SE1250609A1 - Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon - Google Patents

Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon Download PDF

Info

Publication number
SE1250609A1
SE1250609A1 SE1250609A SE1250609A SE1250609A1 SE 1250609 A1 SE1250609 A1 SE 1250609A1 SE 1250609 A SE1250609 A SE 1250609A SE 1250609 A SE1250609 A SE 1250609A SE 1250609 A1 SE1250609 A1 SE 1250609A1
Authority
SE
Sweden
Prior art keywords
axle
vehicle
towing vehicle
acceleration
trailer
Prior art date
Application number
SE1250609A
Other languages
English (en)
Other versions
SE536560C2 (sv
Inventor
Joseph Ah-King
Deleer Barazanji
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1250609A priority Critical patent/SE536560C2/sv
Priority to EP13765165.9A priority patent/EP2828633A4/en
Priority to PCT/SE2013/050266 priority patent/WO2013141787A1/en
Publication of SE1250609A1 publication Critical patent/SE1250609A1/sv
Publication of SE536560C2 publication Critical patent/SE536560C2/sv

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

En metod i samband med ett arrangemang för ett fordon, innefattande ett släpfordonkopplat till ett dragfordon, för estimering av tyngdpunktshöj den HCG för släpfordonet, därdragfordonet innefattar en främre hjulaxel och en bakre hjulaxel, varvid åtminstone denbakre hjulaxeln är fjädrande upphängd med ett hjulaxelfj ädringssystem och släpfordonetinnefattar åtminstone en hjulaxel och är kopplat till dragfordonet via en vändskiva, ochvarvid arrangemanget innefattar en beräkningsenhet (2) anpassad att mottaga värdenrelaterade till accelerationen ai i fordonets longitudinella riktning och till axellasten Ngavseende den bakre hjulaxeln för dragfordonet. Metoden innefattar stegen att - bestämma samhörande värden för axellasten Ng för dragfordonets bakaxel ochaccelerationen ai för fordonet, för ett antal olika värden för accelerationen, - bestämma en parameter j relaterad till ett samband mellan nämnda bestämda samhörandevärden för axellasten NZ och accelerationen ai, - estimera tyngdpunktshöj den HCG för släpfordonet genom beräkningar utförda i enlighet med en förutbestämd algoritm där nämnda parameter j ingår. (Figur 1)

Description

15 20 25 30 2 precision avgöra tyngdpunktens höj dläge hos ett lastfordon eftersom höjdläget kan variera avsevärt i beroende på den aktuella lastens sammansättning och idag använda stabiliseringssystem kan därför många gånger inte åstadkomma en optimal stabilitet av ett lastfordon under drift.
Det är möjligt att estimera tyngdpunktshöjden genom att studera fordonets krängningsrörelse, dvs. när bilen svaj ar till höger och vänster. Detta bygger på att amplituden fordonet svajar med är direkt kopplad till tyngdpunktshöj den. När amplituden når en viss punkt börjar fordonet tippa över. Genom att bestämma en karakteristisk amplitud för fordonet kan man se hur hög tyngdpunkten är givet att man har en del data som t.ex. vridstyvhet och fjäderstyvhet samt däckstyvhet.
En annan lösning föreslås i SE-525 248 som i korthet går ut på att estimera tyngdpunktshöjden med användning av moment- och kraftekvationer. Detta åstadkommes genom att, med användning av lastkänningssensorer, avkänna belastningen på åtminstone två av fordonets axlar, fordonets acceleration, och vägbanans lutningsvinkel, givet redan känd information om dynamiska rörelser pga. accelerationer och vägens lutning som ger olika axellaster.
Lösningar som bygger på krängningsrörelsen har nackdelen att släpfordonet inte är en helt stel kropp samt att man måste veta fjäderstyvheten.
I det arrangemang som beskrivs i SE-525 248 krävs lastskattning för minst två av fordonets axlar.
Syftet med föreliggande uppfinning är att åstadkomma en förbättrad metod och ett förbättrat arrangemang för att estimera tyngdpunktshöjden (HGC) för ett släpfordon genom att väsentligen enbart utnyttja information och mätresultat som är tillgängligt på dragfordonet, dvs. där så lite information som möjligt om släpfordonet behövs.
Sammanfattning av uppfinningen Ovan nämnda syften åstadkommes med uppfinningen definierad av det oberoende patentkravet. 10 l5 20 25 30 Föredragna utföringsformer definieras av de beroende patentkraven.
Enligt en utföringsform bestäms axellasten för dragfordonets bakaxel företrädesvis med hjälp av utsignaler från luftfjädringen.
Genom att tillämpa föreliggande uppfinning kommer de system som använder tyngdpunktshöjden att kunna förbättras. Varnings- och assistanssystem för att vama och förhindra att fordonet välter (så kallad roll-over) är ett sådant system som inte kan användas eftersom det i dagsläget inte har ett noggrant värde på tyngdpunktshöjden. Roll- over inträffar när ett fordon tippar över just för att man har en hög tyngdpunktshöjd som gör att man tippar över vid en lägre hasighet i kurvor än om man hade en låg tyngdpunktshöjd. Roll-over är en av de farligaste olyckstypema och mycket tyder på att så gott som alla sådana olyckor skulle förhindras om man har en bra tyngdpunktshöjdsestimering vilket man idag inte har.
Kort ritningsbeskrivning Figur l är ett flödesschema som illustrerar metoden enligt föreliggande uppfinning.
Figur 2 är ett förenklat blockschema av arrangemanget enligt uppfinningen.
Figur 3 illustrerar kraftförhållandet för ett fordon då det svänger och illustrerar tydligt risken för att fordonet skall välta.
Figur 4 visar en schematisk bild av ett dragfordon och visar de krafter som är relaterade till modellen, samt andra parametrar.
Figur 5 visar en schematisk bild av ett släpfordon och visar de krafter som är relaterade till modellen, samt andra parametrar.
Figur 6 visar schematiskt ett släpfordon där attraherande krafter indikerats.
Figur 7 visar schematiskt ett släpfordon där repellerande krafter indikerats.
Figur 8 visar en luftfi ädringskonfiguration enligt en första typ.
Figur 9 visar en luftfi ädringskonfiguration enligt en andra typ.
Figur 10 visar en schematisk bild av ett dragfordon och ett släpfordon för att illustrera krafterna i samband med beräkningen av inverkan av luftmotståndet. 10 15 20 25 30 4 Detaljerad beskrivning av föredragna utföringsfonner av uppfinningen Föreliggande uppfinning utnyttjar en så kallad longitudinell modell för att åstadkomma en estimering av fordonets tyngdpunktshöjd. En fördel med denna modell är att den innefattar förhållandevis få osäkra parametrar. En svårighet med modellen är att den innefattar detektering och estimering av lastförändringar vilket är en svår uppgift men genom införandet av luftfjädring på lastfordon är dessa möjliga att uppskatta. Nya sätt att göra lastestimeringar med användning av luftfi ädringssystem utvecklas ständigt och dessa blir allt bättre på att utnyttja luftfi ädringens egenskaper.
En beskrivning av den longitudinella modellen för att estimera tyngdpunktshöjden kommer nu att ges.
Lastöverföringen mellan fordonets axlar och kopplingspunkter skiljer sig åt för varje accelerationsvärde och varje situation. Lasten på bakaxeln anges som en funktion av accelerationen och detta samband är olika och unikt definierad för varje tyngdpunktshöjdvärde (HCG-värde) definierad med ekvationer för vridmomentjämvikten vilka kommer att visas i det följande.
I den följande beskrivningen och i ritningarna kommer följande beteckningar att användas: i = 1, 2, 3, 4 betecknar dragfordonets främre axel, bakaxel, vändskiva (eng. ”fifth Wheel”) och släpfordonets axlar. x1 är dragfordonets hjulbas (m).
X2 är avståndet från positionen för dragfordonets tyngdpunkt (CG) till dragfordonets bakaxel (m). x3 är avståndet mellan vändskivan och dragfordonets bakaxel (m). x4 är avståndet mellan släpfordonets tyngdpunkt (CG) till släpfordonets bakaxel (m). x5 är avståndet mellan släpfordonets bakaxel till vändskivan (m). y1 är tyngdpunktshöjden (HCG) för dragfordonet (m). y; är höjden för vändskivan (m). yg är tyngdpunktshöjden (HCG) för släpfordonet (m).
Ni är den vertikala kraften i punkten i (N). 10 15 20 25 30 5 Fi är den framåtriktade longitudinella kraften för hjul vid axeln i (N). tär spårvidden för släpfordonet (m). ay är accelerationen tvärs fordonet (m/sz). a är den longitudinella accelerationen för fordonet (rn/sz). g är gravitationskonstanten (m/sz). md är dragfordonets massa (kg). m1 är släpfordonets massa (kg). m är fordonets totala massa (kg). r är hjulradien (m). s är förskjutningen för tyngdpunkten CG i tvärled från fordonets symmetrilinje RC (m).
Fr är normalkraften på högerhjulen (N).
Fl är normalkraften på vänsterhjulen (N). p är trycket som bromsama påför hjulen (bar). pi är trycket som bromsarna påför hjulen på axel i (bar). ps är trycket som krävs för att påbörja bromsning av hjulen (bar). psi är trycket som krävs för att påbörja bromsning av hjulen på axel i (bar).
Tbi är bromsvridmoment per tryck (Nm/bar). ms är fordonets ”sprung Weight” (kg). k är fjäderkonstanten (N/m).
Fb är bromskraften (N).
Te är motorns drivmoment (Nm).
Ft är den drivande kraften (N).
Ut är totala utväxlingen, dvs. från växellådan och differentialen.
Fh är retardationskraften (N).
Th är retarderns vridmoment (Nm).
Ud är differentialens utväxling.
Cd är luftmotståndskoefficienten. v är fordonets hastighet (m/s) Figur 3 illustrerar kraftförhållandet för ett fordon då det svänger och illustrerar tydligt risken för att fordonet skall välta. 10 15 20 25 30 6 Som ett första steg kommer lastöverföringen för dragfordonet att undersökas med syftet att estimera den longitudinella och vertikala positionen för fordonets tyngdpunktscentrum.
Figur 4 visar en schematisk bild av ett dragfordon och visar de krafter som är relaterade till modellen, samt andra parametrar.
Vikten för det tomma dragfordonet mdmply såväl som normalkrafterna N1 och Ng är kända.
Därför kan delen för normalkrafterna för dragfordonet som beror av en viss mängd bränsle i bränsletanken beräknas om man känner den longitudinella positionen xf för bränsletankens tyngdpunktscentrum.
Nzfuelxl _ mfuelgxf C05(6) I 0 (3-1) Samma beräkning kan göras med avseende på normalkraften på den främre axeln.
Ekvation (31) kan skrivas som: _ mfuelgxf C05(9) N2,fuel _ (32) xi Som adderas till nonnalkraften för det tomma dragfordonet vilket då ger fordonets tj äns tevikt: NZ = NZßmpty + NZfuel (33) I nästa steg beräknas den longitudinella positionen för tyngdpunkten vilken fås från ekvationen för vridmomentjämvikten med hänvisning till figur 4.
Nlxl - mdgxz cos(6) = 0 (3.4) Denna ekvation skrivs om som X2 Nl _ xl (35) I mdg cos(6) _ mdg cos(6) 10 15 20 25 30 Sedan skall ekvationen för vridmomentjämvikten för den vertikala tyngdpunkten för dragfordonet bestämmas.
-Nzxl - mdayl + mdgy1sin(9)+ md_g(x1 - x2)c0s (0)=0 (3.6) Skriver man om ekvation (36) erhålls: yl = (37) md(g sin(6)-a) Genom att sätta in x; från ekvation (35) i ekvation (3.7) och med kännedom om normalkraften för åtminstone en av fordonsaxlarna och information om accelerationen och vägens lutning löses ekvationen och ger höjden y1 för tyngdpunkten för dragfordonet.
Motsvarande beräkningar kommer nu att beskrivas för släpfordonet.
Figur 5 visar en schematisk bild av ett släpfordon och visar de krafter som är relaterade till modellen, samt andra parametrar.
Vid acceleration eller retardation och vid körning på kuperade vägar kommer lasterna att överföras mellan släpfordonets axlar och vändskivan i beroende av accelerationen eller retardationen och vägens lutning; acceleration överför last från den främre axeln till den bakre, medan retardation överför lasten från den bakre till den främre axeln.
Positionen x4 för den longitudinella jämvikten för släpfordonet beräknas genom följande stationära vridmomentsjämviktsekvation (på plan mark) där beteckningama framgår från figur 5. (3-3) N3x5 - mtgx4 = 0 Denna ekvation (3.8) kan skrivas som 10 15 20 25 30 x., = 1% (39) ml och Ng bestäms antingen genom att väga åtminstone en av dragfordonets axlar eller släpfordonets axlar eftersom x3 är känd eller erhålls från fordonets kontrollenhet som beräknar ett estimat för lasten på bakaxeln och för mt. mt kan även skattas genom att jämföra en skattning av fordonets totala vikt med dragbilens vikt.
Det sökta värdet y3, dvs. tyngdpunktshöj den (HCG), fås från vridmomentekvationen med beteckningar från figur 6, som schematiskt visar ett släpfordon där attraherande krafter indikerats, på följande sätt: N3x5 - Fgyz - mtg cos(9)x4 + mtg sin(9)y3 + mtayg = 0 (310) Även krafterna N 3 och F3 relaterade till vändskivan måste beräknas för att estimera yg. Ett sätt att bestämma dessa kommer nu att visas. Här avses alltså de krafter som verkar i kopplingspunkten mellan dragfordonet och släpfordonet.
Riktningen och storleken på den longitudinella kraften F3 på vändskivan beror på förhållandet mellan dragfordonet och släpfordonet såväl som på rull- och luftmotståndskrafterna och påverkar lastöverföringen som uppmätts på dragfordonets bakre axel. Därför måste denna kraft beaktas och estimeras. Om fordonet accelererar kommer sambandet att vara såsom det illustereras i figur 6 medan bromsning kommer att ge upphov till olika scenarios. Om släpfordonet bromsar endast en del f av eller hela (f=l()0%) dragfordonets massa, eller om dragfordonet bromsar endast en del f av eller hela (f=100%) släpfordonets massa så kommer krafterna vara de som visas i figur 7. Figur 7 visar schematiskt ett släpfordon där repellerande krafter indikerats. Följande ekvation kommer att visa hur F3 estimeras vid acceleration eller bromsning av dragfordonet.
F3 = mta + FRollandDrag (3-11) Följande ekvation gäller då släpfordonet bromsar en del av dragfordonet: 10 15 20 25 30 FB = fmda + FRollandDrag (3-12) Och följande ekvation gäller då släpfordonet bromsar en del av sig själv och även dragfordonet bromsar: FB = fmta + FRollandDrag (3-13) Kraften Fgollandlyfag kommer att bestämmas nedan med hjälp av ekvationerna (324-326) och f erhålles genom sambandet mellan bromskraftema för släpfordonet och dragfordonet.
Bromskrafterna kommer att diskuteras nedan och följ ande samband gäller för f i fallet som beskrivs av ekvation (3.l3). ma-F f: E 4- mta (3. 14) Ng är den vertikala kraften för vändskivan och är den delen av lasten som bärs av dragfordonet. Typiska värden för denna är ungefär en tredjedel av släpfordonets massa.
Denna kraft fördelas i sin tur mellan dragfordonets axlar enligt följande: Dragfordonets bakre axel: ANZ = mfi (315) X1 Dragfordonets främre axel: Azvl = Ng? (316) 1 Dessutom blir överföringsvikten mellan dragfordonets axlar enligt följande ekvation (kraften på dragfordonets bakre hjul): 10 15 20 25 30 lO NZ Z mdg(x1_x2)+mday1 xi Kraftema på dragfordonets bak- och framaxel är beroende på acceleration och retardation och blir då enligt följande med hänvisning till beteckningarna i figur 4: NZ = Ns(X1_x3)+3/2F3+::mra+mc.9(x1-x2) 6.18) Nl =N3+Tntg_N2 I dessa båda ekvationer såväl som i fortsättningen kommer, för enkelhets skull, vägens lutning att försummas, dvs. 6=0. Ng fås från ekvation (318).
Nästa steg är att använda informationen från luftfj ädringen som används för dragfordonet för att estimera belastningen N 2 på den bakre axeln för dragfordonet. Ng är en parameter som krävs för att estimera tyngdpunktshöjden och hur denna bestäms kommer att beskrivas nedan.
Nu kommer ett antal parameterar att beskrivas med avseende på hur de bestäms.
Estimering av fordonets vikt m.
Dragfordonets vikt antas vara känd. Släpfordonets vikt estimeras t.ex. med användning av signaler från luftfi ädringen, motorn och/eller information om fordonets hastighetsförändring. m = md + m, (320) Detektering och estimering av viktöverföring Företrädesvis utnyttjas fordonets luftfi ädringssystem för att estimera viktöverföringen mellan fordonets axlar. Det skall noteras att uppfinningen är tillämplig för fordon med andra Üädringssystem som kan avge signaler som representerar belastningen på hjulaxeln.
Användning av fordonets luftfjädringssystem kommer att exemplifieras genom att beskriva två olika typer av luftfjädringssystem för dragfordonets bakre axel. En av dessa visas i figur 8 och består av två luftfj ädrar vid bakaxeln som vardera är belägen mellan 10 15 20 25 30 ll chassiet ovanför och en ansluten stång underifrån vilken i sin tur är monterad under drivaxeln och kopplar luftfj ädem på en sida av drivaxeln till en led som möjliggör rotation runt leden. Leden är kopplad chassiet via en stel arm och drivaxeln är fastsatt ovanifrån på stången nästan på. Denna konfiguration påverkas inte bara av vertikala krafter på hjulen utan också av longitudinella krafter som tex. bromskrafter, dragkrafter och krafter som beror av vägens lutning. Anledingen till detta är vridmomentet för stången mellan luftfi ädern och ramen vilket är proportionellt till de longitudinella kraftema på hjulet.
Dessa longitudinella krafter utgör en del av kraftema på luftfjädem och måste därför dras ifrån den resulterande kraften på axeln som registreras av luftfi ädem för att endast erhålla lasten som överförs mellan axlama.
Den andra luftfjädringskonfigurationen visas i figur 9 och består av fyra luftfj ädrar där två finns anordnade på respektive sida av drivaxeln kopplade via ett antal leder. Det kan antas att luftbälgama i denna konfiguration inte påverkas av longitudinella krafter utan enbart av vertikala krafter vilka är de krafter som är av intresse här. Kraften som verkar på luftfi ädern beror både på lufttrycket i luftfi ädern och på fiäderns längd.
Som ett komplement till den estimering av viktöverföring som diskuterats ovan kan viktöverföringen även mätas med användning av bladfjädersystem anordnade på framaxeln genom att tillämpa Hooks lag.
Nu kommer de longitudinella krafterna som verkar på hjulen att diskuteras.
Ovan diskuterades att lufttrycket och då också viktestimeringen för luftfjädrarna även påverkas av de longitudinella krafterna. Vid olika manövrar inverkar olika krafter, såsom broms- och dragkrafter, och eftersom dessa krafter påverkar mätningen av axellasterna måste dessa estimeras för att kunna subtrahera dessa från den totala kraften på luftfj ädrarna. Dessa krafter och dess effekt och estimering diskuteras nedan.
Dragkrafter Dragkraften är den kraft som utövas av fordonets hjul på vägen för att förflytta fordonet och motverka naturliga krafter i fordonets rörelseriktning såsom väglutningskrafter (Fgïade), luftmotstånd (Fdmg) och rullmotstånd (From). 10 15 20 25 30 12 Dessa krafter slås vanligtvis samman genom följ ande ekvation: Trrjew = mi? + Froll + Fdrag + Fgrade (321) Samma kraft måste genereras av fordonets motor och är lika med: Ft = fl (322) Bromskrafter Bromsningen påbörjas genom att påföra tryck till bromscylindrama, trycket som överförs till vardera av fordonets axlar mäts, och trycket åstadkommer sedan ett vridmoment som i sin tur genererar en kraft som stoppar fordonet. Relationen mellan tryck och vridmoment är normalt inställt så att ett tryck på 1 bar motsvarar ett vridmoment som är 5500 Nm.
Trycket som krävs för att påbörja bromsning är i storleksordningen 0,4 bar. Dessa angivna värden är approximationer som skiljer sig åt mellan olika fordon och axel beroende på många faktorer såsom temperatur och bromskomponentemas slitage och ålder. För att minska osäkerheten kan ett rullbromstest genomföras och därigenom erhålla följande ekvation för påförd bromsvridmoment per enhet bromstryck. _ FbT Tb _ (rv-ps) (323) Retarderkraft.
Retardern är ett system avsett att bromsa fordonet genom att påföra en kraft som är motsatt dragkraften. Den kan enkelt beskrivas som att genom att påverka drivlinan bromsas fordonet. Retarderkraften kan beräknas på ett liknande sätt som dragkraften med användning av följande ekvation: (324) 10 15 20 25 30 13 Även luftmotståndet för fordonet måste estimeras och då har följande generella uttryck för luftmotståndet använts: F = špcd/iifl (325) Där p är luftens densitet, Cd år luftmotståndskoefficienten, A är fordonets frontarea.
Följande exemplifierade värden har använts: Cd=0,73, p = 1,225 (kg/m3) och kraften på släpfordonet har antagits vara lika stor som kraften på dragfordonet, dvs. F a 1 = F az vilket leder till att följande kraft Fa föreligger på det femte hjulet: Fa :Fal -Fag (326) De återstående bidragen från luftmotståndet hanteras med följande ekvation som baseras på vridmomentjämvikten i figur 10 vid punktema A och B: h. +h Nza ï 1 3 xl-xg; F 612 x3x5 Far _ (hz "l" h4) (327) Vägens lutning Vägens lutning kan uppskattas på olika sätt. Enligt ett sätt utnyttjas en kartdatabas som uppdaterats med data om vägens lutning. Ett annat sätt är att utnyttja utsignalen från en accelerometer i kombination med geometriska samband. Ett ytterligare sätt är att använda en GPS-enhet som ger information om vägens lutning.
Acceleration Accelerationen kan bestämmas exempelvis genom derivering av hjulhastigheten, genom användning av en accelerometer eller med en GPS-enhet. 10 15 20 25 30 14 Derivering (differentiering) av hjulhastighetssignalen är ett praktiskt sätt att bestämma accelerationen, men fungerar inte så bra vid bromsning då hjulet glider. Följande ekvationer är exempel på hur accelerationen kan beräknas: a,- = "fff-l (328) al. = (329) Där: ai: accelerationen vid tidpunkten i (m/sz). vi: hasigheten vid tidpunkten i (m/s). h: ti-ti_1, dvs. skillnaden mellan närliggande tidpunkter t är konstant.
Höjden för vändskivan.
Den vertikala positionen för vändskivan är en variabel som beror både på avståndet mellan axeln och ramen och hjulradien.
Ayz = Ayf + AH + r (330) Där AH är avståndet mellan axeln och ramen. Ayf är avståndet mellan ramen och kopplingspunkten för vändskivan.
Förändringen av yg som är relaterad till däckstrycket och lasten antas vara försumbar vid lastöverföring och det antas att variationen av hjulradien är minimal. Avståndet mellan ramen och kopplingspunkten antas vara konstant. Med dessa antaganden kan ekvation (330) lösas och ett värde på y2 kan estimeras.
Fullständig modell Sambandet mellan axellasten på dragfordonets bakaxel och accelerationen innehåller information om tyngdpunktshöjden vilket framgått från beskrivningen ovan. 10 15 20 25 30 15 Ekvation (3. 18) tillsammans med ekvation (3.l1) i vilken ekvation (3. 10) insätts reduceras till ekvation (3.31).
I ekvation (3.18) bestämdes Ng, dvs. axelkraften för dragfordonets bakaxel. Ekvation (3.11) används för att bestämma kraften P3 som påverkar vändskivan och ekvation (3.10) är jämviktsekvationen för vridmomentet i vilken den sökta storheten y3 ingår.
Det bestämda sambandet, ekvation (3.31), gäller vid acceleration och endast bromsning av dragfordonet, eller användning av retardern efter att minskat axellasten med kraften från luftmotståndet eftersom dessa krafter annars skulle gett upphov till ett icke-linjärt samband om de inte innan subtraherades från ekvation (3. 18), dvs. kraften N23 från ekvation (3.27) subtraheras från N; i ekvation (3. 18) före insättningen. xi )*i<;§-f>*y1+y2-]*-1 m: xs yg = yz + om) I formeln betecknar j lutningen för en kurva som fås genom linjär regression av ett antal samhörande punkter för belastningen på dragfordonets bakaxel som en funktion av accelerationen. Övriga parametrar som ingår finns tillgängliga för en beräkningsenhet i arrangemanget enligt uppfinningen på sätt som beskrivits ovan.
Ju större skillnad mellan olika accelerationsvärden, desto säkrare kan tyngdpunktshöj den bestämmas. För att ett accelerationsvärde skall accepteras för beräkning måste accelerationen vara konstant under minst en förutbestämd tid, exempelvis i storleksordningen ett par sekunder.
Ett stort antal samhörande värden används för att åstadkomma tillförlitliga resultat, dvs. så att lutningen j av kurvan kan bestämmas med så stor säkerhet som möjligt.
Dessa beräkningar sker kontinuerligt under fordonets drift. 10 15 20 25 30 16 Vid användning av estimeringen enligt ekvation (3.3 1) kan ett anta] olika situationer uppstå.
Vid acceleration drar dragfordonet släpfordonet med den longitudinella kraften Fg via vändskivan. Denna kraft blir större för högre värden på den longitudinella accelerationen och åstadkommer en större viktöverföring från dragfordonets framaxel till bakaxel. Vidare blir den vertikala kraften på vändskivan mindre ju högre HCG eftersom mer last överförs bakåt till släpfordonets axlar. Således, ju högre HCG desto mindre blir belastningen på dragfordonets bakaxel jämfört med om HCG var lägre.
I situationen då varje del bromsar sig själv, dvs. dragfordonet respektive släpfordonet bromsar sig själv innebär det att den longitudinella kraften på vändskivan förblir oförändrad och därför ändras endast de vertikala kraftema vilket adderar vikt till dragfordonets bakaxel med minskande longitudinell acceleration. Den ökade vikten blir högre med ökande HCG.
Vid t.ex. retarderbromsning bromsar dragfordonet sig självt och släpfordonet. Detta ökar den longitudinella kraften på vändskivan med minskande longitudinell acceleration. Detta medför att den överförda vikten från släpfordonets axlar till vändskivan blir mindre än i andra situationer med liknande värden på accelerationen. Samma longitudinella kraft vid vändskivan kommer att påverka dragfordonets viktöverföring på ett sådant sätt att ännu mer vikt än i andra situationer överförs från dragfordonets bakaxel till dragfordonets framaxel. Detta för med sig att vikten på dragfordonets bakaxel blir mindre.
Dessutom blir denna vikt mindre med minskande HCG eftersom ju lägre HCG är desto mindre vikt överförs från släpfordonets axlar till vändskivan vilket i sin tur betyder att mindre vikt överförs till dragfordonets bakaxel.
I situationen då släpfordonet bromsar dragfordonet betyder det att den longitudinella kraften på vändskivan drar dragfordonet vilket adderar vikt från dragfordonets framaxel till bakaxel vilket medför ökande vikt på dragfordonets bakaxel. Dessutom, ju högre HCG är desto mer vikt överförs från släpfordonets axlar till vändskivan och slutligen till dragfordonets bakaxel. 10 15 20 25 30 17 Det finns lufttryckssensorer på luftfj ärdingens luftbälgar som skickar information om lufttrycket i luftbälgen, det finns dessutom ett system redan idag för skattning av axellasten utifrån lufttrycket i luftbälgen.
Lösningen enligt föreliggande uppfinning skiljer sig beroende på vad det är för typ av hjulupphängning på fordonet.
I figurerna 8 och 9 visas, som tidigare diskuterats, två exempel på hjulupphängningstyper.
För den första typen, visad i figur 8, måste man dra bort drivkrafter, bromskrafter och retarderkrafter från den axellast som man får från luftbälgen eftersom hjulupphängningens geometri påverkar luftbälgen som man i sin tur mäter axellasten ifrån. Den andra typen, visad i figur 9, berörs inte av detta.
Dessutom måste luftmotståndet dras bort på samma sätt.
Föreliggande uppfinning avser således en metod i samband med ett arrangemang för ett fordon som innefattar ett släpfordon kopplat till ett dragfordon. Metoden avser estimering av tyngdpunktshöj den HCG för släpfordonet. Flödesschemat i figur 1 illustrerar schematiskt metoden.
Dragfordonet innefattar en främre hjulaxel och en bakre hjulaxel, varvid åtminstone den bakre hjulaxeln är fjädrande upphängd med ett hjulaxelfj ädringssystem. Släpfordonet innefattar åtminstone en hjulaxel och är kopplat till dragfordonet via en vändskiva (se exempelvis figur 10). Arrangemanget innefattar en beräkningsenhet 2 (se figur 2) anpassad att mottaga värden relaterade till accelerationen ai i fordonets longitudinella riktning och till axellasten Ng avseende den bakre hjulaxeln för dragfordonet.
Metoden innefattar stegen att - bestämma samhörande värden för axellasten Ng för dragfordonets bakaxel och accelerationen ai för fordonet, för ett antal olika värden för accelerationen, - bestämma en parameter j relaterad till ett samband mellan nämnda bestämda samhörande värden för axellasten Ng och accelerationen ai, - estimera tyngdpunktshöjden HCG för släpfordonet genom beräkningar utförda i enlighet med en förutbestämd algoritm (ekvation 3.31) där nämnda parameter j, acceleration ai, och axellasten Ng ingår. 10 15 20 25 30 18 Axellasten bestäms företrädesvis baserat på utsignaler från hjulaxelfjädringssystemet för den bakre hjulaxeln för dragfordonet. Enligt en utföringsform är nämnda hjulaxelfj ädringssystem en luftfj ädring.
Parametem j utgörs av riktningen för en linje beräknad, av beräkningsenheten 2, genom linjär regression för nämnda samhörande värden för Ng och ai.
För att beräkningama skall vara tillförlitliga måste accelerationen ai vara väsentligen konstant under minst en förutbestämd tid för att värdet skall ingå i beräkningarna av j.
Denna förutbestämda tid då accelerationen skall vara väsentligen konstant är exempelvis i storleksordningen 5 sekunder. Under den tiden tillåts accelerationen endast att variera som mest exempelvis +/-10 %.
Insamlingen av samhörande värden för N; och ai pågår företrädesvis kontinuerligt och ju fler värden som insamlats desto säkrare kan j bestämmas, exempelvis krävs åtminstone tio samhörande värden för att beräkna j.
Enligt en utföringsform pågår estimeringen av tyngdpunktshöjden HCG, dvs. yg, kontinuerligt.
Den kan exempelvis initieras då sensorerna som utnyttjas för att bestämma axellasten indikerar att fordonet lastats eller lossas, vilket medför en förändring av tyngdpunktshöjden.
Den förutbestämda algoritmen utgörs således av följ ande ekvation (331): j * xi x5 > md _x3 *l(mt)*}/1+Y2 m Y3=Y2+ t Uppfinningen innefattar även ett arrangemang för att implementera metoden.
Arrangemanget innefattar en beräkningsenhet 2 som schematiskt visas i figur 2. lnsignalerna utgörs av axellasten Ng för dragfordonets bakaxel och accelerationen ai.
Vidare utnyttjar beräkningsenheten redan kända parametrar vilka indikeras i figuren med en blockpil. Dessa kända parametrar innefattar exempelvis de fordonsrelaterade måtten xi, xi och x5 (se figurerna 4 och 5) samt dragfordonets vikt md. 19 För övrigt hänvisas bland annat till genomgången ovan av metoden där även arrangemanget beskrivs.
Föreliggande uppfinning är inte begränsad till ovan-beskrivna föredragna utföringsformer.
Olika alternativ, modifieringar och ekvivalenter kan användas. Utföringsformema ovan skall därför inte betraktas som begränsande uppfinningens skyddsomfång vilket definieras av de bifogade patentkraven.

Claims (15)

10 15 20 25 30 20 Patentkrav
1. En metod i samband med ett arrangemang för ett fordon, innefattande ett släpfordon kopplat till ett dragfordon, för estimering av tyngdpunktshöjden HCG för släpfordonet, där dragfordonet innefattar en främre hjulaxel och en bakre hjulaxel, varvid åtminstone den bakre hjulaxeln är fjädrande upphängd med ett hjulaxelfjädringssystem och släpfordonet innefattar åtminstone en hjulaxel och är kopplat till dragfordonet via en vändskiva, och varvid arrangemanget innefattar en beräkningsenhet anpassad att mottaga värden relaterade till accelerationen ai i fordonets longitudinella riktning och till axellasten Ng avseende den bakre hjulaxeln för dragfordonet, k ä n n e t e c k n a d a v att metoden innefattar stegen att - bestämma samhörande värden för axellasten Ng för dragfordonets bakaxel och accelerationen ai för fordonet, för ett antal olika värden för accelerationen, - bestämma en parameter j relaterad till ett samband mellan nämnda bestämda samhörande värden för axellasten Ng och accelerationen ai, - estimera tyngdpunktshöjden HCG för släpfordonet genom beräkningar utförda i enlighet med en förutbestämd algoritm där nämnda parameter j ingår.
2. Metoden enligt krav 1, varvid axellasten Ng bestäms baserat på utsignaler från hjulaxelfj ädringssystemet för den bakre hjulaxeln för dragfordonet.
3. Metoden enligt krav 1 eller 2, varvid nämnda hjulaxelfj ädringssystem är en luftfj ädring.
4. Metoden enligt något av kraven 1-3, varvid nämnda parameter j utgörs av riktningen för en linje beräknad genom linjär regression för nämnda samhörande värden för Ng och ai.
5. Metoden enligt något av kraven 1-4, varvid accelerationen ai måste vara väsentligen konstant under minst en förutbestämd tid för att värdet skall ingå i beräkningama av j.
6. Metoden enligt något av kraven 1-5, varvid antalet samhörande värden för 10 15 20 25 30 21 Ng och ai som krävs för att beräkna j måste överstiga 10.
7. Metoden enligt något av kraven 1-6, varvid estimeringen av tyngdpunktshöjden HCG pågår kontinuerligt.
8. Metoden enligt något av kraven 1-7, varvid nämnda förutbestämda algoritm utgörs av följande ekvation (331): X5 ma J * X1 = + _ + - Ya Yz (X1 _ x3)*[(mt)*}/1 V2 mt l
9. Ett arrangemang för ett fordon, innefattande ett släpfordon kopplat till ett dragfordon, där arrangemanget är anpassat att estimera tyngdpunktshöjden HCG för släpfordonet, och där dragfordonet innefattar en främre hjulaxel och en bakre hjulaxel, varvid åtminstone den bakre hjulaxeln är fjädrande upphängd med ett hjulaxelfj ädringssystem och släpfordonet innefattar åtminstone en hjulaxel och är kopplat till dragfordonet via en vändskiva, och varvid arrangemanget innefattar en beräkningsenhet (2) anpassad att mottaga värden relaterade till accelerationen ai i fordonets longitudinella riktning och till axellasten Ng avseende den bakre hjulaxeln för dragfordonet, k ä n n e t e c k n a d a v att beräkningsenheten (2) är anpassad att - bestämma samhörande värden för axellasten Ng för dragfordonets bakaxel och accelerationen ai för fordonet, för ett antal olika värden för accelerationen, - bestämma en parameterj relaterad till ett samband mellan nämnda bestämda samhörande värden för axellasten Ng och accelerationen ai, - estimera tyngdpunktshöjden HCG för släpfordonet genom beräkningar utförda i enlighet med en förutbestämd algoritm där nämnda parameter j ingår.
10. Arrangemanget enligt krav 9, varvid axellasten bestäms baserat på utsignaler från hjulaxelfj ädringssystemet för den bakre hjulaxeln för dragfordonet.
11. Arrangemanget enligt krav 9 eller 10, varvid nämnda 10 15 22 hjulaxelfj ädringssystem är en luftfjädring.
12. Arrangemanget enligt något av kraven 9-ll, varvid nämnda parameter j utgörs av riktningen för en linje beräknad genom linjär regression för nämnda samhörande värden för Ng och ai.
13. Arrangemanget enligt något av kraven 9-12, varvid accelerationen ai måste vara väsentligen konstant under minst en förutbestämd tid för att värdet skall ingå i beräkningarna av j.
14. Arrangemanget enligt något av kraven 9-13, varvid antalet samhörande värden för Ng och ai som krävs för att beräkna j måste överstiga 10.
15. Arrangemanget enligt något av kraven 8- 14, varvid estimeringen av tyngdpunktshöjden HCG pågår kontinuerligt.
SE1250609A 2012-03-22 2012-06-12 Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon SE536560C2 (sv)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1250609A SE536560C2 (sv) 2012-03-22 2012-06-12 Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon
EP13765165.9A EP2828633A4 (en) 2012-03-22 2013-03-15 METHOD AND ARRANGEMENT FOR ESTIMATING THE HEIGHT OF THE CENTER OF GRAVITY FOR A TRAILER
PCT/SE2013/050266 WO2013141787A1 (en) 2012-03-22 2013-03-15 Method and arrangement for estimating height of center of gravity for a trailer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1200184 2012-03-22
SE1250609A SE536560C2 (sv) 2012-03-22 2012-06-12 Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon

Publications (2)

Publication Number Publication Date
SE1250609A1 true SE1250609A1 (sv) 2013-09-23
SE536560C2 SE536560C2 (sv) 2014-02-18

Family

ID=49223087

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1250609A SE536560C2 (sv) 2012-03-22 2012-06-12 Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon

Country Status (3)

Country Link
EP (1) EP2828633A4 (sv)
SE (1) SE536560C2 (sv)
WO (1) WO2013141787A1 (sv)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064529A1 (en) * 2015-10-16 2017-04-20 Volvo Truck Corporation Method of determining the height of the gravity center of a vehicle
CN106679782A (zh) * 2017-03-02 2017-05-17 南京理工大学 基于悬架压缩量的车辆重量测定方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10053605B4 (de) * 2000-10-28 2012-08-23 Robert Bosch Gmbh System und Verfahren zum Ermitteln der Schwerpunktshöhe eines Fahrzeugs
SE525248C2 (sv) * 2003-02-18 2005-01-11 Scania Cv Ab Arrangemang och förfarande för att uppskatta tyngdpunktshöjden hos ett fordon
JP4230961B2 (ja) * 2004-06-04 2009-02-25 富士重工業株式会社 推定装置およびそれを用いた車両運動制御装置
DE102004060809A1 (de) * 2004-12-17 2006-06-29 Daimlerchrysler Ag Verfahren und Vorrichtung zur Bestimmung massebezogener Größen eines Fahrzeugs

Also Published As

Publication number Publication date
EP2828633A4 (en) 2015-08-12
WO2013141787A1 (en) 2013-09-26
EP2828633A1 (en) 2015-01-28
SE536560C2 (sv) 2014-02-18

Similar Documents

Publication Publication Date Title
EP3204275B1 (en) System and method for determining whether a trailer is attached to a vehicle
JP3008111B2 (ja) 自動車の重量を求める装置
US8150613B2 (en) Technique for detecting shifted cargo
CN103608229B (zh) 用于调节车辆行驶动态的装置和方法及带这种装置的车辆
FI120061B (sv) Förfarande för insamling av information om halheten om vägs yta
US11505015B2 (en) Determining a tire pressure status in a vehicle
DE102008026370A1 (de) GPS-unterstützte Fahrzeug-Längsgeschwindigkeitsbesimmung
EP3309024A1 (en) Method and system for determining friction between the ground and a tire of a vehicle
SE537429C2 (sv) Samtidig skattning av åtminstone massa och rullmotstånd förett fordon
US11987119B2 (en) Device, method, and program for tire failure detection, and computer-readable recording medium recording tire failure detection program
KR20140064986A (ko) 차량 바퀴의 구름저항을 추정하는 방법
Kidambi et al. Accuracy and robustness of parallel vehicle mass and road grade estimation
CN112224213B (zh) 一种实时监测车轮摩擦力及估计最大摩擦力的方法
US10836386B2 (en) Determination of roll angle and bank angle with suspension displacement data
SE1250609A1 (sv) Metod och arrangemang för estimering av tyngdpunktshöjd förett släpfordon
DE102014018717A1 (de) Verfahren zum Ermitteln eines Schwerpunktes eines Fahrzeuges und Fahrzeug-Regelsystem
US6819979B1 (en) Method and device for determining a vertical acceleration of a wheel of a vehicle
US7702433B2 (en) Method and device for the computer-assisted calculation of the axle loads of a vehicle
Skrúcaný et al. Influence of the braking system that is contrary to legislation on breaking characteristics of passenger car
CN109641592A (zh) 共振预测和减轻
KR102702291B1 (ko) 실시간 윤하중을 이용한 화물차 전복 위험도 추정 시스템 및 그 방법
KR20220105597A (ko) 차량 컴비네이션을 위한 다이내믹스-기반 연결 각 추산기
US20080208442A1 (en) Method for Increasing the Driving Stability of a Vehicle
Lampe et al. Model-Based Maximum Friction Coefficient Estimation for Road Surfaces with Gradient or Cross-Slope
Barazanji Model Based Estimation of Height of Center of Gravity in Heavy Vehicles.