SE1400002A1 - Pressure vessels and ways to heat a gas in a pressure conduit - Google Patents
Pressure vessels and ways to heat a gas in a pressure conduit Download PDFInfo
- Publication number
- SE1400002A1 SE1400002A1 SE1400002A SE1400002A SE1400002A1 SE 1400002 A1 SE1400002 A1 SE 1400002A1 SE 1400002 A SE1400002 A SE 1400002A SE 1400002 A SE1400002 A SE 1400002A SE 1400002 A1 SE1400002 A1 SE 1400002A1
- Authority
- SE
- Sweden
- Prior art keywords
- pressure vessel
- gas
- inner tube
- tube
- gap
- Prior art date
Links
- 238000009413 insulation Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 iron-chromium-aluminum Chemical compound 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/04—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
- F24H3/0405—Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/06—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
- F24H3/08—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
- F24H3/081—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H2250/00—Electrical heat generating means
- F24H2250/02—Resistances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0052—Details for air heaters
- F24H9/0057—Guiding means
- F24H9/0063—Guiding means in air channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/022—Heaters specially adapted for heating gaseous material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Resistance Heating (AREA)
Abstract
Man värmer strömmande trycksatt gas genom att leda den genom en spalt (18) mellan två koncentriska rör (16,17) i ett tryckkärl (11,12,13). Man värmer inre röret (17) med strålningsvärme inifrån och håller röret öppet mot gasens strömningsväg i tryckkärlet så att man får tryckutjämning mellan inre rörets insida och utsida utan att rörets är del av gasens strömningsväg.Flowing pressurized gas is heated by passing it through a gap (18) between two concentric tubes (16,17) in a pressure vessel (11,12,13). The inner tube (17) is heated with radiant heat from the inside and the tube is kept open against the gas flow path in the pressure vessel so that pressure equalization is obtained between the inside and outside of the inner tube without the tube being part of the gas flow path.
Description
och exv.få kolutfällning om gasen är en reducerande gas innehållande en H2 och/eller CO. Sandvik Kanthal APM rör (Ferritic iron-chromium-aluminium rör) är exempel på rör som kan användas. Uppfinningen definieras av patentkraven. and eg obtain carbon precipitation if the gas is a reducing gas containing an H2 and / or CO. Sandvik Kanthal APM pipes (Ferritic iron-chromium-aluminum pipes) are examples of pipes that can be used. The invention is defined by the claims.
Kort beskrivning av ritningarna Figur 1 visar i sektion en gasvärmare som exempel på uppfinningen.Brief description of the drawings Figure 1 shows in section a gas heater as an example of the invention.
Figur 2 visar förstorat inloppsdelen av värmaren visad i figur 1.Figure 2 shows an enlarged inlet part of the heater shown in figure 1.
Figur 3 visar förstorat utloppsdelen av värmaren visad i figur 1.Figure 3 shows an enlarged outlet part of the heater shown in figure 1.
Figur 4 motsvarar figur 2, men visar ett alternativt utförande.Figure 4 corresponds to figure 2, but shows an alternative embodiment.
Figur 5 motsvarar figur 2 och visar ett annat alternativt utförande.Figure 5 corresponds to Figure 2 and shows another alternative embodiment.
Beskrivning av visat exempel på uppfinningen Figurerna 1-3 visar en gasvärmare i form av ett tryckkärl vars yttermantel består av ett rör 11 med gavlar 12,13. Gaveln 12 kan bultas fast exempelvis mot en ledning eller direkt till ett reaktorkärl i en processindustri för att tillföra upphettad gas av högt tryck. Ingående processgas med högt tryck, exv. 100 bar, som ska värmas till hög temperatur, exv. 1000 grader Celsius, tillförs genom gaveln 13. Röret 11 är invändigt isolerat med en isolering 14 som är anpassad för den höga temperatur som ska uppnås. isoleringen kan exv. vara en keramisk isolering eller en fiberisolering. Olika avsnitt av röret 11 kan ha olika isolering anpassad efter temperaturen som ökar mot utloppet. isoleringen kan göras i skikt med olika egenskaper.Description of the example shown in the invention Figures 1-3 show a gas heater in the form of a pressure vessel whose outer jacket consists of a pipe 11 with ends 12,13. The end 12 can be bolted, for example, to a pipe or directly to a reactor vessel in a process industry to supply heated gas of high pressure. Incoming process gas with high pressure, e.g. 100 bar, which is to be heated to a high temperature, e.g. 1000 degrees Celsius, supplied through the end 13. The pipe 11 is internally insulated with an insulation 14 that is adapted for the high temperature to be achieved. the insulation can e.g. be a ceramic insulation or a fiber insulation. Different sections of the pipe 11 may have different insulation adapted to the temperature which increases towards the outlet. the insulation can be made in layers with different properties.
Inuti isoleringens hålrum 15 är två koncentriska rör 16,17 instuckna såsom bäst framgår av figurerna 2 och 3. Rörens övre ändar är tätande hopfogade , exv hopsvetsade eller hopbultade, och den bildade spalten 18 mellan rören har ett inlopp 19 genom gaveln 13 för gasen som ska värmas och, vilket bäst framgår av figur 2.Inside the insulation cavity 15, two concentric pipes 16, 17 are inserted as best seen in Figures 2 and 3. The upper ends of the pipes are sealingly joined, eg welded or bolted together, and the formed gap 18 between the pipes has an inlet 19 through the gas end 13 which should be heated and, as best shown in Figure 2.
Spalten 18 upprätthålls med ej visade styrklackar på inre röret. Spalten är öppen mot isoleringens hålrum 15 och mot det avsmalnande utloppet 20 från tryckkärlet som bildas av detta hålrum, vilket bäst framgår av figur 3. Det inre röret 17 har sluten ände 21 vid spaltens 18 utlopp 22. Rören 16,17 hålls på plats vid inloppet 19 och rören kan fritt expandera i längdled vid uppvärmning.The gap 18 is maintained with guide lugs (not shown) on the inner tube. The gap is open towards the cavity 15 of the insulation and towards the tapered outlet 20 from the pressure vessel formed by this cavity, which is best seen in figure 3. The inner pipe 17 has a closed end 21 at the outlet 22 of the gap 18. The pipes 16,17 are held in place at the inlet 19 and the pipes can freely expand longitudinally when heated.
Det inre röret 17 är öppet mot gaveln 13 och har elektriska element i form av värmespiraler 23,24 utmed sin längd. Elektriska elementen har sina elledningar 25- 28 tätande genomförda genom gaveln 13. Inre röret 17 värms således enbart med strålningsvärme inifrån och inre röret deltar inte i flödet genom gasvärmaren, vilket medför att elspiralerna inte utsätts för kemiska eller katalytiska reaktioner i så stor omfattning. Man kan minska reaktionsrisken ytterligare genom att ha en liten kontinuerlig tillförsel av skyddsgas till inre rörets insida. I figurerna 2 och 3 visas en tillförselledning 30 för skyddsgas som når ner mot inre rörets 17 slutna ände 21.The inner tube 17 is open to the end wall 13 and has electrical elements in the form of heating coils 23,24 along its length. The electrical elements have their electrical lines 25-28 sealed through the end 13. The inner tube 17 is thus heated only with radiant heat from inside and the inner tube does not participate in the flow through the gas heater, which means that the electrical coils are not exposed to chemical or catalytic reactions to such an extent. The risk of reaction can be further reduced by having a small continuous supply of shielding gas to the inside of the inner tube. Figures 2 and 3 show a supply line 30 for shielding gas which reaches down to the closed end 21 of the inner tube 17.
Mellan isoleringen 14 och yttre röret 16 finns en spalt 31 som ger tryckutjämning mellan inre rörets 17 insida och utsida eftersom inre rörets insida då blir öppen mot spaltutloppet 22 och därmed mot delen 32 av isoleringens hålrum 15, dvs öppet mot tryckkärlets utlopp 20. Delen 32 tar upp rörens 16,17 längdexpansion.Between the insulation 14 and the outer tube 16 there is a gap 31 which provides pressure equalization between the inside and outside of the inner tube 17 since the inside of the inner tube then becomes open towards the gap outlet 22 and thus towards the part 32 of the insulation cavity 15, i.e. open towards the pressure vessel outlet 20. Part 32 addresses the longitudinal expansion of the tubes 16.17.
Den första spiralen 23 sett i flödesriktningen har tätare lindning och större effekt än den andra spiralen 24 och spiralernas effekt kan varieras var för sig så att tillförda effekten per längdenhet rör minskar när gasen blir varmare Första delen av strömningsvägen kan exempelvis ha tre gånger så stor effekt per längdenhet som sista delen. Därigenom begränsas elspiralernas temperatur. Man kan ha fler än två zoner med olika effekt. Gasen som strömmar genom spalten 18 får genom uppvärmningen och tryckminskningen en stor volymökning. Man kan optimera tryckfallet och värmeöverföringen genom att ha varierande spalt utmed rörens längd.The first coil 23 seen in the flow direction has denser winding and greater power than the second coil 24 and the power of the coils can be varied individually so that the applied power per unit length of pipe decreases when the gas gets hotter. per unit of length as the last part. This limits the temperature of the electrical coils. You can have more than two zones with different effects. The gas flowing through the gap 18 has a large increase in volume due to the heating and pressure reduction. You can optimize the pressure drop and heat transfer by having varying gaps along the length of the pipes.
Figur 4 visar en alternativ utföringsform där en skiljevägg 34 tätar mellan tryckkärlsröret 11 och röret 16. I stället för att det inre röret 17 är i kommunikation med utloppssidan av gasens strömningsväg i tryckkärlet har det kommunikation med inloppssidan genom en öppning 35. l övrigt är utföringsformerna lika.Figure 4 shows an alternative embodiment where a partition wall 34 seals between the pressure vessel pipe 11 and the pipe 16. Instead of the inner pipe 17 being in communication with the outlet side of the gas flow path in the pressure vessel, it communicates with the inlet side through an opening 35. Otherwise, the embodiments are equal.
Figur 5 visar en annan alternativ utföringsform där tryckkärlsröret 11 har en fläns 36 som är direkt hopbultad med en fläns 37 på inloppsröret 38 för trycksatta gasen som ska värmas. Inre röret 17 är således öppet mot trycksatta inloppssidan av gasens strömningsväg i tryckkärlet. Spalten 18 har sitt inlopp 39. Endast en, 25, av elanslutningarna visas.Figure 5 shows another alternative embodiment where the pressure vessel pipe 11 has a flange 36 which is directly bolted together with a flange 37 on the inlet pipe 38 for the pressurized gas to be heated. The inner tube 17 is thus open towards the pressurized inlet side of the gas flow path in the pressure vessel. Column 18 has its inlet 39. Only one, 25, of the electrical connections is shown.
Tryckkärlet/gasvärmaren kan tillverkas i olika storlekar och som exempel på en typisk storlek kan nämnas att yttre röret 16 kan ha en längd av 3,5 m och en diameter på 140 mm och tryckkärlsröret 11 kan ha en ytterdiameter på 600 mm.The pressure vessel / gas heater can be manufactured in different sizes and as an example of a typical size it can be mentioned that the outer tube 16 can have a length of 3.5 m and a diameter of 140 mm and the pressure vessel tube 11 can have an outer diameter of 600 mm.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1400002A SE1400002A1 (en) | 2013-01-02 | 2013-12-27 | Pressure vessels and ways to heat a gas in a pressure conduit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1300001 | 2013-01-02 | ||
SE1400002A SE1400002A1 (en) | 2013-01-02 | 2013-12-27 | Pressure vessels and ways to heat a gas in a pressure conduit |
PCT/SE2013/051622 WO2014107132A1 (en) | 2013-01-02 | 2013-12-27 | Pressure vessel and method of heating a gas in a pressurised pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
SE1400002A1 true SE1400002A1 (en) | 2014-07-03 |
Family
ID=51062375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1400002A SE1400002A1 (en) | 2013-01-02 | 2013-12-27 | Pressure vessels and ways to heat a gas in a pressure conduit |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150338126A1 (en) |
EP (1) | EP2941600B1 (en) |
DK (1) | DK2941600T3 (en) |
ES (1) | ES2672730T3 (en) |
SE (1) | SE1400002A1 (en) |
WO (1) | WO2014107132A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110966766A (en) * | 2018-09-30 | 2020-04-07 | 青岛经济技术开发区海尔热水器有限公司 | Control method of supercharged gas water heater and gas water heater |
CN111121279B (en) * | 2018-10-30 | 2021-11-02 | 宁波方太厨具有限公司 | Heat exchanger for gas water heater |
EP4038324A4 (en) * | 2019-10-01 | 2023-10-25 | Kanthal AB | An electric gas heater device and a system of electric gas heater devices |
SE546054C2 (en) * | 2020-06-11 | 2024-04-30 | Kanthal Ab | Electric Gas Heater and a Method for Heating a gas |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1727584A (en) * | 1927-08-23 | 1929-09-10 | Robert A Carleton | High-temperature fluid-heating apparatus |
US1985280A (en) | 1931-09-12 | 1934-12-25 | Nat Electric Heating Company I | Electric fluid heater |
US2026809A (en) * | 1933-11-20 | 1936-01-07 | Sperry H Winn | Electric water heater |
US2462746A (en) * | 1947-05-12 | 1949-02-22 | Inman Hollis Chubbuck | Electric fluid heater |
US2527013A (en) * | 1947-10-17 | 1950-10-24 | Bayard L Kjelgaard | Infrared heater |
FR1011445A (en) * | 1949-02-10 | 1952-06-23 | Basf Ag | Electric resistance heater for the gases and vapors circulating therein |
US2797297A (en) * | 1954-11-18 | 1957-06-25 | Brown Fintube Co | High pressure heaters |
DE1615278C3 (en) * | 1967-06-30 | 1979-06-21 | Gefi Gesellschaft F. Industriewaerme Mbh, 4150 Krefeld | Electric resistance furnace, especially for heating gaseous media |
US3968346A (en) * | 1973-06-01 | 1976-07-06 | Cooksley Ralph D | Method and apparatus for electrically heating a fluid |
SE8105923L (en) | 1981-10-07 | 1983-04-08 | Boliden Ab | SET TO INDICATE HIDDEN SKILLS |
US5054108A (en) * | 1987-03-30 | 1991-10-01 | Arnold Gustin | Heater and method for deionized water and other liquids |
DE19610593A1 (en) * | 1996-03-18 | 1997-09-25 | Wastec Ag | Heat exchanger for immersion heater |
US6327427B1 (en) * | 2000-06-16 | 2001-12-04 | Mhe Corp. | Space heater and enclosure |
US8119954B2 (en) * | 2003-01-07 | 2012-02-21 | Micropyretics Heaters International, Inc. | Convective heating system for industrial applications |
US8260126B2 (en) * | 2009-12-17 | 2012-09-04 | Lord Ltd., Lp | Dual wall axial flow electric heater for leak sensitive applications |
KR200459178Y1 (en) * | 2011-07-26 | 2012-03-22 | 최건식 | Double tube type heat exchange pipe |
-
2013
- 2013-12-27 SE SE1400002A patent/SE1400002A1/en not_active Application Discontinuation
- 2013-12-27 ES ES13870259.2T patent/ES2672730T3/en active Active
- 2013-12-27 US US14/758,797 patent/US20150338126A1/en not_active Abandoned
- 2013-12-27 EP EP13870259.2A patent/EP2941600B1/en active Active
- 2013-12-27 DK DK13870259.2T patent/DK2941600T3/en active
- 2013-12-27 WO PCT/SE2013/051622 patent/WO2014107132A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2941600A4 (en) | 2016-08-31 |
EP2941600B1 (en) | 2018-04-25 |
DK2941600T3 (en) | 2018-06-25 |
WO2014107132A1 (en) | 2014-07-10 |
ES2672730T3 (en) | 2018-06-15 |
EP2941600A1 (en) | 2015-11-11 |
US20150338126A1 (en) | 2015-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101212406B1 (en) | A dual wall axial flow electric heater for leak sensitive applications | |
SE1400002A1 (en) | Pressure vessels and ways to heat a gas in a pressure conduit | |
US20160304343A1 (en) | System and combustion reaction holder configured to transfer heat from a combustion reaction to a fluid | |
JP2013514628A5 (en) | ||
US20130213487A1 (en) | Pipeline heating technology | |
JP2009041885A (en) | Fluid heating device | |
CA2668468C (en) | Collecting main for tubular cracking furnaces | |
CN108469414A (en) | A kind of Portable visual heater and cooler device suitable for high-temperature high-voltage reaction | |
CN210861685U (en) | Multi-pipeline rapid heating device | |
KR20140058859A (en) | Heating pipe for semiconductor manufacturing apparatus | |
KR20010049342A (en) | A method for transporting at least one vapour substance through a vacuum chamber wall in a vacuum chamber and an apparatus for performing the method and the use thereof | |
GB2089951A (en) | Heat Exchanger for the Generation of Steam | |
CN202598859U (en) | Internal radiation isothermal electric heater of thermal field | |
JP4637882B2 (en) | Conduit device | |
CN203824761U (en) | Water-cooled high-temperature combustion gas guiding apparatus for engine thermal environment test | |
JP2008238039A (en) | Heating apparatus and process-gas treatment system | |
KR101809169B1 (en) | Apparatus for Heating Fluid | |
KR101432896B1 (en) | Fluidized Bed Reactor for production of a polysilicon | |
WO2014143971A1 (en) | System and method for heater vessel wall temperature reduction | |
CN103302767A (en) | Pipeline for conveying plastic melt | |
JP2007198482A (en) | High-temperature fluid heating valve | |
CN202649088U (en) | Supercritical water oxidation test reaction container | |
KR101838000B1 (en) | Support apparatus capable of producing steam and furnace having the same | |
CN206094988U (en) | Heating bath adds heat channel | |
CN203657181U (en) | High temperature, high pressure and high corrosion resistant radiation heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NAV | Patent application has lapsed |