett vakuum med hjälp av en processor (10), innefattande en kammare med en inloppsdel (16), en rörformad, konisk del (11) samt en vid den koniska delens smala parti befintlig utloppsdel (18), genom att mediet tvingas att rotera i spiralform genom processorn (10) och runt den koniska delens (ll) omkrets och vidare framåt för att föra med sig materialet under det att genom själva virvelstrypningen mediet och mate- rialet upphettas, varvid det senare bringas att explodera eller* brännas av under samtidig avvattning och torkning till ett pulveriserat skick för att sedan utmatas genom ett utlopp (17) i processorns utloppsdel (18) i form av ett torrt pulver.A method for dewatering and particle disintegration of a material, characterized in that the material is fed into the center of a vortex of a compressed medium of air or gas, which vortex generates a vacuum by means of a processor (10), comprising a chamber with a inlet part (16), a tubular, conical part (11) and an outlet part (18) located at the narrow portion of the conical part, by forcing the medium to rotate in a spiral through the processor (10) and around the circumference of the conical part (11) and further forward to entrain the material while heating the medium and material through the vortex choke itself, later causing it to explode or * burn off during simultaneous dewatering and drying to a pulverized state and then discharged through an outlet (17). in the outlet part (18) of the processor in the form of a dry powder. 2. , Förfarande enligt patentkrav 1, kânnetecknat av att det komprimerade mediet utgörs av luft, som inblàses tangentiellt i processorns (10) inloppsdel (16), från vilken luften accele- reras i form av en virvel samtidigt som den komprimeras och upphettas då luftvirveln tvingas igenom den koniska delen (11) från en större volym vid inloppsdelen (16) än vid utloppsdelen (18), varvid det material som inmatas centralt i inloppsdelen (16) genom nämnda vakuum sugs in i processorn (10) samtidigt som det i denna pulveriseras, avvattnas och torkas.Method according to claim 1, characterized in that the compressed medium consists of air which is blown tangentially into the inlet part (16) of the processor (10), from which the air is accelerated in the form of a vortex at the same time as it is compressed and heated when the air vortex forced through the conical part (11) from a larger volume at the inlet part (16) than at the outlet part (18), the material fed centrally in the inlet part (16) being sucked into said processor (10) by said vacuum while at the same time pulverized, dewatered and dried. 3. Anordning för avvattning och partikelsönderslagning av ett material, kännetecknad av en processor (10) innefattande en kammare med en inloppsdel (16) uppvisande ett centralt inlopp (20) för det aktuella material, som skall bearbetas, en rör- formad, konisk del (11), samt en vid den koniska delens (11) smala parti befintlig utloppsdel (18) med ett utlopp (17), vilken inloppsdel (16) uppvisar ett, tangentiellt till inlopps- delens (16) omkrets anordnat inlopp (13) för ett komprimerat 51 ß 4 7 3 ~ medium i form av luft eller gas.Device for dewatering and particle deposition of a material, characterized by a processor (10) comprising a chamber with an inlet part (16) having a central inlet (20) for the material in question to be processed, a tubular, conical part (11), and an outlet part (18) located at the narrow portion of the conical part (11) with an outlet (17), which inlet part (16) has an inlet (13) arranged tangentially to the circumference of the inlet part (16) for a compressed 51 ß 4 7 3 ~ medium in the form of air or gas. 4. Anordning enligt patentkrav 3, kännetecknar! av att processorns (10) inloppsdel (16) är rörformad och att inloppet (13) för det komprimerade mediet utgörs av en stryphylsa. 1.11.Device according to claim 3, characterized in! in that the inlet part (16) of the processor (10) is tubular and that the inlet (13) of the compressed medium consists of a choke sleeve. 1.11.
SE0100370A 2001-02-06 2001-02-06 Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas SE518473C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE0100370A SE518473C2 (en) 2001-02-06 2001-02-06 Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas
PCT/SE2002/000873 WO2003092898A1 (en) 2001-02-06 2002-05-06 Method and apparatus for de-watering and particle disintegration of a material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0100370A SE518473C2 (en) 2001-02-06 2001-02-06 Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas
PCT/SE2002/000873 WO2003092898A1 (en) 2001-02-06 2002-05-06 Method and apparatus for de-watering and particle disintegration of a material

Publications (3)

Publication Number Publication Date
SE0100370D0 SE0100370D0 (en) 2001-02-06
SE0100370L SE0100370L (en) 2002-08-07
SE518473C2 true SE518473C2 (en) 2002-10-15

Family

ID=31497759

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0100370A SE518473C2 (en) 2001-02-06 2001-02-06 Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas

Country Status (2)

Country Link
SE (1) SE518473C2 (en)
WO (1) WO2003092898A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092898A1 (en) * 2001-02-06 2003-11-13 Magnusson, Lars Method and apparatus for de-watering and particle disintegration of a material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040027A1 (en) * 2004-08-17 2006-02-23 Kraft Foods Holdings, Inc. Process for manufacture of grated cheese and uses thereof
US20060083834A1 (en) * 2004-10-14 2006-04-20 Kraft Foods Holdings, Inc. Process for granulation of wet processed foods and use thereof
ITRM20110423A1 (en) 2011-08-04 2013-02-05 Gian Maria Barbotto APPARATUS FOR PULVERIZATION, DEHYDRATION AND STERILIZATION OF MATERIALS, BOTH LIQUIDS AND SOLID
US9410258B2 (en) 2012-12-21 2016-08-09 Colorado Energy Research Technologies, LLC Systems and methods of improved fermentation
US9382633B2 (en) 2012-12-21 2016-07-05 Colorado Energy Research Technologies, LLC Systems and methods of improved fermentation
US9279101B2 (en) 2012-12-21 2016-03-08 Colorado Energy Research Technologies, LLC Systems and methods of improved fermentation
CN105879822A (en) * 2016-06-20 2016-08-24 长沙华时捷环保科技发展股份有限公司 Rotational flow and turbulent flow reaction device for wastewater treatment
CN112648811B (en) * 2020-12-22 2022-12-09 王世雄 Equipment capable of sufficiently crushing and dehydrating damp early strength agent blocks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056460A1 (en) * 1999-03-23 2000-09-28 Polifka Francis D Apparatus and method for circular vortex air flow material grinding
SE518473C2 (en) * 2001-02-06 2002-10-15 Conrad Vineyard Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092898A1 (en) * 2001-02-06 2003-11-13 Magnusson, Lars Method and apparatus for de-watering and particle disintegration of a material

Also Published As

Publication number Publication date
SE0100370D0 (en) 2001-02-06
SE0100370L (en) 2002-08-07
WO2003092898A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
US4743195A (en) Combustion apparatus for forcibly circulating a heating medium in a combustion apparatus
SE518473C2 (en) Dewatering and pulverising method, by delivering material to centre of a vortex of compressed gas
US6155751A (en) Flow development chamber for creating a vortex flow and a laminar flow
FI59345B (en) FLUIDUMDRIVEN SOENDERDELNINGSKVARN
JP2009533207A5 (en)
JP5019695B2 (en) Crushing / drying equipment with cyclone
JPS6423084A (en) Spray drier
US5423132A (en) Dryer apparatus using hot gases in free standing vortex
JP2002522742A (en) Heating and incineration equipment
CN100389853C (en) Method for drying fine broken organic material to generate explosive reaction
JP5405975B2 (en) Grinding and drying equipment
US11247239B2 (en) Apparatus for separating particles of different sizes by means of cyclonic separation
CN110505922B (en) Device for comminuting and drying waste, residues, rocks
EP1719963A2 (en) Apparatus for continuous drying of a filter cake, fibrous materials, paste, sludge, fibres, and similar materials
WO1998040681A1 (en) Cyclone dryer for sludge
JP2006223980A (en) Steam-jet spraying device and thickening crushing dryer using it
GB1425482A (en) Centrifugal separators
RU2306506C1 (en) Circular drier
SE1900051A1 (en) Method and device for grinding and drying a material or a mixture of materials
US4522589A (en) Apparatus for discharging liquid-covered particles from a reaction chamber and subsequent drying of said particles
US700934A (en) Apparatus for condensing smoke, fumes, and gases.
JPH11230672A (en) Dryer for powder and grain
US5656157A (en) Separation of components of mixtures
SU1539149A1 (en) Pneumatic conveying installation for loose material
CN110436739A (en) It is a kind of to carry out continuous quick-fried broken dehydration equipment and its dewatering using orientation seismic wave

Legal Events

Date Code Title Description
NUG Patent has lapsed