NO149698B - PROCEDURE FOR FUEL GASING. - Google Patents
PROCEDURE FOR FUEL GASING. Download PDFInfo
- Publication number
- NO149698B NO149698B NO782904A NO782904A NO149698B NO 149698 B NO149698 B NO 149698B NO 782904 A NO782904 A NO 782904A NO 782904 A NO782904 A NO 782904A NO 149698 B NO149698 B NO 149698B
- Authority
- NO
- Norway
- Prior art keywords
- zone
- gas
- coke
- gasification
- fuel
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 16
- 238000002309 gasification Methods 0.000 claims description 29
- 229910000805 Pig iron Inorganic materials 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 20
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000000571 coke Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 239000006227 byproduct Substances 0.000 claims description 12
- 239000002893 slag Substances 0.000 claims description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000002826 coolant Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000005864 Sulphur Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 235000013980 iron oxide Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/36—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/485—Entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/725—Redox processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/74—Construction of shells or jackets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
- C21B13/0013—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
- C21B13/002—Reduction of iron ores by passing through a heated column of carbon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/094—Char
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0996—Calcium-containing inorganic materials, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1609—Post-reduction, e.g. on a red-white-hot coke or coal bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1846—Partial oxidation, i.e. injection of air or oxygen only
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/134—Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Industrial Gases (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
- Gas Separation By Absorption (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Oppfinnelsen angår en fremgangsmåte ved forgassing av The invention relates to a method by gasification of
fast og flytende brensel med oxygengass under overtrykk. Ifølge oppfinnelsen utnyttes jernoxydhoIdige materialer som kjølemiddel i forgassingssonen. Råmaterialene som tilføres til prosessen, utgjøres av finkornede faste og flytende brensler, finkornede jernoxydholdige materialer, eventuelt nødvendige slaggdannere og oxygengass. solid and liquid fuel with oxygen gas under overpressure. According to the invention, iron oxide-based materials are used as a coolant in the gasification zone. The raw materials supplied to the process consist of fine-grained solid and liquid fuels, fine-grained iron oxide-containing materials, possibly necessary slag formers and oxygen gas.
Med finkornede brensler skal ifølge oppfinnelsen forstås Fine-grained fuels are, according to the invention, to be understood
f.eks. finkornede, carbonholdige materialer, som lignitt, sten- e.g. fine-grained, carbonaceous materials, such as lignite, stone
kull, antrasitt eller char etc. med en kornstørrelse av under 1 mm, gjerne under 0,5 mm, og fortrinnsvis med en middelkorn-størrelse av under 0,3 mm. Med flytende brensler skal forstås hydrocarbonblandinger. som er pumpbare ved rimelige temperaturer, coal, anthracite or char etc. with a grain size of less than 1 mm, preferably less than 0.5 mm, and preferably with a medium grain size of less than 0.3 mm. Liquid fuels are to be understood as hydrocarbon mixtures. which are pumpable at reasonable temperatures,
som fyringsoljer eller for tjærer befridde råoljer etc. as fuel oils or tar-free crude oils etc.
Med finkornede jernoxydholdige materialer skal ifølge op<p>finnelsen forstås f.eks. jernmalmsliger, kisavbrann og mer eller mindre forreduserte produkter av disse med en kornstørrelse av under 1 mm, gjerne under 0, 5 mm, og fortrinnsvis med en middel-kornstørrelse av under 0,2 mm. By fine-grained iron oxide-containing materials, according to the invention, e.g. iron ore slag, slag and more or less reduced products thereof with a grain size of less than 1 mm, preferably less than 0.5 mm, and preferably with an average grain size of less than 0.2 mm.
Ved forgassing av brensel ved delvis forbrenning under overtrykk med oxygengass ved anvendelse av. kjente metoder, f.eks. When gasifying fuel by partial combustion under overpressure with oxygen gas using. known methods, e.g.
ved TEXACO-prosessen ( se f.eks. "The production of synthesis gas by partial oxidation" Bois Eastman, 5th World Petroleum Congress by the TEXACO process (see e.g. "The production of synthesis gas by partial oxidation" Bois Eastman, 5th World Petroleum Congress
(1959) Section IV-side 13) tilføres vanndamp som kjølemiddel til forgassingssonen. Vanndampen spaltes i denne delvis, under dan-nelse av CO og H2, og denne reaksjon er sterkt endoterm og mulig-gjør opprettholdelse av den ønskede temperatur i forgassingssonen. Ved forgassing ifølge TEXACO-prosessen av f.eks. tykkolje ved 1450°C og 24 bar kan forgassingsforløpet representeres ved den følgende bruttoligning: (1959) Section IV-page 13) water vapor is supplied as a coolant to the gasification zone. The water vapor is partially split in this, forming CO and H2, and this reaction is strongly endothermic and makes it possible to maintain the desired temperature in the gasification zone. When gasification according to the TEXACO process of e.g. thick oil at 1450°C and 24 bar, the gasification process can be represented by the following gross equation:
Som det fremgår av ligningen (1) kan en viss mindre sot-dannelse ikke unngås. As can be seen from equation (1), a certain minor soot formation cannot be avoided.
Det har nu vist seg at istedenfor vanndamp kan finkornede jernoxydholdige materialer utnyttes som kjølemiddel i forgassingssonen, hvorved interessante fordeler kan oppnås, spesielt når forgassingsgassen hovedsakelig utnyttes for fremstilling av elektrisk energi. It has now been shown that instead of water vapour, fine-grained iron oxide-containing materials can be used as a coolant in the gasification zone, whereby interesting advantages can be achieved, especially when the gasification gas is mainly used for the production of electrical energy.
I henhold til oppfinnelsen tilveiebringes det således en fremgangsmåte ved forgassing av finkornet, fast eller flytende brensel ved partiell forbrenning under overtrykk, hvilken fremgangsmåte utmerker seg ved at til en reaktor innbefattende et åpent reaksjonskammer over en med stykkformig koks fylt sone tilføres til det åpne reaksjonskammer nevnte brensel, foruten et kjølemiddel i form av et materiale inneholdende finfordelt jernoxyd, eventuelt i blanding med slaggdannere, og en oxygenholdig gass, at tilførselen skjer i en slik blanding at en temperatur mellom 1300 og 1700°C opprettholdes i det åpne, som forgass-ingssone tjenende reaksjonskammer og det kun oppnåes partiell forbrenning, med gassdannelse, samt at reaksjonsproduktene fra forgassingssonen bringes til å strømme i retning nedad gjennom kokssonen et såpass langt stykke at gassens innhold av faste og flytende reaksjonsprodukter skilles ut på koksen, og at biproduktråjern og slagg som dannes under prosessen, tappes av på et lavt nivå i kokssonen, mens gassen etter å ha passert kokssonen. eller deler av denne tas ut fra reaktoren på et høyere nivå enn jernet og slaggen. According to the invention, a method is thus provided for the gasification of fine-grained, solid or liquid fuel by partial combustion under overpressure, which method is distinguished by the fact that to a reactor including an open reaction chamber over a zone filled with lumpy coke, the said open reaction chamber is supplied fuel, in addition to a coolant in the form of a material containing finely divided iron oxide, possibly in a mixture with slag formers, and an oxygen-containing gas, that the supply takes place in such a mixture that a temperature between 1300 and 1700°C is maintained in the open, as a gasification zone serving reaction chamber and only partial combustion is achieved, with gas formation, and that the reaction products from the gasification zone are made to flow in a downward direction through the coke zone for a long enough distance that the gas's content of solid and liquid reaction products is separated on the coke, and that the by-product pig iron and slag that are formed during the process, is drained on a low t level in the coke zone, while the gas after passing the coke zone. or parts thereof are taken out of the reactor at a higher level than the iron and slag.
Under de samme fysiske forutsetninger som for ligningen (l).og under forutsetning av at energiinnholdet (fysisk varme + forbrenningsvarme) for gassen som kommer fra forgassingen ifølge oppfinnelsen skal være det samme som ifølge ligningen (l),kan forgassing av tykkolje ved avkjøling med-f.eks. finkornet magnetitt representeres ved den frtlgende bruttoligning: Under the same physical conditions as for equation (l), and under the condition that the energy content (physical heat + heat of combustion) of the gas coming from the gasification according to the invention must be the same as according to equation (l), gasification of thick oil by cooling with - e.g. Fine-grained magnetite is represented by the following gross equation:
1,045 CO+0,638 H2+0,128 CO2+0,lS4 H2O+0,226(0,42 Fe+0,19 Fe3C) 1.045 CO+0.638 H2+0.128 CO2+0.lS4 H2O+0.226(0.42 Fe+0.19 Fe3C)
Reaksjonsligninger som er lignende (1) og (2) , kan stilles opp også for faste brensler, f.eks. stenkull, men de skiller seg prinsipielt ikke fra de ovenfor angitte ligninger. Reaction equations that are similar to (1) and (2) can also be set up for solid fuels, e.g. hard coal, but they do not differ in principle from the above-mentioned equations.
En sammenligning mellom bruttoligningene (1) og (2) til-kjennegir at avkjøling med magnetitt istedenfor med vanndamp krever en øket innsats på 0,216 mol tykkolje og 0,157 mol 02, idet 0,075 mol Fe304 omvandles til 0,226 mol råjern med 3,9% C. Dette innebærer at det råjern som dannes, skal tåle omkostningene for 220 A comparison between the gross equations (1) and (2) indicates that cooling with magnetite instead of water vapor requires an increased input of 0.216 mol thick oil and 0.157 mol 02, as 0.075 mol Fe3O4 is converted to 0.226 mol pig iron with 3.9% C. This means that the pig iron that is formed must withstand the costs of 220
kg olje og 270 Nm 0_ pr. tonn råjern. Da tykkoljen har en effektiv forbrenningsvarme på ca. 9750 kcal/kg mens 1 Nm 02 krever 0,7 kVh for å fremstilles, innebærer forgassingen ifølge oppfinnelses-eksemplet at det derved erholdte biproduktråjern er blitt erholdt efter en samlet energiinnsats på (220.9750+0,7.270.2500)10~<6> = kg of oil and 270 Nm 0_ per tons of pig iron. As the thick oil has an effective heat of combustion of approx. 9750 kcal/kg while 1 Nm 02 requires 0.7 kVh to be produced, the gasification according to the invention example implies that the resulting by-product pig iron has been obtained after a total energy input of (220.9750+0.7.270.2500)10~<6> =
2,6 Gcal/tonn råjern. Dette er en 30% mindre energiinnsats enn hva som kreves i en stor moderne masovn (3,7 Gcal/t). 2.6 Gcal/ton pig iron. This is a 30% lower energy input than what is required in a large modern blast furnace (3.7 Gcal/h).
Ved forgassingen ifølge oppfinnelsen finner reduksjonen av jernoxydene hovedsakelig sted i forgassingssonen. Dette innebærer at forgassingskaret med fordel kan forlenges i gassens strømnings-retning for å gi plass for koksskiktet. Sammenlignet med forgassing med vanndampavkjøling krever forgassingen ifølge oppfinnelsen dessuten anordninger for utslusing av råjern og slagg da forgassingen drives under trykk, med fordel det trykk som kreves for å utnytte gassen for produksjon av elektrisk energi i et kombinert gass-dampturbinsystem (12-20 bar) (se nedenfor). In the gasification according to the invention, the reduction of the iron oxides mainly takes place in the gasification zone. This means that the gasification vessel can advantageously be extended in the direction of gas flow to make room for the coke layer. Compared to gasification with water vapor cooling, the gasification according to the invention also requires devices for exhausting pig iron and slag as the gasification is operated under pressure, preferably the pressure required to utilize the gas for the production of electrical energy in a combined gas-steam turbine system (12-20 bar). (see below).
Omkostningene for de anordninger som anvendes ved forgassingen ifølge oppfinnelsen utover de anordninger som er nød-vendige ved avkjøling med vanndamp, er forholdsvis små. Kapital-andelen som biproduktråjernet skal bære omkostningene for, blir derved liten og regnet pr. årstonn råjern meget mindre enn de tilsvarende omkostninger i forbindelse med masovnprosessen (sinterverk + masovn med tilbehør). I dagens situasjon oppgår disse sistnevnte omkostninger ved en 15% annuitet til ca. 200 Skr/ tonn råjern, mens kapitalomkostningsandelen for biproduktråjern fremstilt ifølge oppfinnelsen oppgår til ca. 30 Skr/tonn. The costs for the devices used in the gasification according to the invention, in addition to the devices that are necessary for cooling with steam, are relatively small. The capital share for which the by-product pig iron must bear the costs is thereby small and calculated per annual tonne of pig iron much less than the corresponding costs in connection with the blast furnace process (sintering plant + blast furnace with accessories). In the current situation, these latter costs at a 15% annuity amount to approx. 200 Skr/tonne pig iron, while the capital cost share for by-product pig iron manufactured according to the invention amounts to approx. 30 Skr/tonne.
Da den energi som forbrukes i forbindelse med råjernfremstilling ifølge masovns<p>rosessen for en stor del skriver seg fra koks, blir energienhetsomkostningene i dette tilfelle forholdsvis høye og oppgår i dagens situasjon til ca. 60 Skr/Gcal, mens de tilsvarende omkostninger for tykkolje er ca. 35 Skr/Gcal (august 1977) . As the energy consumed in connection with the production of pig iron according to the blast furnace<p>rosesse is largely derived from coke, the energy unit costs in this case are relatively high and in the current situation amount to approx. 60 Skr/Gcal, while the corresponding costs for thick oil are approx. 35 Skr/Gcal (August 1977) .
Det ovenfor anførte lavere energiforbruk, de lavere energi-enhetsomkostninger og de lave kapitalomkostninger fører til en betydelig omkostningsfordel for biproduktråjern sammenlignet med masovnsråjern. I dagens situasjon beregnes den nevnte fordel i det angjeldende eksempel således til (3,7.60 - 2,6.35) + (200-30)= 300 Skr/tonn. Dette innebærer at biproduktråjern fremstilt ifølge oppfinnelsen under anvendelse av tykkolje som brensel, i dagens situasjon fås til ca. halvparten av omkostningene for masovnsråjern. Dersom tykkoljen erstattes med f.eks. gassrikt stenkull, blir omkostningsfordelen ennu større. The above-mentioned lower energy consumption, the lower energy unit costs and the low capital costs lead to a significant cost advantage for by-product pig iron compared to blast furnace pig iron. In the current situation, the mentioned advantage in the relevant example is thus calculated at (3.7.60 - 2.6.35) + (200-30)= 300 Skr/tonne. This means that, in the current situation, by-product pig iron produced according to the invention using thick oil as fuel can be obtained for approx. half the cost of blast furnace pig iron. If the thick oil is replaced with e.g. gas-rich hard coal, the cost advantage is even greater.
Forgassingen ifølge oppfinnelsen gir foruten billig bi-produktrå jern også den store fordel at svovelrike brensler kan anvendes. Ved forgassing med vanndampavkjøling ifølge f .eks. TEXACO fås brenslets svovelinnhold som H2S i gassen. Dette er primært også tilfellet ved forgassing ifølge oppfinnelsen, men sekundært bindes svovlet i råjernet som FeS. Gassen vil derfor i dette tilfelle, selv ved høye svovelinnhold i brenslet, være fri for svovel og egner seg derfor med stor fordel, eventuelt efter ytterligere støvrensing, for direkte anvendelse for produksjon av elektrisk energi i et kombinert gass-dampturbinsystem. Slike systemers høye virkningsgrad (sannsynligvis ca. 50% i 1985) i kombinasjon med forgassing ifølge oppfinnelsen av rimelige, svovelrike brensler muliggjør produksjon av elektrisk energi til lav pris kombinert med lave utslipp av S02 og NOx samt produksjon av biproduktråjern til meget lave omkostninger. Den samlede påvirkning av miljøet ved en slik kombinasjon blir dessuten bare en brøkdel av den påvirkning som fås ved en produksjonsmessig likeverdig kombinasjon av konvensjonelt dampkraftverk og sinterverk/masovn for råjernfremstilling. Gassen er også anvendbar som syntesegass for forskjellige kjemiske synteser. The gasification according to the invention offers, in addition to cheap by-product raw iron, also the great advantage that sulphur-rich fuels can be used. In case of gasification with water vapor cooling according to e.g. TEXACO obtains the fuel's sulfur content as H2S in the gas. This is primarily also the case with gasification according to the invention, but secondarily the sulfur is bound in the pig iron as FeS. The gas will therefore in this case, even with a high sulfur content in the fuel, be free of sulfur and is therefore very suitable, possibly after further dust cleaning, for direct use for the production of electrical energy in a combined gas-steam turbine system. The high efficiency of such systems (probably about 50% in 1985) in combination with gasification according to the invention of inexpensive, sulfur-rich fuels enables the production of electrical energy at low cost combined with low emissions of S02 and NOx as well as the production of by-product pig iron at very low cost. The overall impact on the environment from such a combination is also only a fraction of the impact from a production-wise equivalent combination of a conventional steam power plant and a sinter plant/blast furnace for pig iron production. The gas can also be used as synthesis gas for various chemical syntheses.
Forgassingen ifølge oppfinnelsen gir et biproduktråjern med høyt svovelinnhold ved anvendelse av svovelrike brensler. The gasification according to the invention gives a by-product pig iron with a high sulfur content when sulfur-rich fuels are used.
En avsvovling av slike brensler med de for tiden gjengse metoder krever avsvovling i to trinn, og dette skulle fjerne en ikke ubetydelig del av den ovennevnte omkostningsfordel for biprodukt-rå jernet. Ifølge en foretrukken utførelsesform av oppfinnelsen inngår derfor avsvovling av biproduktråjernet i overensstemmelse med den metode som er angitt i svensk patentsøknad 77-04859-3. Desulphurisation of such fuels using the currently common methods requires desulphurisation in two stages, and this would remove a not insignificant part of the above-mentioned cost advantage for the by-product raw iron. According to a preferred embodiment of the invention, desulphurisation of the by-product pig iron is therefore included in accordance with the method specified in Swedish patent application 77-04859-3.
Dette muliggjør avsvovling ved et lavt CaO-forbruk til lave omkostninger og utvinning av svovlet direkte i form av elementært svovel. This enables desulphurisation with a low CaO consumption at low costs and extraction of the sulfur directly in the form of elemental sulphur.
Oppfinnelsen vil bli nærmere beskrevet under henvisning The invention will be described in more detail under reference
til tegningen som viser en trykkreaktor 1 med ildfast muring 2 som omslutter et åpent reaksjonsrom 3 med en nedre del som er fylt med koks 4 som efter behov sluses inn ved 5. Findelt, carbonholdig materiale 6, oxygengass 7 og jernoxydholdig materiale 8 innføres i en egnet brenner i den øvre del av reaksjonsrommet. Gassen som dannes ved den delvise forbrenning av det carbonholdige materiale, strømmer sammen med redusert jern og slagg ned gjennom reaksjonsrommet og gjennom kokslaget 4. Den erholdte reduserende gass kan med fordel avledes via utløpsrøret 9 til et gass-dampturbinsystem. Redusert jern og dannet slagg strømmer gjennom ytterligere koks og tappes ut gjennom et bunnutløp 10. to the drawing showing a pressure reactor 1 with refractory walls 2 which encloses an open reaction space 3 with a lower part which is filled with coke 4 which is sluiced in as needed at 5. Finely divided, carbonaceous material 6, oxygen gas 7 and iron oxide-containing material 8 are introduced into a suitable burner in the upper part of the reaction chamber. The gas formed by the partial combustion of the carbonaceous material flows together with reduced iron and slag down through the reaction chamber and through the coking bed 4. The resulting reducing gas can be advantageously diverted via the outlet pipe 9 to a gas-steam turbine system. Reduced iron and formed slag flows through additional coke and is drained through a bottom outlet 10.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7709692A SE422078B (en) | 1977-08-29 | 1977-08-29 | KEEP ON FUEL GASING |
Publications (3)
Publication Number | Publication Date |
---|---|
NO782904L NO782904L (en) | 1979-03-01 |
NO149698B true NO149698B (en) | 1984-02-27 |
NO149698C NO149698C (en) | 1984-06-06 |
Family
ID=20332112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO782904A NO149698C (en) | 1977-08-29 | 1978-08-25 | PROCEDURE FOR FUEL GASING |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS5446202A (en) |
DE (1) | DE2836472A1 (en) |
FR (1) | FR2401983A1 (en) |
GB (1) | GB2003496B (en) |
IT (1) | IT7868989A0 (en) |
NO (1) | NO149698C (en) |
SE (1) | SE422078B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4395347A (en) | 1979-12-04 | 1983-07-26 | Airwick Industries, Inc. | Powdered carpet cleaner containing ether alcohol solvents |
SE429561B (en) * | 1980-06-10 | 1983-09-12 | Skf Steel Eng Ab | SET FOR CONTINUOUS PREPARATION OF LOW CARBON CHROMES OF CHROMOXIDE CONTAINING MATERIALS USING A PLASMA MAGAZINE |
SE444956B (en) * | 1980-06-10 | 1986-05-20 | Skf Steel Eng Ab | SET OUT OF METAL OXID-CONTAINING MATERIALS EXCAVING INGREDIENT EASY METALS OR CONCENTRATES OF THESE |
SE434163B (en) * | 1981-03-10 | 1984-07-09 | Skf Steel Eng Ab | SET AND DEVICE FOR PREPARING A MAIN COOLOXIDE AND VETGAN CONTAINING GAS FROM COAL AND / OR CARBON-CONTAINING INGREDIENTS |
SE457265B (en) * | 1981-06-10 | 1988-12-12 | Sumitomo Metal Ind | PROCEDURE AND ESTABLISHMENT FOR PREPARATION OF THANKS |
DE3320228A1 (en) * | 1983-06-03 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | POWER PLANT WITH AN INTEGRATED COAL GASIFICATION PLANT |
SE8400092L (en) * | 1984-01-10 | 1985-07-11 | T G Owe Berg | PROCEDURE FOR COMBUSTION OF COAL WITHOUT EMISSIONS OF COAL DAMAGE |
US4655792A (en) * | 1984-12-12 | 1987-04-07 | Texaco Inc. | Partial oxidation process |
EP0209261B1 (en) * | 1985-06-27 | 1989-11-29 | Texaco Development Corporation | Partial oxidation process |
DE3878506T2 (en) * | 1987-08-28 | 1993-06-03 | Texaco Development Corp | HIGH TEMPERATURE DESOLUTIONATION OF SYNTHESIS GAS. |
US5064174A (en) * | 1989-10-16 | 1991-11-12 | Northern States Power Company | Apparatus for production of energy and iron materials, including steel |
JPH03501678A (en) * | 1987-08-31 | 1991-04-11 | ノーザン・ステイツ・パワー・カンパニー | A method of producing energy and producing ferrous materials such as steel |
US5045112A (en) * | 1988-02-08 | 1991-09-03 | Northern States Power Company | Cogeneration process for production of energy and iron materials, including steel |
US5066325A (en) * | 1987-08-31 | 1991-11-19 | Northern States Power Company | Cogeneration process for production of energy and iron materials, including steel |
US5055131A (en) * | 1987-08-31 | 1991-10-08 | Northern States Power Company | Cogeneration process for production of energy and iron materials |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1176308B (en) * | 1954-03-04 | 1964-08-20 | Strico Ges Fuer Metallurg | Process for the simultaneous generation of fuel gas and extraction of metal in a tapping gas generator |
GB1387516A (en) * | 1973-05-12 | 1975-03-19 | Texaco Development Corp | Synthesis gas generation |
DE2557326A1 (en) * | 1975-12-19 | 1977-06-30 | Metallgesellschaft Ag | PROCESS FOR THERMAL GASIFICATION OF HIGH BOILING HYDROCARBONS WITH HYDROGEN VAPOR AND OXYGEN |
-
1977
- 1977-08-29 SE SE7709692A patent/SE422078B/en unknown
-
1978
- 1978-08-21 DE DE19782836472 patent/DE2836472A1/en not_active Withdrawn
- 1978-08-25 FR FR7824668A patent/FR2401983A1/en active Granted
- 1978-08-25 NO NO782904A patent/NO149698C/en unknown
- 1978-08-25 GB GB7834705A patent/GB2003496B/en not_active Expired
- 1978-08-28 JP JP10480578A patent/JPS5446202A/en active Pending
- 1978-08-28 IT IT7868989A patent/IT7868989A0/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR2401983B1 (en) | 1983-08-26 |
IT7868989A0 (en) | 1978-08-28 |
GB2003496B (en) | 1982-02-10 |
NO149698C (en) | 1984-06-06 |
SE422078B (en) | 1982-02-15 |
NO782904L (en) | 1979-03-01 |
JPS5446202A (en) | 1979-04-12 |
DE2836472A1 (en) | 1979-03-15 |
FR2401983A1 (en) | 1979-03-30 |
GB2003496A (en) | 1979-03-14 |
SE7709692L (en) | 1979-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4153426A (en) | Synthetic gas production | |
NO149698B (en) | PROCEDURE FOR FUEL GASING. | |
CA1108865A (en) | Method and apparatus for the direct reduction of iron ore | |
Littlewood | Gasification: Theory and application | |
US20150152344A1 (en) | Melt gasifier system | |
PL136806B1 (en) | Method of generating gaseous mixture,containing especially carbon monoxide and hydrogen,from coal and/or hadrocarbons containing materials and apparatus therefor | |
PL130522B1 (en) | Gas generation method | |
CA1309589C (en) | Method of producing a clean gas containing carbon monoxide and hydrogen | |
TWI803522B (en) | Method for producing hot synthesis gas, in particular for use in blast furnace operation | |
US4201571A (en) | Method for the direct reduction of iron and production of fuel gas using gas from coal | |
US4062673A (en) | Flash smelting of iron with production of hydrogen of hydrogenation quality | |
US2337551A (en) | Process of producing gas mixtures for synthetic purposes | |
Squires | Clean fuels from coal gasification | |
JP2000212615A (en) | RECOVER OF ENERGY FROM EXHAUST GAS IN IRON-work EQUIPMENT | |
NO822797L (en) | METHOD AND APPARATUS FOR MANUFACTURING SYNTHESIC GAS | |
US4004896A (en) | Production of water gas | |
CA1172455A (en) | Method and apparatus for the direct reduction of iron in a shaft furnace using gas from coal | |
US3787193A (en) | Production of water gas | |
US4234169A (en) | Apparatus for the direct reduction of iron and production of fuel gas using gas from coal | |
AU2012100987A4 (en) | Containerized Gassifier System | |
US2650161A (en) | Production of iron in a blast furnace | |
US4225340A (en) | Method for the direct reduction of iron using gas from coal | |
US4553742A (en) | Apparatus for generating a reducing gas | |
US3146089A (en) | Optimizing reducing gas production with hydrogen-containing fuels | |
CA1204287A (en) | Method of generating a reducing gas |