SE421541B - PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS - Google Patents
PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTSInfo
- Publication number
- SE421541B SE421541B SE7805693A SE7805693A SE421541B SE 421541 B SE421541 B SE 421541B SE 7805693 A SE7805693 A SE 7805693A SE 7805693 A SE7805693 A SE 7805693A SE 421541 B SE421541 B SE 421541B
- Authority
- SE
- Sweden
- Prior art keywords
- fiber
- water
- process according
- colloid
- starch
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21J—FIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
- D21J3/00—Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/504—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
- B29C70/508—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and first forming a mat composed of short fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
- C04B30/02—Compositions for artificial stone, not containing binders containing fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/06—Methods of shaping, e.g. pelletizing or briquetting
- C10L5/10—Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
- C10L5/14—Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/002—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
- D21C9/005—Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H23/00—Processes or apparatus for adding material to the pulp or to the paper
- D21H23/02—Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
- D21H23/22—Addition to the formed paper
- D21H23/24—Addition to the formed paper during paper manufacture
- D21H23/26—Addition to the formed paper during paper manufacture by selecting point of addition or moisture content of the paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/08—Moulding or pressing
- B27N3/28—Moulding or pressing characterised by using extrusion presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/04—Starch derivatives, e.g. crosslinked derivatives
- C08L3/10—Oxidised starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/14—Hemicellulose; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
- C08L89/005—Casein
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
7805693-4 'På principiellt samma sätt har man nu producerat papper och kartong i snart 180 år. Hanteringen av de stora vatten- möngderna, samt de miljöproblem, som är förknippade med utsläpp av den del av vattnet som inte kan återföras till processen, har gjort pappersindustrin till stora, tunga enheter som måste utnyttja minst ca. 80 $ av produktions- kapaciteten - dygnet runt och året runt - för att kunna förränta de stora investeringarna. 7805693-4 'In basically the same way, paper has now been produced and cardboard for almost 180 years. The management of the large water the quantities, as well as the environmental problems associated with them discharge of the part of the water that cannot be returned to process, has made the paper industry big, heavy units that must utilize at least approx. $ 80 of production the capacity - around the clock and all year round - to be able to return on large investments.
Orsaken till träfibrernas stora användbarhet är deras "medfödda" egenskap att bilda kemiska föreningar - så kallade hydrogenbryggor - mellan varandra när vattnet torkas bort så att torrhalten börjar passera cs. 70 $.The reason for the great usefulness of wood fibers is theirs "innate" ability to form chemical compounds - so called hydrogen bridges - between each other when the water wiped off so that the dry matter begins to pass cs. $ 70.
Därigenom får elutprodukten en mekanisk styrka som ytterligare kan förbättras genom tillsats av bindemedel.This gives the electrical product a mechanical strength that can be further improved by adding binder.
Användningen av bindemedel blir ständigt mera aktuell allteftersom man övergår till större halter returfibrer, då dessa inte ger samma styrka som de förstagângs använda fibrerna. Bindemedlet kan tillsättes homogent i mälden innan fibermattdn bildas eller det kan användas vid en efterföljande vtbehandling. Båda metoderna har dock sina begränsninar: - Vid mäldtillsättning tillsätts bindemedlet vid den punkt i processen dä fibrerna föreligger i största utspädning, varvid man måste använda dyra ionaktiva bindemedel för att det skall fastna på fibrerna i stället för att försvinna med vattnet.The use of binders is becoming increasingly relevant as one switches to higher levels of recycled fibers, as these do not provide the same strength as the first ones use the fibers. The binder can be added homogeneously in stock before the fiber mat is formed or it can be used at a subsequent vt treatment. Both methods have however, its limitations: - In the case of stock addition, the binder is added to it point in the process where the fibers are present in the largest dilution, whereby expensive ionic agents must be used binder for it to adhere to the fibers in instead of disappearing with the water.
- Ytmetoder är effektiva för förbättring av produkternas ytegenskaper, men inte för förbättring av den inre styrkan. Den vanligaste metoden för styrkefärbättring sker genom att pappret passerar genom en limpress efter att det med värma hur torkats till en torrhalt på ca. 95 É. Limpresaen kan bara hantera tunna, låg- viskösa vätskor, varför bindemedlet måste viskositets- nedbrytas, med nedsatt biudkraft som följd. Dessutom kan man inte komma högre i koncentration än en. 13 § med den följd att arket fuktas så starkt att den energikrävande borttorkningen av vatten med värme 7805693-4 miste utföras ännu en gång.- Surface methods are effective for improving the products surface properties, but not for the improvement of the interior the strength. The most common method of strength enhancement is done by the paper passing through an adhesive press after heating with how dried to a dry content of approx. 95 É. The glue press can only handle thin, low- viscous liquids, so the binder must have a viscosity degraded, with reduced biud power as a result. In addition one cannot get higher in concentration than one. § 13 with the result that the sheet is moistened so strongly that it energy-intensive drying of water with heat 7805693-4 lost is performed once more.
Som resultat av dessa begränsningar är bindcmedelsmängder över l/20 av fibermängden sällsynta.As a result of these limitations are binder amounts over l / 20 of the amount of fiber rare.
Två helt oliks förslag för lösning av problemet med de stora vsttenmïngderna är redan kände: -J De svcnsku patenten 355615, 366787, 362458 och 385029, som tillsvidare inte hur fått kommersiell utbredning, beskriver så kallad högkoncistens-nrkformning, med vilken det är möjligt att reducera vattenmöngden till 25 gånger fibermöngden. Högre koncistens ger ojämn Iiberfördelning.Two completely different suggestions for solving the problem with those large vsttenmïngderna are already known: The Swedish patents 355615, 366787, 362458 and 385029, which so far has not been commercially available, describes so-called high-consistency nrkforming, med which it is possible to reduce the amount of water to 25 times the amount of fiber. Higher consistency gives uneven Iiber distribution.
- Helt torr srkformning sv oellulosafiber förekommer för tillverkning av så kallat "nonwoven“. Se t.ex.- Completely dry srkforming sv oellulose fiber occurs for the manufacture of so-called "nonwoven".
US patent 3575749. Då förloras emellertid nyttan av eellulosnns medfödda egenskap att bilda hydrogen- bryggor, vilket resulterar i att stora mängder syntetiska bindemedel såsom styrenbutadien- eller scryl-lutexer måste tillsättes.U.S. Patent 3,575,749. However, the benefit of the innate property of cellulose to form hydrogen bridges, resulting in large quantities synthetic binders such as styrene butadiene or scryl-lutexes must be added.
Man har inte arbetet industriellt mellan dessa två ytter- omrádernu - extremt låg koncentration och helt torr produktion.No industrial work has been done between these two areas now - extremely low concentration and completely dry production.
Enligt föreliggande uppfinning hur man emellertid lüet ovannämnda problem med de stora vnttenmüngdernu och begränsningarna i hindemedelstillsüttningen på ett nytt sött och åstadkommit ett förfarande för framställning av formade produkter utgående från vattensuspensioner sv fibrer, vilket förfarande kännetecknas av att man till- sätter en eller flera hydroholloider till susyensionen före formningen.According to the present invention, however, how to the above problems with the large vnttenmüngdernu and the restrictions on the addition of inhibitors again sweet and produced a process for producing shaped products based on water suspensions sv fibers, which process is characterized by adds one or more hydroholloids to the suspension before molding.
De fibrer som enligt uppfinningen lämpligen kan användas är fiber av cellulosa, slipuussu eller spân, syntetiska fiber, t.ex. fiber av polyester, yolysmid eller ucryl samt minurnlfiber av t.ex. asbest. 7805693-4 Enligt uppfinningen är det lämpligt att susom hydrokolloid använda stärkelse, stärkeleederivat, polyvinylalkohol, cellulosaderivut, vüxtlim som gun: gun och johunuesbröd- kärnnjöl, slginat, syntetiska hydrokolloider som t.ex. polyacrylamid eller mjöl från aädeeslng som vete, havre, råg, korn etc. eller rotväxter som t.ex. potatis eller tapioca.The fibers which according to the invention can be suitably used are fibers of cellulose, slipuussu or spinach, synthetic fiber, e.g. fiber of polyester, yolysmide or acrylic as well as minor fiber of e.g. Asbestos. 7805693-4 According to the invention, it is convenient to susom hydrocolloid use starch, starch derivatives, polyvinyl alcohol, cellulose derivatives, fruit glues such as gun: gun and johunuesbröd- kernel flour, slginate, synthetic hydrocolloids such as polyacrylamide or meal meal such as wheat, oats, rye, barley, etc. or root plants such as potatoes or tapioca.
Uppfinntngen är särskilt fördelaktig för de koncentrationer av fiber och kolloider som framgår av kurvorna på figurerna 4 - 12 nedan.The invention is particularly advantageous for those concentrations of fibers and colloids shown in the curves in the figures 4 - 12 below.
Bydrokolloiden kan tillsättes fibersuspensionen torrt eller efter upplösning i vatten.The bydrocolloid can be added to the fiber suspension dry or after dissolving in water.
Enligt uppfinningen kan Iormningen ske vid så hög temperatur att den formade produkten expanderar på grund av frigjord ånga eller annan gssbildning. Formningen kan även äge run under högt tryck.According to the invention, the molding can take place at such a high temperature that the shaped product expands due to release steam or other gas formation. The molding can also have a rune under high pressure.
Det är enligt uppfinningen lämpligt att utföra formningen genom extrndering och sprutgjutning med maskiner liknande den i plastindustrin eller genom vulsning, pressning och dragning med maskiner liknande den i metnllindustrin.According to the invention, it is suitable to carry out the shaping by extrusion and injection molding with machines similar in the plastics industry or by filling, pressing and drawing with machines similar to those in the metal industry.
Den íiborsuspension man erhåller efter tillsatsen av hydrokolloiden utgörs av en homogen plastisk och kohesiv pasta av fiber, vatten och kolloid. Denna pasta har helt andra egenskaper än de fibersuspeneioner som normalt används vid produktion av fíberprodukter. Om en sådan traditionell iibersuspension utsättas för extrndering, sprutgjutning, vulsníng eller pressning sker i stället en avvattning varefter extruderings- och sprutgjutnings- munstyckenu tillstoppas av uvvsttnad fiber. Dragning av traditionell fibersuspension är helt omöjlig då suspen- eionen inte har nagon kohesiv styrka. 7805693-4 Sisol framgår av de efterföljande försöken kan man komma ned i vattenmüngder vid formnlngen på uppskattningsvis 2 gånger torrhalten, vilket är en avsevärd förbättring jämfört med 200 gånger vid traditionell produktion av papper och kartong.The íibors suspension you receive after the addition of the hydrocolloid consists of a homogeneous plastic and cohesive paste of fiber, water and colloid. This pasta has completely properties other than the fiber suspensions as normal used in the production of fiber products. About one traditional iibers suspension is subjected to extrusion, injection molding, beading or pressing takes place instead a dewatering after which the extrusion and injection molding nozzles are clogged with unwrought fiber. Pulling off traditional fiber suspension is completely impossible as the the ion has no cohesive strength. 7805693-4 Sisol can be seen from the subsequent experiments down in water quantities at the formation of approximately 2 times the dry matter content, which is a significant improvement compared to 200 times in traditional production of paper and cardboard.
Lyckligtvis ïr kolloiden både - processhjïlpnedel vid formningen genom att den binder vattnet och förhindrar fibrerna från att (looks samt också - funktionellt hjïlpmedcl för slutprodukten genom ett den Inngerer som bindemedel och alltså ger mekanisk styrke.Fortunately, the colloid is both process aid in shaping by binds the water and prevents the fibers from (looks as well as functional aid for the final product through one it Incorporates as a binder and thus provides mechanical strength.
För binduingen av vattnet behövs mera hydrokolloid än vad son brukar användas som bindemedel vid traditionella metoder. Såsom framgår av försöken är en lämplig kolloid- nïngd uppskattningsvis 1/3 sv fibermängden. Uppfinuingen har därvid eliminerat de begränsningar för bindemedels- tillsïttning som nïmndel inledningsvis.For the binding of the water, more hydrocolloid is needed than what son is usually used as a binder in traditional methods. As can be seen from the experiments, a suitable colloidal nïngd approximately 1/3 sv the amount of fiber. The invention has thereby eliminated the restrictions on binder appointment as nïmndel initially.
Uppfinningen kommer i det följande att beskrivas närmare under hänvisning till bifogade figurer 1 - 12. Figurerna åakidliggör exemplar, då uppfinningen givetvis kan utövas i många olika maskinella utrustningar liksom kombinatione- möjligheterna :ellen fibrer och kolloider är otaliga.The invention will be described in more detail below with reference to the attached figures 1 - 12. The figures relieves specimens, as the invention can of course be practiced in many different mechanical equipment as well as combination the possibilities: ellen fibers and colloids are innumerable.
Pig. l visar hur fiber l kan upplöses i vatten 2 i en pulper 3 försedd med en omrörare 4. Den kraftiga omrörningen separerar de enkelte fibrer från varandra på ett i och för sig känt sätt och suspensionen overförs sedan till filtret 6 för koncentrering, också pi i och för sig känt sätt. Avskilt vatten 7 från filtret 6 kan dterförus till pulpern. Pâ vägen från pulpern till filtret kan eventuellt utföres en rening av massan 5 för borttagning av föroreningar. Efter silningen över filtret 6 kan massan eventuellt ytterligare koncentreras genom pressning 8 och tillföras därefter hydrokolloid 9, som inblandae genom kuådning 10 varvid pasta färdig för formning erhålls. Fnrmningen kan utföras som en extrudering direkt ut från knidningsepparnten eller i särskild utrustning. 7805693-4 På Fig. 2 visas formning med extruder 1. I extrudern inställs genom värmning eller kylning önskad temperatur. Hög temperatur ger, som det senare skall vises, möjlighet till högre koncentrationer. För ytterligare att underlätta torkningen kan en förtork utföras t.ex. med en infraröd torkare 2 innan den extruderude profilen läggs på med ånga uppvärmndn formlådor.Pig. 1 shows how fiber 1 can be dissolved in water 2 in one pulper 3 equipped with a stirrer 4. The vigorous stirring separates the individual fibers from each other in one for and the suspension is then transferred to the filter 6 for concentration, also pi per se known manner. Separated water 7 from the filter 6 can be returned to the pulper. On the road from the pulper to the filter, a purification may optionally be performed of the mass 5 for removal of contaminants. After straining over the filter 6, the mass can optionally be further concentrated by pressing 8 and then hydrocolloid 9 is added, which incorporate by curing 10 with paste ready for molding obtained. The forming can be performed as an extrusion directly out from the kneading partner or in special equipment. 7805693-4 Fig. 2 shows shaping with extruder 1. The extruder is set by heating or cooling desired temperature. High temperature gives, as will be seen later, the possibility of higher concentrations. To further facilitate drying can a pre-dryer is performed e.g. with an infrared dryer 2 before it the extruderude profile is applied with steam heated mold boxes.
Kupa, ovanför de roterande Iormlddornn, för att tillvurntagn värmen i den frigjorda ångan är ej inritad. När Iormlådorna före från varandra 3, delas banan upp i önskade strolekar, och när torkningen är färdig lösgörs den framställde varan mer. med tryckluft 4. Innan ny pasta. läggs på. íormlådorne kan dessa rengöras och på annat sött prepereras. Fig. 2 viner extrudering av profil, men man kan självfallet också använda ett brett platt extrudermunstycke för därvid att producera plana ark, som torkas och etterbearbetus på samme sött som kartong.Cup, above the rotating Iormlddornn, to be taken the heat in the released steam is not plotted. When the Iorm boxes before each other 3, the web is divided into desired straw games, and when the drying is complete, the manufactured product is released more. with compressed air 4. Before new pasta. added to. íormlådorne these can be cleaned and otherwise sweetened. Fig. 2 wines extrusion of profile, but one can of course also use a wide flat extruder die to produce flat sheets, which are dried and reworked on the same sweet as cardboard.
Fig. 3 viser intermittent extrudering in i formverktyg, eller som det kallas i plastindustrin - “sprutgjutning“.Fig. 3 shows intermittent extrusion into molds, or as it is called in the plastics industry - "injection molding".
Den översta delen av formverktygot är fast monterat till extrudermunstycket 1. Den nedersta delen förs upp till munstycket för påföring av pesto och dras så tillbaka med samme anordning 2. Efter denna formniug törs ämnerna stegvis fram genom en torkningeanläggning. Kupo ovanför torkningsanlïggningen, för att tillverataga frigjord ånga, är ej inritud. Efter torkníngan lösgörs vid 3 de färdiga föremålen.The upper part of the mold tool is permanently mounted to extruder nozzle 1. The lower part is moved up to the nozzle for applying pesto and is then withdrawn with same device 2. After this formniug the substances are dried step by step through a drying plant. Coupon above the drying plant, to produce liberated steam, is not registered. After drying, loosen at 3 the finished the objects.
Genom att extrudera pasta vid temperaturer över 100 °C mot atmosfärtryck expanderar vattenånga så att en porös produkt erhålls. Emballage med hård ytterside och mjuk stötahsor- berande innersida kan därvid produceras genom att formverk- tyget först hålls över mättningstrycket..Nir trycket så reduceras hålls den del av formverktyget som bildar ytter- sida under mättningstemperatur och den andra siden över.By extruding pasta at temperatures above 100 ° C Atmospheric pressure expands water vapor to a porous product obtained. Packaging with hard surface and soft shock absorbers The inner side can then be produced by the fabric is first held above the saturation pressure..Nir the pressure so reduced, the part of the mold that forms the outer side below saturation temperature and the other side above.
Sandwichkonstruktioner med expanderad kärna och kompakta ytor kan framställas genom att både ytorna nedkyls vid 7805693-4 axtruderingen medan kärnan behåller sin höga temperatur.Sandwich constructions with expanded core and compact surfaces can be produced by cooling both surfaces at 7805693-4 the extrusion while the core maintains its high temperature.
Principerna från skumplasttillverkning kan överföras.The principles of foam plastic manufacturing can be transferred.
Föremål framställda enligt föreliggande uppfinning kan naturligtvis kombineras med andra material, t.ex. så att en låda framställd efter uppfinningen överdrus med dekor- ativt papper eller fodras med vattentätt material.Articles made according to the present invention can naturally combined with other materials, e.g. so that a box made according to the invention is sprinkled with decorative paper or lined with waterproof material.
Som nämnts behövs för vattenbindningen en större kolloid- tillsats än vad som normalt används som styrkeförböttrands medel vid produktion av papper och kartong. Denna stora mängd bindemedel kan tyckas vara en nackdel vid föreliggande uppfinning, eftersom man i allmänhet resonerar så att alla ”medel” och tillsatser innebär en fördyrning av processen.As mentioned, the water bond requires a larger colloidal additive than what is normally used as strength enhancement means for the production of paper and board. This big amount of binder may appear to be a disadvantage of the present invention, since one generally reasons so that all "Agents" and additives make the process more expensive.
I föreliggande fall är detta emellertid inte fallet, vilket enklast förklaras genom att den vanligaste kolloiden - stärkelse - kostar ungefär det samma som cellulosa. Om man därför ersätter cellulosa med en blandning av stärkelse och billigare, svagare fiber, så blir råvarukostnaden per ton lägre, och störkelsen kompenserar för den lägre styrkan.In the present case, however, this is not the case, which most easily explained by the fact that the most common colloid - starch - costs about the same as cellulose. If therefore, replace cellulose with a mixture of starch and cheaper, weaker fiber, so the cost of raw materials per tonne lower, and the strength compensates for the lower strength.
Den enda typ av papper eller kartong som i styvhet och hårdhet kan jämföras med produkter framställda enligt föreliggande uppfinning är så kallad "kacherad kartong", där mun först i ett produktionsteg tillverkar papper som i ett efterföljande produktiomteg limmas i hop i flera skikt.The only type of paper or cardboard that in stiffness and hardness can be compared with products made according to the present invention is so-called "laminated cardboard", where mouth first in a production step produces paper as in a subsequent production step is glued together in several layers.
Plans försöksark tillverkades enligt uppfinningen i ytvikts- området 400 - 1200 gram per 12 och jämfördes genom styvhets- mätningar med marknadsförd, kachernd kartong. Det visade sig då att bara de allra dyraste kvaliteterna av kacherad kartong kunde uppvisa samma styvhet - vid samma ytvikt - som föreliggande uppfinning gav med de billigaste råvarorna. Sådan styv kacherad kartong måste tillverkas av krsftmoasahaltigs papperstyper. som kostar ungefär l500 kronor per ton, medan man enligt uppfiningen erhåller lika styv kartong t.ex. genom extrudering av en pnsta bestående av 23 ß tidningsavfull till 200 kronor per ton och 8 ß stärkelse (Se Pig. 8) till 1400 kronor per ton eller alltså vaossss-Å till en genomsnittsrâvarukostnad på 510 kronor per ton.Plan test sheets were manufactured according to the invention in range 400 - 1200 grams per 12 and was compared by stiffness measurements with marketed, laminated cardboard. It turned out then that only the most expensive qualities of laminated carton could have the same stiffness - at the same basis weight - which the present invention provided with the cheapest the raw materials. Such rigid laminated board must be made of krsftmoasahaltigs paper types. which costs about l500 kronor per tonne, while according to the invention one receives equal rigid cardboard e.g. by extrusion of a pnsta consisting of 23 ß newspaper-filled to SEK 200 per tonne and 8 ß starch (See Fig. 8) to SEK 1,400 per ton or so vaossss-Å to an average raw material cost of SEK 510 per tonne.
Man kan alltså med föreliggande uppfinning nedbringa râvurukostnuden till ungefär l/3 av det normala med craan-.imm11almnoder.Thus, with the present invention, one can reduce the raw food cost node to about 1/3 of the normal with craan-.imm11almnoder.
Pâ grund av den höga halten av bindemedel så är föreliggande uppfinning speciellt interessant för produktion av produkter där styv, hård och träuktig karaktär höjer slutprodukternus marknadsvärde, som t.ex. emballage i form sv askar och kartonger. Uppfinningen ör också speciellt interessant då man önskar tillverka ihåliga föremål, då det är svårt med traditionella metoder där man måste utgå från plans ark.Due to the high content of binder, it is present invention particularly interesting for the production of products where stiff, hard and woody character raises the end product nose market value, such as packaging in the form of sv boxes and cartons. The invention is also particularly interesting then you want to make hollow objects, as it is difficult traditional methods where one must start from plan sheets.
På råvarusidan är uppfiningen speciellt interessant för återanvändning av gamla tidningar. Denna returfiber är, på grund uv sin låga styrke, minre attraktiv för andra återanvündnin¿smetoder - och därför billig. Son senare skall visas, behövs för tidningenvfull också minre kolloid för vottenbindningen än för långa fibrer.On the raw material side, the invention is particularly interesting for reuse of old newspapers. This recycled fiber is, due to uv its low strength, less attractive to others recycling methods - and therefore cheap. Son later shall appears, needed for the newspapervfull also less colloid for the mitten binding than for long fibers.
För fastställande av de koncentretioner och slag av fibrer och kolluider som kunde användas gjordes en hel serie försök.For determining the concentrations and types of fibers and colloids that could be used a whole series of experiments were made.
Lådor liknande ciguraskar framställdes, vilku efter torkning liknade mera askar av trä än av kartong. Askarna fram- -ställdes genom extrndering genom ett fyrkantigt munstycke med en spaltvidd av 2,5 mm.Boxes similar to cigars were prepared, which after drying resembled more boxes of wood than of cardboard. The boxes - was set by extrusion through a square nozzle with a gap width of 2.5 mm.
För olika fiberkoncentrntioner uppmöttes en minimal och en maximal mängd kolloid inom vilken uppfinningen är användbar.For different fiber concentrations, one minimal and one were encountered maximum amount of colloid within which the invention is useful.
Minimimängden bestämdes dv kravet på fullständig bindning av vattnet och maximinöngden av hur tjockflytsnde en paste kan vara för att den ännu skall vara extruderbar. 7805693-4 Kriteriun för maximal mängd hydrokolloid: Ett viskosimeter som rekommenderas inom plastindustriu för mätning av termoplasters viskositet efter smältning användes - ett så kallat Haake konsistometer. Detta är ett termuetatreglerat genomströmningsviskosimeter med kolv genom vilken är borrat ett 2 mms hål. Viskositeten uträknas efter formeln G - t I e K I viskositeton i Pascalseknnder = belastningen i kp tiden 1 sekunder uätstrückan i nn 9- å: n n: u a- n,_g ,¿g n 1 r apperatkonetant för borrhálet = 2,5 Som kriterium valdes 10 000 Pascalsekunder, då detta inom plastindustrin anses vara relativt högt, men dock problemfritt.The minimum amount was determined, ie the requirement for complete binding of the water and the maximum amount of how thick a paste can be be for it to still be extrudable. 7805693-4 Criterion for maximum amount of hydrocolloid: A viscometer recommended in the plastics industry for measuring the viscosity of thermoplastics after melting was used - a so-called Haake consistometer. This is a thermostatate controlled flow viscometer with piston through which a 2 mm hole has been drilled. The viscosity calculated according to the formula G - t I e K IN viscosity tone in Pascalseknnder = the load in kp time 1 seconds uätstrückan i nn 9- å: n n: u a- n, _g, ¿g n 1 r device coneant for the borehole = 2.5 As a criterion, 10,000 Pascal seconds were chosen, then this in the plastics industry is considered to be relatively high, however however, hassle-free.
Kriterinn för minimimängd hydrokolloidz Sanna Haake konsistometer anvïndes"för iastställande av hur mycket kolloid som behövdes för att man skulle få en homogen tråd utan tendens till avvattning nt av dysen.The criterion for the minimum amount of hydrocolloidz Sanna Haake consistometer was used "to establish how much colloid was needed to get a homogeneous thread with no tendency to dewater nt of the nozzle.
Avvattningstendens kan ses genom fritt (glänsande) vatten i trädens yta.Drainage tendency can be seen through free (shiny) water in the surface of the trees.
Med dessa två kriterier är vinkelkurvorna i Pig. 4 - 12 inritade. Fiberkoncentrationen har avsatts på abscissan och kolloidknncentrationen på ordinatan - båda i viktprocent av hela pastan. Diffevencen upp till 100 f är vatten. Minimi- kriteriet ger vänstra ben i vinkelkurvorne och maximikriteriet det högre, och mellan benen är uppfinningen alltså praktisk användbar.With these two criteria, the angular curves in Pig. 4 - 12 engraved. The fiber concentration has been deposited on the abscissa and the colloid concentration on the ordinate - both in weight percent of whole pasta. The difference up to 100 f is water. Minimi- the criterion gives the left leg in the angular curves and the maximum criterion the higher, and between the legs the invention is thus practical useful.
Pl Fig. 4 - 6 är fiberråvaran gamla tidningar och extruder- ingstemperatnren 20 °C. Kolloiderna är 7805693-4 _ 10 - koM = kallvattenlöslig oxiderud majsstärkelse, Amijel M 5 från CPC P = nativ potutisatärkelse G = guur mjöl, SuperCol U Powder från General Mills oM = oxiderad majsstärkelse, Amisol 05594 från CPC H = nativ majsstärkelse GMC = cerboxymetylcellulose, Majol PS 6 från Uddeholm PVA = polyvinylelkohol, Covol 9930 från CPC PAA = pulyucrylumid, GR 999 från W R Grace Av Fig. 5 ses t.ex. att vid en fiberkoncentration ev l6'% behövs minimum 7 ß majsstärkelse som kolloid för att binda vattnet. Vid höjning av kolloidmängden tjocknar pastan, för att vid 10 ß vara så tjock att möjligheten för axtrndering utan speciellt kraftiga oxtruderingsmaskiner kan betvivlas.Figs. 4 - 6, the fiber raw material is old newspapers and extruders. temperature 20 ° C. The colloids are 7805693-4 _ 10 - koM = cold water soluble oxidized corn starch, Amijel M 5 from CPC P = native potato starch G = guur flour, SuperCol U Powder from General Mills oM = oxidized corn starch, Amisol 05594 from CPC H = native corn starch GMC = cerboxymethylcellulose, Majol PS 6 from Uddeholm PVA = polyvinyl alcohol, Covol 9930 from CPC PAA = pulyucrylumide, GR 999 from W R Grace Fig. 5 shows e.g. that at a fiber concentration possibly l6 '% a minimum of 7 ß corn starch is needed as a colloid to bind the water. As the amount of colloid increases, the paste thickens, to be at 10 ß as thick as the possibility of extrusion without particularly powerful extrusion machines can be doubted.
Nutiv majsstärkelse och vanlig kallvattenlöslig majsstärkelse gav samme kurva M. För potatisstärkelse visade det sig dock att vanlig kullvutteulöslig typ, gav kriterierna med lägre tillsatser än nutiv stärkelse. Bara kurvan för nativ stärkelse är inritet.P.Native corn starch and ordinary cold water-soluble corn starch gave the same curve M. For potato starch, however, it turned out that ordinary litter-soluble type, gave the criteria with lower additives other than present starch. Only the curve for native starch is engraved.P.
På Pig. 7 - 9 är tiberråvaran fortfarande gamle tidningar, men extruderingstemperaturen har höjts till 85 °C.On Pig. 7 - 9, the tiber raw material is still old newspapers, but the extrusion temperature has been raised to 85 ° C.
Kolloiderna är P = nntiv potatisstärkelse CNC = carboxymetylcellulosa, MaJo1 PS 6 från Uddeholm G = guar mjöl, SnperCol U Powder från General Mills I ll netiv majsstärkelse A = ulginat, Protunal H från Protan & Fagertun oM = oxiderad majsstärkelse, Amisol 05594_från CPC PVA = polyvinylalkohol, Covol 9930 från CPC PAA = polyacrylamid, GR 999 från W R Grace 7805693-4 -lli Spetsen på vinkelkurvorna anger hur hög fiberkoncentration man kun arbeta med, fortfarande utgående från de valda kri- terierna. Genom att jämföra majsstärkelseskurvorna N på Fig. 5 och Pig. 8 ses att höjningen i extruderingstemperatur från 20 till 85 °C medför höJning i maximal fiberkoncentra- tion från 20 till 28 ß. Kolloidkoncentrationen vid 85 °C och maximal Iiberkoncentration är 6 ß så att vuttenmängden blir 66 $ eller alltså ungefär två gånger torrhulten.The colloids are P = nntive potato starch CNC = carboxymethylcellulose, MaJo1 PS 6 from Uddeholm G = guar flour, SnperCol U Powder from General Mills IN ll netive corn starch A = ulginate, Protunal H from Protan & Fagertun oM = oxidized corn starch, Amisol 05594_from CPC PVA = polyvinyl alcohol, Covol 9930 from CPC PAA = polyacrylamide, GR 999 from W R Grace 7805693-4 -lli The tip of the angular curves indicates how high the fiber concentration is only work with, still based on the selected criteria terierna. By comparing the corn starch curves N on Fig. 5 and Pig. 8 shows that the increase in extrusion temperature from 20 to 85 ° C causes an increase in maximum fiber concentration from 20 to 28 ß. The colloid concentration at 85 ° C and maximum Iiber concentration is 6 ß so that the amount of water is $ 66 or about twice as dry.
Där utfördes också extruderingar vid högre temperaturer än de 85 00, som är högsta temperaturen för diagrammen. Men på grund av förángning var det med tillbudsstående mätutrust- ning inte möjligt att möta kriteriepunkterna för minimal och maximal kolloidmängd. Vid 140 °C utfördes en extrudering sv posta bestående av 41 ß tidningsmnsse som Iiber och 6 $ nntiv potatisstörkelae som kelloid, sl att förhållande vatten 3 torrhalt var under 1%. Potatisatärkelsen till- sattes fibermassen oupplöst och gelntinerades sv värme omedelbart före extruderingen. Extruderingen genom 2mm mnnstycke gick problenlöst. Efter paesering av dysöppningen expanderade pastan under ingavgivning till ett trådaktigt nötverk,son efter torkning uppvisade en specifik vikt på 0,2 kg/dna mot 1,2 kg/dm3 för normal extrudering vid temperaturer under 100 °C.Extrusions were also performed there at temperatures higher than the 85 00, which is the highest temperature for the diagrams. But on due to evaporation, it was with incidental measuring equipment it is not possible to meet the criterion points for minimal and maximum amount of colloid. At 140 ° C an extrusion was performed en post consisting of 41 ß newspapers as Iiber and 6 $ nntiv potato starch as kelloid, sl to ratio water 3 dry matter content was below 1%. The potato potato the fiber mass was set undissolved and gelatinized in heat immediately before extrusion. The extrusion through 2mm mnnstycke went smoothly. After placing the nozzle opening expanded the paste during administration to a filamentous one nets, son after drying showed a specific weight of 0.2 kg / dna against 1.2 kg / dm3 for normal extrusion at temperatures below 100 ° C.
Pl Pig. 10 är tiberråvnran fortfarande gamla tidningar, men i stället för att använde ren hydrokolloid har använts vanligt vetemjöl med utmnlningsgrad cn. 78 $. Extruderingarna utfördes som vanligt vid 20 och 85 °C. Kurvorna viser bl.a. att maximal fiberkoncentrution är lägre för vetemjöl än för störkelserna.Pl Pig. 10, the tiber robbery is still old newspapers, but instead of using pure hydrocolloid has been used ordinary wheat flour with a degree of refinement cn. $ 78. The extrusions was performed as usual at 20 and 85 ° C. The curves show i.a. that the maximum fiber concentration is lower for wheat flour than for the starches.
Pi Fig. ll ör fiberråvarnn gamle säckar av oblekt kraft- papper, och kolloiden är nutiv majsstärkelse. Extruderingurna utfördes som vnnligt vid 20 och 85 °C. Försöken visade att denna fiber - sulfatmnsaa - pl grund av lättare avvnttnings- förmåga, och också större tendens till flockning, fordrade 7805693-4l - 12 - mera kolloid än tidningsmassa för att uppfylla minimi- kriteriet, varvid “vänstra vinkelben“ lyftes högre upp.Pi Fig. Ll fiber fibers raw old bags of unbleached kraft- paper, and the colloid is native corn starch. The extrusion rings performed as usual at 20 and 85 ° C. The experiments showed that this fiber - sulphate mnsaa - due to easier washing ability, and also greater tendency to flock, required 7805693-4l - 12 - more colloidal than newspaper mass to meet the minimum the criterion, whereby "left elbow" was lifted higher.
Detta framkommer genom att jämföra med kurvorna M på Pig. 5 och 8. A Fig. 12 visar att uppfinningen också är användbar för syntetiska fibrer. Den valda fibsrn var polyamid, Perlon x 400 weiss h'matt dtex 2,2 dte: G mn från Bayer och hydrokolloiden var kallvattenlöslig majsstärkelse.This is obtained by comparing with the curves M on Pig. 5 and 8. A Fig. 12 shows that the invention is also useful for synthetic fibers. The fiber selected was polyamide, Perlon x 400 weiss h'matt dtex 2.2 dte: G mn from Bayer and the hydrocolloid was cold water soluble corn starch.
För denna Iibern gick kurvorna vid 20 och 85 °C så för- vånansvärt näre varandra att kurvan på Fig._l2 gäller båda temperaturer.For this Ibern the curves went at 20 and 85 ° C so surprisingly close to each other that the curve in Fig._l2 applies both temperatures.
Extruderingarna genom Haake-konsistometret och annan formning gick bekvämast mitt mellan de två kurvbenen och inte för nära spetsen för maximal torrhalt. I närheten av minimikriteriet och nära spetsen fick pastan och alutprodukten en kornig struktur - mindre för slip- masaa En för kraftmassa.The extrusions through the Haake consistometer and others shaping went most comfortably in the middle between the two curve legs and not too close to the tip for maximum dry matter. IN near the minimum criterion and near the tip got the pasta and the alum product a grainy structure - less for grinding masaa One for kraftmassa.
Vid inritning av kriterieknrvorna är fiber- och kolloid- mängderna torrtänkta. Fukt infört i systemet med fiber eller kolloid är nndräknat som vatten - under bråket i koncentrationsangivningerna. Dock var tillförseln av i vatten med alla andra kolloider än stärkelse och vete- mjöl eå liten att det slopades vid beräkningarna.When drawing the criteria knots, the fiber and colloidal the quantities dry-dried. Moisture introduced into the system with fiber or colloid is included as water - during the quarrel in the concentration indications. However, the supply was off in water containing all colloids other than starch and flour eå small that it was discarded in the calculations.
I det följande skall anges en del experimentella data.In the following, some experimental data will be provided.
Fiberråvaran upplöstes i hett vatten vid 2 ß koncentration och krottig omrörning. Den därvid bildade suspensionen svvattnades genom silduk med 3/4 mm meskvidd och pressades så mellan händerna till torrhalter mellan 10 och 35 ß.The fiber raw material was dissolved in hot water at 2 ß concentration and crunchy stirring. The resulting suspension was irrigated through a sieve cloth with 3/4 mm mesh width and pressed so between hands to dry contents between 10 and 35 ß.
För att erhålla reproducerbara kurvor visade det sig mycket viktigt att alltid använda samma temperatur - tids - förlopp vid beredning och lagring av pustaer före mätning 7805693-4 .IJ- ev kriteriepunkterns. Olika metoder användes för varm- vattenlösligs och kullvattenlösligu hydrokolloider.To obtain reproducible curves, it turned out very important to always use the same temperature - time - process during preparation and storage of pustaer before measurement 7805693-4 .IJ- ev criterion points. Different methods were used for heating water-soluble and carbon-water-soluble hydrocolloids.
Metod för varmvattenlöslige kolloider: Ca. ¿00 gram fibereuspension och torriblandad kolloid i sådan mafigd ett men försöker ”träffa” det sökta kriteriet, ställs i sluten glasburk i värmeekåp vid 110 °C i 10 minuter. Värmesküpets temperatur redu- ceras så till 95 °C vid vilken temperatur provet får stå i 30 minuter, varefter glnsburken öppnas och efter snabb omrörning av innehållet möts viskositet samt vuttenbindning vid 85 00. Resten av provet får stå ytterligare 60 minuter i den slutnn glaeburken - nu vid rumstemperatur - varefter men mäter de samme två kriterier vid 20 °C. Om proven får stl längre tid ïn 60 minuter vid rumstemperatur fås sämre vatten- bindning och högre viskositet.Method for hot water soluble colloids: Approx. ¿00 grams of fiber suspension and torri-mixed colloid in such a case but tries to "meet" what is sought criterion, is placed in a closed glass jar in a heating cabinet at 110 ° C for 10 minutes. The temperature of the heating bucket is then heated to 95 ° C at which temperature the sample is obtained stand for 30 minutes, after which the glns jar can be opened and after rapid stirring of the contents, viscosity meets and padding at 85 00. The rest of the sample is given stand another 60 minutes in the closed glae jar - now at room temperature - after which but measure the same two criteria at 20 ° C. If the samples get size longer In 60 minutes at room temperature, worse water is obtained. binding and higher viscosity.
Kurvorne för majsstärkelse, oxiderad majsstärkelse, potetisstärkelse, vetemjöl, polyvinylalkohol, elginst, CNC och guer är inritade efter mötning på detta sätt, också om sistnämnda tre kolloider egentligen är kull- vettenlöeliga så ett nedennömnda metod också är användbar.The corn starch curves, oxidized corn starch, potato starch, wheat flour, polyvinyl alcohol, electric yeast, CNC and guer are plotted after meeting in this way, even if the latter three colloids are actually so a method mentioned below is also useful.
Metod för ksllvottenlösliga kolloider: Kellvattenlösliga kolloider ger lätt klumpbildning vid tillsättningen till fibereuspensionen. För att undvika därav följande tillstoppning sv hålet i konsistensometret måste pulvret strös mycket jämnt, försiktigt och i små portioner ut över fibersuspen- sioneus yte, och man måste knåda mycket kraftigt genast efter tillsfittningen av varje portion. Också vid denna metod användes ce. 200 gram suspension för varje prov. Mätning ev viskositet och vattenbiudning vid 20 °C utfördes omedelbart efter tillsüttning av siste portiouen kolloid. Resten av provet fick stl x vaossäs-4 _14- 90 minuter i vürmeskåp vid 95 °C före mätning av de två kriterierna också vid 85 °C.Method for carbon soluble colloids: Cold water-soluble colloids give easy clumping upon addition to the fiber suspension. In order to avoid consequent clogging en hole in the consistency meter, the powder must be sprinkled very evenly, gently and in small portions over the fiber suspension sioneus surface, and one must knead very vigorously immediately after the addition of each serving. Also in this method ce was used. 200 grams of suspension for each sample. Measurement of possible viscosity and water content at 20 ° C was performed immediately after the addition of last portion colloid. The rest of the sample got size x vaossäs-4 _14- 90 minutes in an oven at 95 ° C before measuring the two criteria also at 85 ° C.
Denne metod användes för kallvattenlöslig majsstärkelse, kallvattenlöslig oxiderad majsstärkelse, kallvattenlöslig potatisetïrkelse och polyacrylamid. Om metoden användes för GMC och guar behövdes es. 1 $ mera kolloid än med den inritsde ”varmvattenlösliga metoden", antagligen på grund av att kolloiderna utan uppvärmning upplöses ofull- ständigt.This method was used for cold water soluble corn starch, cold water soluble oxidized corn starch, cold water soluble potato starch and polyacrylamide. If the method was used for GMC and guar needed es. 1 $ more colloid than with it set up the "hot water soluble method", probably due that the colloids dissolve incompletely without heating. constantly.
Slutligen skall anges en del erfarenheter som erhölls från torkningen av pastaproven.Finally, some experience gained from the drying of the pasta samples.
Om torkningen utfördes i vïrmeskåp vid 105 °C sl att l mm tocka pastakakor fick ligga och torka pl obehandlad järnyta kunde svårigheter med den efterföljande lösgörningen från jïrnytan inträffa. Erfarenheterna tyder på att avlägsningen sker lättast vid tillsats av en stor mängd kolloid och vid användning av de för vattenbindningen effektivaste kolloiderna, eller med andra ord när man arbetar i områden nära maximi- kriteriet i Fig. 1 - 12.If the drying was carried out in a heating cabinet at 105 ° C, then that 1 mm tocka pasta cakes were allowed to lie and dry on untreated iron surface could difficulties with the subsequent detachment from jïrnytan occur. Experience suggests that the removal occurs most easily when adding a large amount of colloid and at use of the most effective colloids for water binding, or in other words when working in areas close to the the criterion in Fig. 1 - 12.
Om provbitarna i stället värmdes på värmeplatta var problemet 'med lösgörningen avsevärt reducerat, och vid genomakärning av de torkade provarken kunde konstateras en anrikning av hydro- kolloid i ytan mot värmeplattan. Detta bekräftar nyss fram- förda påstående om att en stor mängd kolloid underlättar losatagningen. Den större mängden kolloid i den yta av prov- arket från vilken vürmen tillförts kan förklaras genom att kolloiden vandrar med vattnet mot den värmeavgivande järn- plattan där vattnet förångas, och hydrokolloiden blir liggande kvar, di den inte kan vandra tillbaka med ångan.If the test pieces were instead heated on a hot plate, the problem was 'with the detachment considerably reduced, and in the case of genome-cutting of the dried test sheets could be found to be an enrichment of colloid in the surface against the hotplate. This confirms the recent made claims that a large amount of colloid facilitates losatagningen. The greater amount of colloid in the surface of the sample the sheet from which the worm was added can be explained by the colloid travels with the water towards the heat-emitting iron the plate where the water evaporates, and the hydrocolloid becomes lying still, di it can not wander back with the steam.
Om torkningen utfördes på teflonbelagd metallform, uppstod överhuvudtaget inga problem med att lossna de färdigtorkade fiberprodukterna.If the drying was performed on Teflon coated metal mold, occurred no problems at all with loosening the pre-dried ones the fiber products.
Claims (6)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7805693A SE421541B (en) | 1978-05-25 | 1978-05-25 | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS |
DK198779A DK150161C (en) | 1978-05-25 | 1979-05-15 | PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS |
FI791560A FI69333C (en) | 1978-05-25 | 1979-05-16 | FOERFARANDE FOER FRAMSTAELLNING AV FORMADE PRODUKTER |
DE2920988A DE2920988C2 (en) | 1978-05-25 | 1979-05-23 | METHOD FOR PRODUCING A CARDBOARD OBJECT |
GB7918345A GB2050459B (en) | 1978-05-25 | 1979-05-25 | Moulding paste |
FR7928314A FR2469271A1 (en) | 1978-05-25 | 1979-11-16 | PASTE FOR THE MANUFACTURE BY MOLDING OF WOOD FIBER PRODUCTS |
US06/245,753 US4377440A (en) | 1978-05-25 | 1981-03-20 | Process for manufacturing of formed products |
US06/477,332 US4508595A (en) | 1978-05-25 | 1983-03-21 | Process for manufacturing of formed products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7805693A SE421541B (en) | 1978-05-25 | 1978-05-25 | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS |
Publications (2)
Publication Number | Publication Date |
---|---|
SE7805693L SE7805693L (en) | 1979-11-19 |
SE421541B true SE421541B (en) | 1982-01-04 |
Family
ID=20334941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE7805693A SE421541B (en) | 1978-05-25 | 1978-05-25 | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS |
Country Status (6)
Country | Link |
---|---|
DE (1) | DE2920988C2 (en) |
DK (1) | DK150161C (en) |
FI (1) | FI69333C (en) |
FR (1) | FR2469271A1 (en) |
GB (1) | GB2050459B (en) |
SE (1) | SE421541B (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE421541B (en) * | 1978-05-25 | 1982-01-04 | Stein Gasland | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS |
US4333863A (en) * | 1981-02-12 | 1982-06-08 | Merck & Co., Inc. | Water resistant texturized wall coverings |
US4443262A (en) * | 1982-09-30 | 1984-04-17 | Armstrong World Industries, Inc. | Low density fibrous sheet material |
JPS5982499A (en) * | 1982-09-30 | 1984-05-12 | ア−ムストロング・ワ−ルド・インダストリ−ス・インコ−ポレ−テツド | Moldable composition based on cellulose |
GB2131046A (en) * | 1982-11-24 | 1984-06-13 | Stirling Fibre Fuels Limited | Process for manufacturing a fuel briquette |
BG46154A3 (en) * | 1983-02-18 | 1989-10-16 | Warner-Lambert Company Llc | Method for preparing of capsules |
DE3334118A1 (en) * | 1983-09-21 | 1985-05-15 | Thomas Katrineholm Öbrink | Filling material, process for the production thereof and use of such filling material |
NL8400921A (en) * | 1984-03-23 | 1985-10-16 | Dsm Resins Bv | PROCESS FOR MANUFACTURING MOLDING MOLDINGS FROM THERMO-CURING MATERIAL WITH AN IMPROVED FINISH. |
JPH0686548B2 (en) * | 1989-04-21 | 1994-11-02 | 工業技術院長 | Novel water absorbent composite material and method for producing the same |
FR2684966A1 (en) * | 1991-12-12 | 1993-06-18 | Gomez Daniel | EXPANSE, RECYCLABLE VEGETABLE MATERIAL, ITS MANUFACTURING METHOD AND USE IN THE FIELDS OF SETTING, PROTECTION, PACKAGING, COATINGS AND SHEET MATERIALS. |
US5641584A (en) | 1992-08-11 | 1997-06-24 | E. Khashoggi Industries | Highly insulative cementitious matrices and methods for their manufacture |
US5582670A (en) | 1992-08-11 | 1996-12-10 | E. Khashoggi Industries | Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix |
US5631097A (en) | 1992-08-11 | 1997-05-20 | E. Khashoggi Industries | Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture |
US5660900A (en) | 1992-08-11 | 1997-08-26 | E. Khashoggi Industries | Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix |
US5662731A (en) | 1992-08-11 | 1997-09-02 | E. Khashoggi Industries | Compositions for manufacturing fiber-reinforced, starch-bound articles having a foamed cellular matrix |
US5545450A (en) | 1992-08-11 | 1996-08-13 | E. Khashoggi Industries | Molded articles having an inorganically filled organic polymer matrix |
US5508072A (en) | 1992-08-11 | 1996-04-16 | E. Khashoggi Industries | Sheets having a highly inorganically filled organic polymer matrix |
US5800647A (en) | 1992-08-11 | 1998-09-01 | E. Khashoggi Industries, Llc | Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix |
US5830548A (en) | 1992-08-11 | 1998-11-03 | E. Khashoggi Industries, Llc | Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets |
US5660903A (en) | 1992-08-11 | 1997-08-26 | E. Khashoggi Industries | Sheets having a highly inorganically filled organic polymer matrix |
US5851634A (en) | 1992-08-11 | 1998-12-22 | E. Khashoggi Industries | Hinges for highly inorganically filled composite materials |
US5658603A (en) | 1992-08-11 | 1997-08-19 | E. Khashoggi Industries | Systems for molding articles having an inorganically filled organic polymer matrix |
US5618341A (en) | 1992-08-11 | 1997-04-08 | E. Khashoggi Industries | Methods for uniformly dispersing fibers within starch-based compositions |
US5453310A (en) | 1992-08-11 | 1995-09-26 | E. Khashoggi Industries | Cementitious materials for use in packaging containers and their methods of manufacture |
US5830305A (en) | 1992-08-11 | 1998-11-03 | E. Khashoggi Industries, Llc | Methods of molding articles having an inorganically filled organic polymer matrix |
US5810961A (en) | 1993-11-19 | 1998-09-22 | E. Khashoggi Industries, Llc | Methods for manufacturing molded sheets having a high starch content |
US5506046A (en) | 1992-08-11 | 1996-04-09 | E. Khashoggi Industries | Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix |
US5928741A (en) | 1992-08-11 | 1999-07-27 | E. Khashoggi Industries, Llc | Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix |
US5580624A (en) | 1992-08-11 | 1996-12-03 | E. Khashoggi Industries | Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers |
US5709827A (en) | 1992-08-11 | 1998-01-20 | E. Khashoggi Industries | Methods for manufacturing articles having a starch-bound cellular matrix |
US5683772A (en) | 1992-08-11 | 1997-11-04 | E. Khashoggi Industries | Articles having a starch-bound cellular matrix reinforced with uniformly dispersed fibers |
US5716675A (en) | 1992-11-25 | 1998-02-10 | E. Khashoggi Industries | Methods for treating the surface of starch-based articles with glycerin |
DK169728B1 (en) | 1993-02-02 | 1995-01-23 | Stein Gaasland | Process for releasing cellulose-based fibers from each other in water and molding for plastic molding of cellulosic fiber products |
GB2290741A (en) * | 1994-06-28 | 1996-01-10 | Frank Huang | Disposable receptacle and method of forming the same |
US5738921A (en) | 1993-08-10 | 1998-04-14 | E. Khashoggi Industries, Llc | Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix |
US6083586A (en) | 1993-11-19 | 2000-07-04 | E. Khashoggi Industries, Llc | Sheets having a starch-based binding matrix |
US5736209A (en) | 1993-11-19 | 1998-04-07 | E. Kashoggi, Industries, Llc | Compositions having a high ungelatinized starch content and sheets molded therefrom |
US5776388A (en) | 1994-02-07 | 1998-07-07 | E. Khashoggi Industries, Llc | Methods for molding articles which include a hinged starch-bound cellular matrix |
US5705203A (en) | 1994-02-07 | 1998-01-06 | E. Khashoggi Industries | Systems for molding articles which include a hinged starch-bound cellular matrix |
US5843544A (en) | 1994-02-07 | 1998-12-01 | E. Khashoggi Industries | Articles which include a hinged starch-bound cellular matrix |
DE4403975A1 (en) * | 1994-02-08 | 1995-08-10 | Nadja Kuske | Prodn. of biodegradable articles |
NZ292832A (en) * | 1994-10-21 | 1999-05-28 | Article comprising starch-based fibre-reinforced cellular matrix, the fibres having an aspect ratio greater than 25 | |
US6479164B1 (en) | 1996-02-05 | 2002-11-12 | Biotec Biologische Naturverpackungen Gmbh & Co. Kg | Method for preparing composite materials from renewable raw materials |
US6168857B1 (en) | 1996-04-09 | 2001-01-02 | E. Khashoggi Industries, Llc | Compositions and methods for manufacturing starch-based compositions |
NL1004138C2 (en) * | 1996-09-27 | 1998-03-31 | Vertis Bv | Manufacture of foamed packaging materials |
CN1108913C (en) * | 1996-09-27 | 2003-05-21 | 韦尔蒂斯股份有限公司 | Method and apparatus for manufacturing fiber-reinforced foamed paperlike products |
US6521147B1 (en) * | 1996-09-27 | 2003-02-18 | Vertis B. V. | Method and apparatus for manufacturing fiber-reinforced, foamed paperlike products |
US6231970B1 (en) | 2000-01-11 | 2001-05-15 | E. Khashoggi Industries, Llc | Thermoplastic starch compositions incorporating a particulate filler component |
US6379446B1 (en) | 2000-04-03 | 2002-04-30 | E. Khashoggi Industries, Llc. | Methods for dispersing fibers within aqueous compositions |
FR2822160B1 (en) * | 2001-07-17 | 2003-06-13 | Celta | LUBRICANT MIXTURE IN THE FORM OF GRANULES, METHOD OF MANUFACTURE AND USE |
JP2005131790A (en) * | 2002-03-05 | 2005-05-26 | Mikazuki Napurasu Kigyo Kumiai | Manufacturing method of biodegradable fibrous molded product |
DE10224355A1 (en) * | 2002-05-29 | 2003-12-11 | Buehler Ag | Production of dry, starch-based substance for use as binder in paper production involves mixing a starch-based component, e.g. rye flour, with water in an extruder at elevated temperature and then drying and milling the extrudate |
WO2009123637A1 (en) * | 2008-04-03 | 2009-10-08 | Basf Se | Paper coating or binding formulations and methods of making and using same |
US8613834B2 (en) | 2008-04-03 | 2013-12-24 | Basf Se | Paper coating or binding formulations and methods of making and using same |
RU2694755C2 (en) * | 2015-04-21 | 2019-07-16 | Кемира Ойй | Use of hardening composition for increasing dimensional stability in wet conditions of product from pressed fibrous mass |
NL2024533B1 (en) * | 2019-12-20 | 2021-09-02 | Huhtamaki Molded Fiber Tech Bv | Method for producing a moulded pulp material for packaging unit and such packaging unit |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE485672C (en) * | 1926-10-08 | 1929-11-02 | Carl Leyst Kuechenmeister | Process for the production of synthetic wood from plant fibers or the like and binders |
FR860330A (en) * | 1938-09-22 | 1941-01-11 | Turner & Newall Ltd | Improvements in heat-insulating materials |
US2517799A (en) * | 1947-03-01 | 1950-08-08 | Ohio Rubber Co | Process of extruding nonplastic materials |
NL74868C (en) * | 1948-09-30 | 1954-01-15 | Nl Fabriek Van Cella Producten | |
FR1076255A (en) * | 1952-02-29 | 1954-10-25 | Process for the manufacture of synthetic wood masses | |
FR1224900A (en) * | 1959-02-03 | 1960-06-28 | construction element such as panel, method and installation for its manufacture | |
US3090699A (en) * | 1960-05-12 | 1963-05-21 | Armstrong Cork Co | Sag-resistant fiberboard and method of making same |
FR90379E (en) * | 1965-03-11 | 1968-02-14 | ||
AT319742B (en) * | 1972-01-13 | 1975-01-10 | Isovolta | Process for producing fluting |
DE2333750C3 (en) * | 1973-07-03 | 1978-04-13 | Basf Farben + Fasern Ag, 2000 Hamburg | Process for the production of coated or lacquered moldings |
SE421541B (en) * | 1978-05-25 | 1982-01-04 | Stein Gasland | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS |
-
1978
- 1978-05-25 SE SE7805693A patent/SE421541B/en not_active IP Right Cessation
-
1979
- 1979-05-15 DK DK198779A patent/DK150161C/en not_active IP Right Cessation
- 1979-05-16 FI FI791560A patent/FI69333C/en not_active IP Right Cessation
- 1979-05-23 DE DE2920988A patent/DE2920988C2/en not_active Expired - Lifetime
- 1979-05-25 GB GB7918345A patent/GB2050459B/en not_active Expired
- 1979-11-16 FR FR7928314A patent/FR2469271A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
DK198779A (en) | 1979-11-19 |
FI69333B (en) | 1985-09-30 |
FR2469271A1 (en) | 1981-05-22 |
FI69333C (en) | 1986-01-10 |
DK150161C (en) | 1988-08-08 |
SE7805693L (en) | 1979-11-19 |
DE2920988A1 (en) | 1979-11-29 |
GB2050459A (en) | 1981-01-07 |
GB2050459B (en) | 1983-06-15 |
FR2469271B1 (en) | 1985-01-04 |
DE2920988C2 (en) | 1991-08-14 |
DK150161B (en) | 1986-12-22 |
FI791560A (en) | 1979-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE421541B (en) | PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS | |
CN105585830B (en) | Polydactyl acid with wooden attribute is combined 3D printing material and preparation method and application | |
DE69733779T2 (en) | METHOD FOR PRODUCING SHAPED FILMS WITH STRENGTH MATRIX | |
US4377440A (en) | Process for manufacturing of formed products | |
US4508595A (en) | Process for manufacturing of formed products | |
JP3308273B2 (en) | Method for dispersing cellulose-based fibers in water | |
CN1412389A (en) | Production process of moulded plant fibre | |
US20030008586A1 (en) | Low binder nonwoven fiber mats, laminates containing fibrous mat and methods of making | |
HU223262B1 (en) | Process for producing workpieces and molded pieces out of cellulose and/or cellulose-containing fiber material | |
DE2230985B2 (en) | Process for the production of plastic-filled papers | |
FI71366B (en) | CONTAINER REQUIREMENTS FOR FRAMSTAELLNING AV PAPPER | |
CN107683358A (en) | Cellulose fibre is used for the purposes for manufacturing non-woven cloth | |
CN107905019A (en) | A kind of preparation method of moisture-proof corrugated paper and moisture-proof corrugated paper therefrom | |
WO2013184916A1 (en) | Wheat gluten based compositions and articles made therefrom | |
JP2007009402A (en) | Papermaking process | |
CN106436447A (en) | Shaping paper with super-high air permeability and preparation method thereof | |
CN1165836A (en) | Foaming shaped compound material | |
CN106676938B (en) | Technique for manufacturing decorative boards, combo and stream copy device based on composite material | |
WO2020140736A1 (en) | Papermaking method | |
JPH0941288A (en) | Readily biodegradable complex and art paper product using the same | |
US20050098288A1 (en) | Starch and fiber mixture for papermaking and methods of making paper with the mixture | |
CN106147261A (en) | The string of a kind of environmental protection, powder, bits class composite | |
US2323339A (en) | Momentarily consolidated board product | |
CN110685187A (en) | Internal sizing composition for paper pulp and application method and application thereof | |
CN105648831A (en) | Preparation process of palygorskite high-temperature-resistant anti-mould paperboard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NAL | Patent in force |
Ref document number: 7805693-4 Format of ref document f/p: F |
|
NUG | Patent has lapsed |
Ref document number: 7805693-4 Format of ref document f/p: F |