SE422078B - KEEP ON FUEL GASING - Google Patents

KEEP ON FUEL GASING

Info

Publication number
SE422078B
SE422078B SE7709692A SE7709692A SE422078B SE 422078 B SE422078 B SE 422078B SE 7709692 A SE7709692 A SE 7709692A SE 7709692 A SE7709692 A SE 7709692A SE 422078 B SE422078 B SE 422078B
Authority
SE
Sweden
Prior art keywords
zone
gas
coke
gasification
iron
Prior art date
Application number
SE7709692A
Other languages
Swedish (sv)
Other versions
SE7709692L (en
Inventor
P H Collin
Original Assignee
Asea Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Ab filed Critical Asea Ab
Priority to SE7709692A priority Critical patent/SE422078B/en
Priority to DE19782836472 priority patent/DE2836472A1/en
Priority to FR7824668A priority patent/FR2401983A1/en
Priority to GB7834705A priority patent/GB2003496B/en
Priority to NO782904A priority patent/NO149698C/en
Priority to JP10480578A priority patent/JPS5446202A/en
Priority to IT7868989A priority patent/IT7868989A0/en
Publication of SE7709692L publication Critical patent/SE7709692L/en
Publication of SE422078B publication Critical patent/SE422078B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1609Post-reduction, e.g. on a red-white-hot coke or coal bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

50 7 7 Û 9 6 9 2 - 3 2 i i ~ i e vis "The production of synthesis gas by psrtial oxidation" Bois Easman, 5th World Petroleum Congress (1959) Section IV-Page 15), tillföras förgas- ningszonen vattenånga som kylmedel. Denna. sönderdelas där delvis till CO och H2, i vilken reaktion är starkt "endoterm och möjliggör upprätthållsndefavg önskad. temperatur i förgasningszonen. Vid förgasning enligt TEXACO-förfaran- det av exempelvis tjookolja vid' 1450 ° ochl24 barlšan förgasningsförloppet beskrivas med följande bruttoformel: i ' ' i 01:11, 555 + 0,352 H20 + 0,434 02 _= p i _ (1) = 0,875 co + 0,e46 H2 + 0,oe1 002 + 0,104 H20 + 0,036 c Som framgår av formel (1) kan viss mindre sotbildning ej undvikas. 50 7 7 Û 9 6 9 2 - 3 2 i i ~ i e vis "The production of synthesis gas by psrtial oxidation" Bois Easman, 5th World Petroleum Congress (1959) Section IV-Page 15), water vapor is added to the gasification zone as coolant. This. decomposes there partly to CO and H2, in which reaction is strongly "endothermic and enables the maintenance of the desired temperature in the gasification zone. In the case of gasification according to the TEXACO process of, for example, tjoo oil at '1450 ° and 24 in 01:11, 555 + 0.352 H 2 O + 0.434 02 _ = pi _ (1) = 0.875 co + 0, e46 H2 + 0, oe1 002 + 0.104 H 2 O + 0.036 c As can be seen from formula (1), some minor soot formation can not avoided.

Uppfinningen är ett alternativ till nämnda kända sätt ovan nämnt problem är* löst." 'Sättet enligtuppfinningen kännetecknas därav, att till en reaktord innefattande 'ett öppet reaktionerna: över en med styckefomig koks fylld zon tillföras till det öppna reaktionsrumet bränslen samt kylmedel i form av finfördelad järnoxid innehållande material, eventuellt i blandning med slaggbildare, samt syrgas innehållande gas, att tillförseln sker i, så-j dan blandning, att en temperatur mellan» 1300 och 1700 OC upprätthålles i det öppna reaktioner-manet = förgasningszonen, och att endast partiell för- bränning erhålles och gas bildas, samt att reaktionsprodukterna från förgas- I ningszonen bringas att strömma. nedåt genom kokszonen längs en avpassad höjd i reaktorn för denna zon, att gasens innehåll av fasta. och flytande reak- tionsprodukter separerar ut på. koksen, och att härvid bildad biprodukt- råjäm och slagg 'avtappas på. låg nivå. av kokszonen, medan gasen efter passage- " av kokszonen eller delar av denna avledes från reaktorn på. en högre nivå än järn och slagg.The invention is characterized by an alternative to said known method. The method according to the invention is characterized in that fuels and coolants in the form of refrigerants are supplied to the open reaction chamber over a zone filled with piece-shaped coke. finely divided iron oxide-containing material, possibly in admixture with slag-formers, and oxygen-containing gas, that the supply takes place in such a mixture that a temperature between »1300 and 1700 ° C is maintained in the open reaction-jane = gasification zone, and that only partial combustion is obtained and gas is formed, and the reaction products from the gasification zone are caused to flow downwards through the coke zone along a suitable height in the reactor for this zone, that the gas content of solid and liquid reaction products separates out on the coke, and that the by-product crude iron and slag thus formed are drained at a low level of the coke zone, while the gas after passing through the coke zone or parts of this are diverted from the reactor on. a higher level than iron and slag.

I stället för vatten utnyttjas alltså finkorníga järnofider innehållande material som kylmedel i förgasningszonen, varigenom intressanta fördelar står att vinna, särskilt i det fall förgasningsgasen utnyttjas i huvudsak för elgenerering. i f Enligt uppfinningen tillföras förgasningszonen även eventuellt erforderliga slaggbildare samtidigt med järnoxider innehållande material. Slaggbildarna skall vara finkorniga. och tillföras lämpligen i blandning med järnoxidmate- rialet och väljas så. att de tillsammans med järnoxidmaterialets gångar-t ger .. 7709692-3 l en lättflytande slagg vid den temperatur, som upprätthâlles i koksskiktet (se nedan) .Thus, instead of water, fine-grained iron fis containing materials are used as coolant in the gasification zone, whereby interesting advantages can be gained, especially in the case where the gasification gas is mainly used for electricity generation. According to the invention, the gasification zone is also supplied with any required slag formers at the same time as iron oxides containing materials. The slag formers must be fine-grained. and is suitably added in admixture with the iron oxide material and is thus selected. that together with the passages of the iron oxide material they give an easily flowing slag at the temperature maintained in the coke layer (see below).

Vid sättet enligt uppfinningen kan reaktionsprodukterna från förgasnings- zonen bringas att omedelbart efter förgasningszonen genomströmma ett skikt av styckeformig koka med så avpassat djup i gasens strömningsriktning, att gasens innehåll av flytande och eventuellt ej alutreducerade fasta reaktions- produkter separerar ut på den styckeformiga koksen. Här fullbordas reduktion och kolinlösning och bildat råjärn och slagg flyter ned genom koksskiktet och avtappae från detta på en låg nivå medan gasen avledes (sidoledes) från skiktet på en högre belägen nivå.In the method according to the invention, the reaction products from the gasification zone can be caused to flow immediately after the gasification zone through a layer of piece-shaped boiling with such a suitable depth in the gas flow direction that the gas content of liquid and possibly non-reduced solid reaction products separates out on the piece-shaped coke. Here, reduction and choline dissolution are completed and formed pig iron and slag flows down through the coke layer and drains from it at a low level while the gas is diverted (laterally) from the layer at a higher level.

Under samma förutsättningar, som gäller fysiskt för formel (1), och under förutsättning att energiinnehållet (fysiskt väme + förbränningsvärme) hos gasen från förgasning enligt uppfinningen skall vara detsamma som enligt formel (1) kan förgasning av tjockolja vid kylning med exempelvis finkornig magnetit beskrivas med följande bruttoformel: 1,216 CH 075 Fe + 0,591 02 e» 1 555 * °' 3°4 ' <2) e 1,o45 co + o,65e H2 + o,12e coz + 0,184 H20 + o,226 (o,42 Fe + + 0,19 Feâc) neektienfemler liknande (1) een (2) kan uppetäliee även för festa bräns- len, exempelvis stenkol, men skiljer sig i princip ej från de ovan anförda formlerna.Under the same conditions, which apply physically to formula (1), and provided that the energy content (physical heat + combustion heat) of the gas from gasification according to the invention must be the same as according to formula (1), gasification of heavy oil during cooling with, for example, fine-grained magnetite can be described with the following gross formula: 1,216 CH 075 Fe + 0,591 02 e »1 555 * ° '3 ° 4' <2) e 1, o45 co + o, 65e H2 + o, 12e coz + 0,184 H 2 O + 0,226 (o, 42 Fe + + 0.19 Feâc) neektienfemler similar to (1) een (2) can also be used for solid fuels, for example hard coal, but does not differ in principle from the formulas given above.

Jämförelse av bruttoformlerna ( 1) och (2) ger vid handen att kylning med magnetit i stället för vattenånga erfordrar en ökad insats på. 0,216 mol tjockolja och 0,157 mol 02, varvid 0,075 mol Fe3O4 omvandlas i 0,226 mol råjärn med 5,9 % C. Detta innebär att bildat råjäm skall bära kostnader för 220 kg olja och 270 Nm302 per ton râjärn. Eftersom tjockoljan har ett effektivt förbränningsväme på ~ 9750 kcal/kg medan 1 Nm502 erfordrar 0,7 kWh för framställning, innebär förgasning enligt uppfinningsexemplet att därvid erhållet biproduktråjäin erhållits vid en total energiinsats på. (22o.9750 + o,7.27o.25oo)1o"6 .- 2,6 Gen/fen rajärn. »etta är 50 96 mindre energiinsats än vad som erfordras i en stor modern masugn (5,7 Goal/t). 50 _55 7709692-5 4 \ Vid förgasning enligt uppfinningen' sker reduktionen av jämoxiderna huvud- sakligen i förgasningszonen. Detta innebär .att förgasningskärlet lämpligen förlänges i gasens strömningsriktning för att ge plats för koksskiktet. Jäm- fört med förgasning med vattenångkylning erfordrar förgasning enligt uppfin- ningen dessutom anordningar för utslussning av råjärn och slagg eftersom förgasningen drives under tryck, lämpligen det tryck som erfordras för att utnyttja gasen för elgenerering i ett kombinerat gas-ångturbinsystem (12-20 bar, se nedan). i Kostnaden för de anordningar, som tillkommer vid förgasning enligt uppfin- ningen utöver de som erfordras vid vattenångkylning, är förhållandevis liten.Comparison of the gross formulas (1) and (2) shows that cooling with magnetite instead of water vapor requires an increased effort. 0.216 moles of heavy oil and 0.157 moles of O 2, whereby 0.075 moles of Fe 3 O 4 are converted into 0.226 moles of pig iron with 5.9% C. This means that formed pig iron must bear costs for 220 kg of oil and 270 Nm 3 O 2 per tonne of pig iron. Since the heavy oil has an efficient combustion heat of ~ 9750 kcal / kg while 1 Nm502 requires 0.7 kWh for production, gasification according to the example of the invention means that the by-product crude oil obtained in this case is obtained at a total energy input of. (22o.9750 + o, 7.27o.25oo) 1o "6 .- 2.6 Gen / fen rajärn.» Etta is 50 96 less energy input than what is required in a large modern blast furnace (5.7 Goal / h). In the case of gasification according to the invention, the reduction of the iron oxides takes place mainly in the gasification zone, which means that the gasification vessel is suitably extended in the direction of flow of the gas to make room for the coke layer. Compared to gasification with water vapor cooling, gasification according to the invention requires In addition, devices for excluding pig iron and slag because the gasification is operated under pressure, preferably the pressure required to use the gas for electricity generation in a combined gas-steam turbine system (12-20 bar, see below). added during gasification according to the invention in addition to those required for water vapor cooling, is relatively small.

Kapitalandelen, för vilken biproduktråjärnet skall bära. kostnaden, blir här- igenem iieen een per årepen råjam räknat mycket mindre än motsvarande kost- nad i samband med masugnsprocessen-(sinterverk + masugnmed tillbehör). I aegene lege uppgå: denne senare keeænea via 15 7, eneunep m1 ~2oo kr/fen f râjärn medan kaptialkostnadsandelen för biproduktråjärn enligt uppfinningen uppgår fl11~ 30 ker/ten. i Då. den' energi, som förbrukas i samband med råjärnsframställning enligt mas- ugnsprocessen, till stor »del härrör från koka, blir energienhetskostnaden i aette fall eförnaiienaevie hög een uppgår i aegene läge un -60 xa-/Geel medan motsvarande kostnad för tjookolja är ~35 kr/Gcal (augusti 1977).The share capital for which the by-product pig iron is to bear. the cost, is hereby iieen een per årepen råjam calculated much less than the corresponding cost in connection with the blast furnace process- (sinter plant + blast furnace with accessories). In aegene lege amount to: the latter keeænea via 15 7, eneunep m1 ~ 2oo kr / fen f râjärn while the capital cost share for by-product pig iron according to the invention amounts to fl11 ~ 30 ker / ten. in Then. the 'energy consumed in connection with the production of pig iron according to the blast furnace process, to a large extent' derives from boiling, the energy unit cost in one case becomes eförnaiienaevie high een amounts in aegene mode un -60 xa- / Geel while the corresponding cost for tjoo oil is ~ 35 kr / Gcal (August 1977).

Ovan anförde lägre energiförbrukning, 'lägre energienhetskostnad och lägre kapitalkostnad resulterar i en avsevärd kostnadsfördel för biproduktrájärn jämfört med masugnsråjäzn. I dagens läge beräknas nämnda. fördel i exemplet ' i ifråga sålunda m1 (3,7.6oa- 2,655) + (2oo-3o) e 300 kr/ton. Dette inne- bär att biproduktråjärn framställt .enligt uppfinningen med användning 'av tjockolja-som bränsle i dagens läge erhålles till cirka halva kostnaden för masugnsråjärn. Om tjockoljan ersättas med exempelvis gasrika stenkol blir kostnadsfördelen ännu större.The above stated lower energy consumption, lower energy unit cost and lower capital cost result in a significant cost advantage for by-product pig iron compared to blast furnace pig iron. In the current situation, the said is calculated. advantage in the example 'in the case thus m1 (3,7.6oa- 2,655) + (2oo-3o) e SEK 300 / ton. This means that by-product pig iron produced according to the invention using thick oil as the fuel in the present situation is obtained at about half the cost of blast furnace pig iron. If the heavy oil is replaced with, for example, gas-rich coal, the cost advantage will be even greater.

Förgasning enligt uppfinningen ger förutom billigt biproduktråjärn även den storavfördelen att svavelrika bränslen kan användas. Vid förgasning med vat- __ tenånglcylning enligt exempelvis TEXACO erhällesbränslets svavelinnehåll så.- _' som H28 i gasen. Detta är primärt även fallet vid förgasning enligt uppfin- ningen, men-sekundärt bindes svavlet råjäinet-som FeS. Gasen kommer därför _ i detta fall, »även vid höga svavelhalter i bränslet, att vara fri från sva- vel och lämpar sig därför med stor fördel att, eventuellt efter ytterligare i stoftrening, direkt användas för elgenerering i ett kombinerat gas-äng- ttzrbinsystem. Sådana systems höga verkningsgrad (sannolikt ~ 50 9% omkring 1985) i kombination med förgasning enligt uppfinningen av prisbilliga svavelrika bränslen möjliggör elgenereríng till låg kostnad kombinerad med låga utsläpp av S02 och NOX samt produktion av biproduktråjärn till mycket låg kostnad. Den sammantagna miljöpåverkan från en sådan kombina- tion blir dessutom endast en bråkdel av den, som erhålles från en i pro- duktionsavseende likvärdig kombination av konventionellt ångkraftverk och sinterverk/masugn för råjärnsframställning. Gasen är även användbar som syntesgas i olika kemiska synteser.Gasification according to the invention provides, in addition to cheap by-product pig iron, also the great advantage that sulfur-rich fuels can be used. When gasifying with water vapor cooling according to, for example, TEXACO, the sulfur content of the fuel is obtained as H28 in the gas. This is primarily also the case with gasification according to the invention, but - secondarily, the sulfur is bound to the crude iron as FeS. The gas will therefore - in this case, even at high sulfur contents in the fuel, be free from sulfur and is therefore very suitable to be used, possibly after further in dust purification, directly for electricity generation in a combined gas-vapor-gasoline system. . The high efficiency of such systems (probably ~ 50 9% around 1985) in combination with gasification according to the invention of affordable sulfur-rich fuels enables low-cost electricity generation combined with low emissions of SO 2 and NOX and the production of by-product pig iron at very low cost. In addition, the total environmental impact of such a combination is only a fraction of that obtained from a production-equivalent combination of conventional steam power plant and sinter plant / blast furnace for pig iron production. The gas is also useful as a synthesis gas in various chemical syntheses.

Förgasning i enlighet med uppfinningen ger vid användning av svavelrika bränslen ett biproduktråjärn med hög svavelhalt. Avsvavling av dylikt med dagens gängse metoder erfordrar avsvavling i tvâ. steg, vilket skulle elimi- nera en. icke föraktlig del av biproduktråjärnets kostnadsfördel enligt ovan.Gasification in accordance with the invention, when using sulfur-rich fuels, gives a by-product pig iron with a high sulfur content. Desulphurisation of such with today's common methods requires desulphurisation in two. steps, which would eliminate one. non-contemptible part of the cost advantage of the by-product pig iron as above.

I en föredragen utföringsfom av uppfinningen ingår därför avsvavling av biproduktråjärnet i enlighet med i svenska patentansökan 77-04859-5 angivet sätt. Detta möjliggör avsvavling med låg GaO-förbrulniing till låg kostnad och utvinning av svavlet direkt i form av elementärsvavel.A preferred embodiment of the invention therefore includes desulphurisation of the by-product pig iron in accordance with the method specified in Swedish patent application 77-04859-5. This enables desulphurisation with low GaO combustion at low cost and extraction of the sulfur directly in the form of elemental sulfur.

Uppfinningen illustreras vidare genom bilagda ritning, som visar en tryck- reaktor 1 med eldfast inmurning 2 inneslutande ett öppet reaktionsrum 5, vars nedre del är fylld med koks 4, som vid behov slussas in vid 5. Fin- fördelat kolhaltigt material 6, syrgas 7 och järnoxidhaltigt material 8 inmatas i en lämplig brännare i reaktionsrummets överdel. Den vid den par- tiella förbränningen av det kolhaltiga materialet bildade gasen passerar jänlte utreducerat järn och slagg ned genom reaktionsrummet och genom koks- bädden 4. Den erhållna reduoerande gasen avledes genom utloppsröret 9 lämp- ligen till ett gae-ångturbinsystem. Utredueerat Järn och bildad slagg passe- rar genom ytterligare koks och avtappas genom ett bottenutlopp 10. 7709692-3The invention is further illustrated by the accompanying drawing, which shows a pressure reactor 1 with refractory masonry 2 enclosing an open reaction chamber 5, the lower part of which is filled with coke 4, which is, if necessary, slurried in at 5. Finely divided carbonaceous material 6, oxygen 7 and iron oxide-containing material 8 is fed into a suitable burner in the upper part of the reaction chamber. The gas formed during the partial combustion of the carbonaceous material then passes undrained iron and slag down through the reaction chamber and through the coke bed 4. The resulting reducing gas is diverted through the outlet pipe 9 suitably to a gas steam turbine system. Undeterred Iron and formed slag pass through additional coke and are drained through a bottom outlet 10. 7709692-3

Claims (3)

17709692-3 PÅTENTKRAV17709692-3 PÅTENTKRAV 1. Sätt vid förgasning av finkorniga fasta eller flytande bränslen genom partialförbränning under övertryck, k ä. nn e t e c k n a t därav, att till en reaktor (1) innefattande ett öppet 'reaktionsrum över en med 7 etyekefemig kare fylla zon (4) fillföree m1 ae: öppna reaktioner-smet namae bränslen (6) sem: kylmeael i fem ev finföraeiea sjamena (s) inne- hållande material, eventuellt i blandning med slaggbildare, samt syrgas inne- hållande gee (7), ett. :inför-een sker i eåaen b1enaning, ett en temperem mellan 1300 och 1700 OC upprätthålles i det öppna reaktionsrummet (3) = fór- gasningszonen, och att endast partiell förbränning erhålles och gas bildas, samt att reaktionsprodukterna från förgasningszonen (5) bringas att strömma nedåt *genom kokszonen (4) längs en avpassad höjd i reaktorn för denna zon (4), att gasens innehåll av fasta. och flytande reaktionsprodukter separerar ut på koksen, och att härvid bildad biproduktrâjärn och slagg avtappas på låg nivå av kokszonen (4), medan gasen efter passage av kokszonen eller delar av denna. avledes (9) från reaktorn (1)) på. en högre nivå än järn och slagg. _ "When gasifying fine-grained solid or liquid fuels by partial combustion under overpressure, characterized in that a reactor (1) comprising an open reaction space over a zone (4) filled with 7 ethylene-chemical vessels is filled: open reactions-batter namae fuels (6) sem: cooling flour in five ev finföreiea sjamena (s) containing material, possibly in mixture with slag formers, and oxygen containing gee (7), one. The introduction takes place in a gasification, a temperature between 1300 and 1700 ° C is maintained in the open reaction chamber (3) = the gasification zone, and that only partial combustion is obtained and gas is formed, and that the reaction products from the gasification zone (5) are caused to flow downwards * through the coke zone (4) along a suitable height in the reactor for this zone (4), that the gas content of solid. and liquid reaction products separate out on the coke, and that the by-product iron and slag thus formed are drained at a low level by the coke zone (4), while the gas after passing through the coke zone or parts thereof. derived (9) from the reactor (1)) on. a higher level than iron and slag. _ " 2. Sätt enligt patentbsav 1, k ä. n n 'e t e c k n a t därav, att svavel- rika bränslen användes och 'att avtappat råjärn avsvavlas."2. A method according to claim 1, characterized in that sulfur-rich fuels are used and that drained pig iron is desulfurized. " 3. Sätt enligt patentkrav 1-2, k ä n n e t e c k n a t därav, att större delen av gasen som avledes från koksskiktet, eventuellt efter ytterligare stoftrening, utnyttjas för elgenerering i ett kombinerat gasångturbinsystem. _ a . ANFURDA PUBLIKATIONER: - Sverige patentänsökan 13 891/71, 342 472, 5393 816, 395 017, 398 515 US 833 406, 2 124 905, 2 162 4443. A method according to claims 1-2, characterized in that the majority of the gas which is diverted from the coke layer, possibly after further dust purification, is used for electricity generation in a combined gas steam turbine system. _ a. REQUIRED PUBLICATIONS: - Sweden patent application 13 891/71, 342 472, 5393 816, 395 017, 398 515 US 833 406, 2 124 905, 2 162 444
SE7709692A 1977-08-29 1977-08-29 KEEP ON FUEL GASING SE422078B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SE7709692A SE422078B (en) 1977-08-29 1977-08-29 KEEP ON FUEL GASING
DE19782836472 DE2836472A1 (en) 1977-08-29 1978-08-21 PROCESS FOR GASIFICATION OF FINE-GRAIN SOLID OR LIQUID FUELS
FR7824668A FR2401983A1 (en) 1977-08-29 1978-08-25 PROCESS FOR GASIFYING FUELS
GB7834705A GB2003496B (en) 1977-08-29 1978-08-25 Method of gasifying fuels
NO782904A NO149698C (en) 1977-08-29 1978-08-25 PROCEDURE FOR FUEL GASING
JP10480578A JPS5446202A (en) 1977-08-29 1978-08-28 Gas gasification
IT7868989A IT7868989A0 (en) 1977-08-29 1978-08-28 PROCEDURE FOR THE GASIFICATION OF FUELS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7709692A SE422078B (en) 1977-08-29 1977-08-29 KEEP ON FUEL GASING

Publications (2)

Publication Number Publication Date
SE7709692L SE7709692L (en) 1979-03-01
SE422078B true SE422078B (en) 1982-02-15

Family

ID=20332112

Family Applications (1)

Application Number Title Priority Date Filing Date
SE7709692A SE422078B (en) 1977-08-29 1977-08-29 KEEP ON FUEL GASING

Country Status (7)

Country Link
JP (1) JPS5446202A (en)
DE (1) DE2836472A1 (en)
FR (1) FR2401983A1 (en)
GB (1) GB2003496B (en)
IT (1) IT7868989A0 (en)
NO (1) NO149698C (en)
SE (1) SE422078B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395347A (en) 1979-12-04 1983-07-26 Airwick Industries, Inc. Powdered carpet cleaner containing ether alcohol solvents
SE429561B (en) * 1980-06-10 1983-09-12 Skf Steel Eng Ab SET FOR CONTINUOUS PREPARATION OF LOW CARBON CHROMES OF CHROMOXIDE CONTAINING MATERIALS USING A PLASMA MAGAZINE
SE444956B (en) * 1980-06-10 1986-05-20 Skf Steel Eng Ab SET OUT OF METAL OXID-CONTAINING MATERIALS EXCAVING INGREDIENT EASY METALS OR CONCENTRATES OF THESE
SE434163B (en) * 1981-03-10 1984-07-09 Skf Steel Eng Ab SET AND DEVICE FOR PREPARING A MAIN COOLOXIDE AND VETGAN CONTAINING GAS FROM COAL AND / OR CARBON-CONTAINING INGREDIENTS
SE457265B (en) * 1981-06-10 1988-12-12 Sumitomo Metal Ind PROCEDURE AND ESTABLISHMENT FOR PREPARATION OF THANKS
DE3320228A1 (en) * 1983-06-03 1984-12-06 Kraftwerk Union AG, 4330 Mülheim POWER PLANT WITH AN INTEGRATED COAL GASIFICATION PLANT
SE8400092L (en) * 1984-01-10 1985-07-11 T G Owe Berg PROCEDURE FOR COMBUSTION OF COAL WITHOUT EMISSIONS OF COAL DAMAGE
US4655792A (en) * 1984-12-12 1987-04-07 Texaco Inc. Partial oxidation process
EP0209261B1 (en) * 1985-06-27 1989-11-29 Texaco Development Corporation Partial oxidation process
DE3878506T2 (en) * 1987-08-28 1993-06-03 Texaco Development Corp HIGH TEMPERATURE DESOLUTIONATION OF SYNTHESIS GAS.
US5066325A (en) * 1987-08-31 1991-11-19 Northern States Power Company Cogeneration process for production of energy and iron materials, including steel
US5064174A (en) * 1989-10-16 1991-11-12 Northern States Power Company Apparatus for production of energy and iron materials, including steel
US5055131A (en) * 1987-08-31 1991-10-08 Northern States Power Company Cogeneration process for production of energy and iron materials
WO1989001981A1 (en) * 1987-08-31 1989-03-09 Northern States Power Company Congeneration process for production of energy and iron materials, including steel
US5045112A (en) * 1988-02-08 1991-09-03 Northern States Power Company Cogeneration process for production of energy and iron materials, including steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1176308B (en) * 1954-03-04 1964-08-20 Strico Ges Fuer Metallurg Process for the simultaneous generation of fuel gas and extraction of metal in a tapping gas generator
GB1387516A (en) * 1973-05-12 1975-03-19 Texaco Development Corp Synthesis gas generation
DE2557326A1 (en) * 1975-12-19 1977-06-30 Metallgesellschaft Ag PROCESS FOR THERMAL GASIFICATION OF HIGH BOILING HYDROCARBONS WITH HYDROGEN VAPOR AND OXYGEN

Also Published As

Publication number Publication date
IT7868989A0 (en) 1978-08-28
FR2401983B1 (en) 1983-08-26
JPS5446202A (en) 1979-04-12
FR2401983A1 (en) 1979-03-30
GB2003496B (en) 1982-02-10
NO149698C (en) 1984-06-06
NO782904L (en) 1979-03-01
GB2003496A (en) 1979-03-14
NO149698B (en) 1984-02-27
SE7709692L (en) 1979-03-01
DE2836472A1 (en) 1979-03-15

Similar Documents

Publication Publication Date Title
SE422078B (en) KEEP ON FUEL GASING
US4153426A (en) Synthetic gas production
KR940004897B1 (en) Process for gaining electric energy in addition to producing molten pig iron and an arrangement for carrying out the process
RU2496884C2 (en) Method for cast-iron melting with return of blast furnace gas at addition of hydrocarbons
KR102298465B1 (en) Method for generating synthesis gas in conjunction with a smelting works
KR20090101382A (en) Method and installation for generating electric energy in a gas/steam turbine power plant
US20150152344A1 (en) Melt gasifier system
JP2016524654A (en) Blast furnace and blast furnace operating method
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
US10435295B2 (en) Coupling an electric furnace with a liquid fuel synthesis process to improve performance when processing heterogeneous wastes
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
Squires Clean fuels from coal gasification
US4201571A (en) Method for the direct reduction of iron and production of fuel gas using gas from coal
US4062673A (en) Flash smelting of iron with production of hydrogen of hydrogenation quality
US2337551A (en) Process of producing gas mixtures for synthetic purposes
CA1172455A (en) Method and apparatus for the direct reduction of iron in a shaft furnace using gas from coal
US4004896A (en) Production of water gas
US4826664A (en) Methods of desulfurizing gases
US4234169A (en) Apparatus for the direct reduction of iron and production of fuel gas using gas from coal
CA1141549A (en) Production for reducing gas for furnace injection
US4851151A (en) Process for production of synthesis gas with reduced sulfur content
AU2012100987A4 (en) Containerized Gassifier System
CA1204287A (en) Method of generating a reducing gas
US4171971A (en) Method of manufacturing hot metal
US3146089A (en) Optimizing reducing gas production with hydrogen-containing fuels