RU98120512A - REFORMING INSTALLATION FOR CONVERSION OF REAGENT IN REACTION PRODUCTS (OPTIONS) AND METHOD FOR IMPLEMENTING REFORMING - Google Patents

REFORMING INSTALLATION FOR CONVERSION OF REAGENT IN REACTION PRODUCTS (OPTIONS) AND METHOD FOR IMPLEMENTING REFORMING

Info

Publication number
RU98120512A
RU98120512A RU98120512/09A RU98120512A RU98120512A RU 98120512 A RU98120512 A RU 98120512A RU 98120512/09 A RU98120512/09 A RU 98120512/09A RU 98120512 A RU98120512 A RU 98120512A RU 98120512 A RU98120512 A RU 98120512A
Authority
RU
Russia
Prior art keywords
reforming
reagent
heat
installation
conducting
Prior art date
Application number
RU98120512/09A
Other languages
Russian (ru)
Other versions
RU2175799C2 (en
Inventor
Итан Д. Хоуг
Майкл С. Хсу
Original Assignee
Зтек Копэрейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/631,432 external-priority patent/US5858314A/en
Application filed by Зтек Копэрейшн filed Critical Зтек Копэрейшн
Publication of RU98120512A publication Critical patent/RU98120512A/en
Application granted granted Critical
Publication of RU2175799C2 publication Critical patent/RU2175799C2/en

Links

Claims (36)

1. Установка реформинга пластинчатого типа для преобразования реагента в продукты реакции в процессе работы, отличающаяся тем, что она выполнена в виде пакетной структуры, образованной чередующимися друг с другом каталитическим пластинами, на которые нанесен, по меньшей мере, один каталитический материал для ускорения реформинга, и теплопроводными пластинами передачи тепловой энергии в плоскости пластин за счет их теплопроводности для поддержания процесса реформинга, выполненными из теплопроводного материала.1. The installation of the reforming plate type for converting the reagent into reaction products during operation, characterized in that it is made in the form of a batch structure formed by alternating with each other catalytic plates on which at least one catalytic material is applied to accelerate the reforming, and heat-conducting plates transferring thermal energy in the plane of the plates due to their heat conductivity to support the reforming process, made of heat-conducting material. 2. Установка реформинга по п. 1, отличающаяся тем, что она предназначена для осуществления процесса реформинга, включающего, по меньшей мере, одну реакцию реформинга, состоящую из химической реакции, осуществляемой с помощью катализатора, между, по меньшей мере, двумя продуктами реакции, и термической диссоциации одного продукта, осуществляемой посредством катализатора. 2. The reforming unit according to claim 1, characterized in that it is intended to carry out a reforming process, comprising at least one reforming reaction, consisting of a chemical reaction carried out using a catalyst, between at least two reaction products, and thermal dissociation of a single product by means of a catalyst. 3. Установка реформинга по пп. 1 и 2, отличающаяся тем, что, пакетная структура реформинга имеет, по крайней мере, один осевой коллектор для ввода реагента в структуру и, по крайней мере, один коллектор для вывода продуктов реакции из пакетной структуры реформинга. 3. Installation of reforming in paragraphs. 1 and 2, characterized in that the batch reforming structure has at least one axial collector for introducing the reagent into the structure and at least one collector for withdrawing reaction products from the batch reforming structure. 4. Установка реформинга по пп. 1 - 3, отличающаяся тем, что пакетная структура реформинга имеет открытую периферийную поверхность для обмена тепловой энергией с внешней средой. 4. Installation of reforming in paragraphs. 1 to 3, characterized in that the batch structure of the reforming has an open peripheral surface for the exchange of thermal energy with the environment. 5. Установка реформинга по п. 1, отличающаяся тем, что пакетная структура реформинга имеет, по крайней мере, один осевой коллектор реагента для ввода реагента внутрь и периферийное выводное устройство для вывода продуктов реакции из периферийной части пакетной структуры реформинга. 5. The reforming installation according to claim 1, characterized in that the batch reforming structure has at least one axial reagent manifold for introducing the reagent inward and a peripheral output device for withdrawing reaction products from the peripheral part of the batch reforming structure. 6. Установка реформинга по пп. 1 - 5, отличающаяся тем, что она снабжена теплопроводным герметичным кожухом, окружающим пакетную структуру реформинга, и имеет периферийный осевой коллектор, проходящий между внутренней поверхностью кожуха и наружной поверхностью пакетной структуры, а теплопроводный герметичный кожух содержит средства обмена тепловой энергией с внешней средой или с пакетной структурой реформинга и с теплопроводной пластиной путем излучения, проводимости или конвекции, и средства для ввода продуктов реакции в периферийный осевой коллектор для улавливания продуктов реакции герметичным кожухом. 6. Installation of reforming in paragraphs. 1 to 5, characterized in that it is equipped with a heat-conducting hermetic casing surrounding the batch structure of the reforming, and has a peripheral axial collector passing between the inner surface of the casing and the outer surface of the batch structure, and the heat-conducting sealed casing contains means for exchanging thermal energy with the environment or with a batch reforming structure and with a heat-conducting plate by radiation, conductivity or convection, and means for introducing reaction products into the peripheral axial collector to capture reaction products with a sealed casing. 7. Установка реформинга по п. 6, отличающаяся тем, что она снабжена герметичным кожухом цилиндрической формы, обеспечивающим работу установки реформинга под давлением. 7. The reforming installation according to claim 6, characterized in that it is equipped with a sealed cylindrical casing that ensures the operation of the reforming installation under pressure. 8. Установка реформинга по пп. 1 - 7, отличающаяся тем, что теплопроводная пластина содержит средства для обеспечения изотермического режима в плоскости теплопроводной пластины. 8. Installation of reforming in paragraphs. 1 to 7, characterized in that the heat-conducting plate contains means for providing an isothermal mode in the plane of the heat-conducting plate. 9. Установка реформинга по пп. 1 - 8, отличающаяся тем, что пакетная структура реформинга содержит, по крайней мере, один осевой коллектор реагента для ввода реагента в пакетную структуру реформинга, а теплопроводные пластины имеют выступающие части, выполненные с пластинами как одно целое, которые входят в осевой коллектор реагентов для предварительного нагрева вводимого реагента. 9. Installation of reforming in paragraphs. 1 to 8, characterized in that the batch structure of the reforming contains at least one axial collector of the reagent for introducing the reagent into the batch structure of the reforming, and the heat-conducting plates have protruding parts made with the plates as a whole, which are included in the axial collector of the reagents for preheating the introduced reagent. 10. Установка реформинга по пп. 1 - 9, отличающаяся тем, что на плоских поверхностях теплопроводной или каталитической пластин выполнены каналы, для пропуска реагента по поверхности пластины, поддерживающие постоянное падение давления, обеспечивающее однородность потока реагентов вдоль оси пакетной структуры реформинга, которое существенно выше, чем падение давления потока реагента внутри осевого коллектора. 10. Installation of reforming in paragraphs. 1 - 9, characterized in that on the flat surfaces of the heat-conducting or catalytic plates channels are made to pass the reagent along the surface of the plate, maintaining a constant pressure drop, ensuring a uniform flow of reagents along the axis of the batch structure of the reforming, which is significantly higher than the pressure drop of the reagent flow inside axial collector. 11. Установка реформинга по пп. 1 - 10, отличающаяся тем, что каталитическая или теплопроводная пластина выполнена из пористого каталитического материала, из которого сформированы каналы для прохождения входного реагента сквозь, по крайней мере, часть пластины. 11. Installation of reforming in paragraphs. 1 to 10, characterized in that the catalytic or heat-conducting plate is made of porous catalytic material, from which channels are formed for the passage of the input reagent through at least part of the plate. 12. Установка реформинга по пп. 1 - 11, отличающаяся тем, что теплопроводная пластина выполнена из, по крайней мере, одного неметаллического материала, например, из карбида кремния, или из композитного материала, или из металла, например, алюминия, меди, железа, стальных сплавов, никеля, сплавов никеля, хрома, сплавов хрома, платины и сплавов платины, а каталитическая пластина выполнена из керамической опорной пластины, на которую нанесено покрытие из каталитического материала, платины, никеля, оксида никеля, хрома или оксида хрома. 12. Installation of reforming in paragraphs. 1 to 11, characterized in that the heat-conducting plate is made of at least one non-metallic material, for example, silicon carbide, or of a composite material, or of metal, for example, aluminum, copper, iron, steel alloys, nickel, alloys nickel, chromium, chromium alloys, platinum and platinum alloys, and the catalytic plate is made of a ceramic base plate, which is coated with a catalytic material, platinum, nickel, nickel oxide, chromium or chromium oxide. 13. Установка реформинга по пп. 1 - 12, отличающаяся тем, что каталитический материал выбран из группы материалов, содержащей платину, палладий, никель, оксид никеля, железо, оксид железа, хром, оксид хрома, кобальт, оксид кобальта, медь, оксид меди, цинк, оксид цинка, молибден, оксид молибдена и другие пригодные переходные металлы и их оксиды. 13. Installation of reforming in paragraphs. 1 to 12, characterized in that the catalytic material is selected from the group of materials containing platinum, palladium, nickel, nickel oxide, iron, iron oxide, chromium, chromium oxide, cobalt, cobalt oxide, copper, copper oxide, zinc, zinc oxide, molybdenum, molybdenum oxide and other suitable transition metals and their oxides. 14. Установка реформинга по пп. 1 - 13, отличающаяся тем, что в качестве реагента используется углеводородный продукт, O2, H2O, CO2, алкан, гидроксил, углеводород, связанный с карбоксилом, углеводород, связанный с карбонилом, олефиновый углеводород, углеводород, связанный с эфиром, углеводород, связанный со сложным эфиром, углеводород, связанный с амином, углеводород, связанный с ароматическим производным, и углеводород, связанный с другим органическим производным.14. Installation of reforming in paragraphs. 1 to 13, characterized in that the reagent is a hydrocarbon product, O 2 , H 2 O, CO 2 , alkane, hydroxyl, hydrocarbon bonded to carboxyl, hydrocarbon bonded to carbonyl, olefinic hydrocarbon, hydrocarbon bonded to ether, a hydrocarbon bound to an ester, a hydrocarbon bound to an amine, a hydrocarbon bound to an aromatic derivative, and a hydrocarbon bound to another organic derivative. 15. Установка реформинга по пп. 1 - 14, отличающаяся тем, что она снабжена средствами подвода продуктов, получаемых в установке реформинга, к внешнему топливному элементу. 15. Installation of reforming in paragraphs. 1 to 14, characterized in that it is equipped with means for supplying products obtained in the reformer to an external fuel cell. 16. Установка реформинга по п. 14 отличающаяся тем, что в ней углеводородное топливо и, по крайней мере, одно из веществ, H2O и CO2, подвергаются эндотермическому каталитическому реформингу с использованием энергии внешнего топливного элемента, передаваемой теплопроводной пластиной за счет теплопроводности в плоскости пластины, и образованием в результате реформинга H2, CO, H2O и CO2.16. The reforming installation according to claim 14, characterized in that the hydrocarbon fuel and at least one of the substances H 2 O and CO 2 are subjected to endothermic catalytic reforming using the energy of an external fuel cell transmitted by a heat-conducting plate due to heat conduction in the plane of the plate, and the formation of reforming H 2 , CO, H 2 O and CO 2 . 17. Установка реформинга по п. 16, отличающаяся тем, что в ней углеводородное топливо и O2 подвергаются каталитическому сжиганию и реформингу, в результате чего образуются H2, CO, H2O и CO2, причем энергия, по крайней мере, от одной экзотермической реакции горения или реформинга внешнего топливного элемента, используемая для осуществления эндотермического реформинга, передается теплопроводной пластиной за счет термической проводимости в плоскости пластины, и в которой CO и H2O подвергаются каталитической реакции преобразования диоксидов для получения CO2 и H2.17. The reforming installation according to claim 16, characterized in that in it the hydrocarbon fuel and O 2 are subjected to catalytic combustion and reforming, as a result of which H 2 , CO, H 2 O and CO 2 are formed , the energy being at least from one exothermic reaction of combustion or reforming of an external fuel cell used to carry out endothermic reforming is transferred by a heat-conducting plate due to thermal conductivity in the plane of the plate, and in which CO and H 2 O undergo a catalytic reaction of the conversion of dioxides for receiving CO 2 and H 2 . 18. Установка реформинга по пп. 1 - 17, отличающаяся тем, что пакетная структура реформинга имеет цилиндрическую форму и, по крайней мере, каталитическая или теплопроводная пластина имеет диаметр 2,54 - 51 см и толщину 0,05 - 5,1 мм. 18. Installation of reforming in paragraphs. 1 to 17, characterized in that the batch structure of the reforming has a cylindrical shape and at least the catalytic or heat-conducting plate has a diameter of 2.54 - 51 cm and a thickness of 0.05 - 5.1 mm 19. Установка реформинга для преобразования реагента в продукты реакции в процессе ее работы, отличающаяся тем, что она содержит пластины из пористого теплопроводного материала с вкраплениями по всей толщине пластины, по меньшей мере, одного каталитического материала ускорения процесса реформинга, передачи тепловой энергии для поддержания процесса реформинга в плоскости пластин путем проводимости, расположенные сложенными в пакет формирования структуры реформинга. 19. Reforming unit for converting a reagent into reaction products during its operation, characterized in that it contains plates of porous heat-conducting material interspersed throughout the plate thickness of at least one catalytic material to accelerate the reforming process, transfer heat energy to support the process reforming in the plane of the plates by conduction, located folded into a packet forming a reforming structure. 20. Установка реформинга по п. 19, отличающаяся тем, что в структуре реформинга имеется, по крайней мере, один осевой коллектор для ввода реагента в структуру и, по крайней мере, один коллектор для вывода продуктов реакции из структуры реформинга и, возможно, периферийное выводное устройство для вывода продуктов реакции из периферийной части структуры реформинга. 20. The reforming installation according to claim 19, characterized in that the reforming structure has at least one axial collector for introducing the reagent into the structure and at least one collector for withdrawing reaction products from the reforming structure and, possibly, peripheral output device for outputting reaction products from the peripheral part of the reforming structure. 21. Установка реформинга по пп. 19 и 20, отличающаяся тем, что она снабжена теплопроводным герметичным кожухом для работы установки реформинга под давлением, окружающим пакетную структуру реформинга, и имеет периферийный осевой коллектор, расположенный проходящим между внутренней поверхностью кожуха п наружной поверхностью пакетной структуры для обмена тепловой энергией с внешней средой или со структурой реформинга путем излучения, проводимости или конвекции, и, возможно, средства для ввода продуктов реакции в периферийный осевой коллектор, для улавливания продуктов реакции герметичным кожухом. 21. Installation of reforming in paragraphs. 19 and 20, characterized in that it is provided with a heat-conducting hermetic casing for the operation of the pressure reforming apparatus surrounding the batch reforming structure, and has a peripheral axial collector located between the inner surface of the casing and the outer surface of the batch structure for exchanging thermal energy with the external environment or with a reforming structure by radiation, conductivity or convection, and possibly a means for introducing reaction products into the peripheral axial collector, to capture products reaction sealed casing. 22. Установка реформинга по пп. 19 - 21, отличающаяся тем, что структура реформинга содержит средства для обеспечения изотермического режима в структуре реформинга. 22. Installation of reforming in paragraphs. 19 to 21, characterized in that the reforming structure comprises means for providing an isothermal regime in the reforming structure. 23. Установка реформинга по п. 19, отличающаяся тем, что структура реформинга содержит, по крайней мере, один осевой коллектор для ввода реагента в структуру реформинга, и имеет выступающие части, выполненные со структурой как одно целое, и входящие в осевой коллектор реагента для предварительного нагрева реагента. 23. The reforming installation according to claim 19, characterized in that the reforming structure contains at least one axial collector for introducing the reagent into the reforming structure, and has protruding parts made with the structure as a whole, and included in the axial collector of the reagent for reagent preheating. 24. Установка реформинга по п. 19, отличающаяся тем, что она имеет осевой коллектор, расположенный в структуре реформинга, каналы прохождения реагента в поперечной плоскости структуры реформинга и поддержания практически постоянного падения давления, обеспечивающего однородность потока реагентов вдоль оси структуры реформинга, причем падение давления в потоке реагентов, проходящего по каналам, существенно выше, чем падение давления в потоке реагентов внутри осевого коллектора. 24. The reforming installation according to claim 19, characterized in that it has an axial manifold located in the reforming structure, reagent passage channels in the transverse plane of the reforming structure and maintaining an almost constant pressure drop, ensuring a uniform flow of reagents along the axis of the reforming structure, and the pressure drop in the reagent stream passing through the channels is significantly higher than the pressure drop in the reagent stream inside the axial collector. 25. Установка реформинга по пп. 19 - 24, отличающаяся тем, что в качестве теплопроводного материала используется неметаллический материал, например, карбид кремния, композитный материал, или металл, например, алюминий, медь, железо, стальные сплавы, никель, сплавы никеля, хром, сплавы хрома, платина или сплавы платины, а каталитическим материалом является платина, палладий, никель, оксид никеля, железо, оксид железа, хром, оксид хрома, кобальт, оксид кобальта, медь, оксид меди, цинк, оксид цинка, молибден, оксид молибдена и другие пригодные переходные металлы и их оксиды. 25. Installation of reforming in paragraphs. 19 to 24, characterized in that the non-metallic material, for example, silicon carbide, a composite material, or a metal, for example, aluminum, copper, iron, steel alloys, nickel, nickel alloys, chromium, chromium alloys, platinum or platinum alloys, and the catalytic material is platinum, palladium, nickel, nickel oxide, iron, iron oxide, chromium, chromium oxide, cobalt, cobalt oxide, copper, copper oxide, zinc, zinc oxide, molybdenum, molybdenum oxide and other suitable transition metals and their oxides. 26. Установка реформинга по пп. 19 - 25, отличающаяся тем, что в ней реагент содержит углеводородный продукт, O2, H2O, CO2 или углеводородное топливо, H2O и CO2 подвергаются эндотермическому каталитическому реформингу, в результате чего образуются H2, СО, H2O и CO2, а энергия, выделяемая внешним топливным элементом, используется для обеспечения эндотермической реакции реформинга путем передачи ее теплопроводным материалом, и что, возможно, реагент содержит углеводородное топливо и O2, которые подвергаются каталитическому сжиганию и реформингу, в результате чего образуются H2, СО, H2O и CO2, причем энергия, по крайней мере, от одной экзотермической реакции горения или реформинга внешнего топливного элемента используется для обеспечения реакции эндотермического реформинга путем передачи ее теплопроводным материалом.26. Installation of reforming in paragraphs. 19 - 25, characterized in that the reagent contains a hydrocarbon product, O 2 , H 2 O, CO 2 or hydrocarbon fuel, H 2 O and CO 2 undergo endothermic catalytic reforming, resulting in the formation of H 2 , CO, H 2 O and CO 2 , and the energy released by the external fuel cell is used to provide an endothermic reforming reaction by transferring it to a heat-conducting material, and that, possibly, the reagent contains hydrocarbon fuel and O 2 , which are subjected to catalytic combustion and reforming, resulting in H 2 CO, H 2 O and CO 2 , moreover, the energy from at least one exothermic reaction of combustion or reforming of an external fuel cell is used to provide an endothermic reforming reaction by transferring it to a heat-conducting material. 27. Установка реформинга по пп. 19 - 26, отличающаяся тем, что она имеет средства подвода продуктов, получаемых в установке реформинга, к внешнему топливному элементу. 27. Installation of reforming in paragraphs. 19 to 26, characterized in that it has means for supplying products obtained in the reforming unit to an external fuel cell. 28. Способ реформинга реагента в продукты реакции с помощью установки реформинга пластинчатого типа, отличающийся тем, что в нем применяют каталитические пластины, с которыми связывают, по меньшей мере, один каталитический материал для ускорения преобразования, и теплопроводные пластины из теплопроводного материала, собирают пакет каталитических пластин и теплопроводных пластин для формирования пластинчатой структуры реформинга, и передают тепловую энергию, поддерживающую процесс реформинга, путем проводимости по плоской поверхности теплопроводной пластины. 28. A method of reforming a reagent into reaction products using a plate-type reforming apparatus, characterized in that it uses catalytic plates with which at least one catalytic material is bonded to accelerate the conversion, and heat-conducting plates of a heat-conducting material collect a catalytic package plates and heat-conducting plates for forming a lamellar structure of the reforming, and transmit thermal energy supporting the reforming process by conduction on a flat surface a thermally conductive plate. 29. Способ по п. 28, отличающийся тем, что часть периферийной поверхности структуры реформинга открывают для обмена тепловой энергией с внешней средой. 29. The method according to p. 28, characterized in that a part of the peripheral surface of the reforming structure is opened for the exchange of thermal energy with the external environment. 30. Способ по пп. 28 и 29, отличающийся тем, что в структуре реформинга выполняют осевые коллекторы для ввода в нее реагента и отвода продуктов реакции от периферийной части структуры реформинга. 30. The method according to PP. 28 and 29, characterized in that the axial manifolds are carried out in the reforming structure for introducing into it a reagent and removing reaction products from the peripheral part of the reforming structure. 31. Способ по пп. 28 - 30, отличающийся тем, что устанавливают теплопроводный герметичный кожух вокруг структуры реформинга для формирования периферийного осевого коллектора и для возможности обеспечения работы установки реформинга под давлением, направляют продукты реакции в периферийный осевой коллектор для их улавливания герметичным кожухом. 31. The method according to PP. 28-30, characterized in that a thermally conductive sealed casing is installed around the reforming structure to form a peripheral axial collector and for the possibility of ensuring the operation of the reformed installation under pressure, the reaction products are sent to the peripheral axial collector to catch them with a sealed casing. 32. Способ по пп. 28 - 31, отличающийся тем, что создают практически изотермический режим, в плоскости теплопроводной пластины, и, при желании, вдоль продольной оси структуры реформинга. 32. The method according to PP. 28 - 31, characterized in that they create a practically isothermal regime in the plane of the heat-conducting plate, and, if desired, along the longitudinal axis of the reforming structure. 33. Способ по п. 28, отличающийся тем, что формируют, по крайней мере, один осевой коллектор реагента для ввода в него реагента, снабжают один из внутренних или внешних краев теплопроводной пластины выступающей частью, выполненной как одно целое с пластиной, и вводят ее в осевой коллектор реагента для предварительного нагрева вводимого реагента. 33. The method according to p. 28, characterized in that at least one axial collector of the reagent is formed for introducing the reagent into it, provide one of the inner or outer edges of the heat-conducting plate with a protruding part, made as a whole with the plate, and introduce it into the axial reagent collector for preheating the reagent introduced. 34. Способ по п. 28, отличающийся тем, что формируют осевой коллектор внутри структуры реформинга, формируют каналы между теплопроводной и каталитической пластинами, создают падение давления в потоке реагента, проходящего по каналам междутеплопроводной пластиной и каталитической пластиной, которое существенно выше, чем падение давления в потоке реагента в осевом коллекторе. 34. The method according to p. 28, characterized in that they form an axial collector inside the reforming structure, form channels between the heat conducting and catalytic plates, create a pressure drop in the reagent flow passing through the channels between the heat conducting plate and the catalytic plate, which is significantly higher than the pressure drop in the reagent stream in the axial manifold. 35. Способ по пп. 28 - 34, отличающийся тем, что одну из пластин, теплопроводную или каталитическую, выполняют из пористого теплопроводного материала, и формируют в нем каналы, по которым вводимый реагент проходит сквозь пластину. 35. The method according to PP. 28 - 34, characterized in that one of the plates, heat-conducting or catalytic, is made of porous heat-conducting material, and channels are formed in it through which the introduced reagent passes through the plate. 36. Способ по пп. 28 - 35, отличающийся тем, что структуру реформинга соединяют с внешним топливным элементом и передают тепловую энергию, выделяемую топливным элементом, теплопроводным пластинам путем термической проводимости в плоскости пластин. 36. The method according to PP. 28 - 35, characterized in that the reforming structure is connected to an external fuel cell and transmit thermal energy released by the fuel cell to the heat-conducting plates by thermal conductivity in the plane of the plates.
RU98120512/09A 1996-04-12 1997-03-25 Reforming unit and method for converting reagent into reaction products (alternatives) RU2175799C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/631,432 US5858314A (en) 1996-04-12 1996-04-12 Thermally enhanced compact reformer
US08/631,432 1996-04-12

Publications (2)

Publication Number Publication Date
RU98120512A true RU98120512A (en) 2000-09-20
RU2175799C2 RU2175799C2 (en) 2001-11-10

Family

ID=24531182

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98120512/09A RU2175799C2 (en) 1996-04-12 1997-03-25 Reforming unit and method for converting reagent into reaction products (alternatives)

Country Status (16)

Country Link
US (3) US5858314A (en)
EP (1) EP0904608B1 (en)
JP (1) JP2000508616A (en)
CN (1) CN100367556C (en)
AT (1) ATE211312T1 (en)
AU (1) AU2545597A (en)
CA (1) CA2251627C (en)
CZ (1) CZ324098A3 (en)
DE (1) DE69709348T2 (en)
DK (1) DK0904608T3 (en)
IL (1) IL126469A0 (en)
NO (1) NO322074B1 (en)
PL (1) PL329316A1 (en)
RU (1) RU2175799C2 (en)
TW (1) TW328655B (en)
WO (1) WO1997039490A2 (en)

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858314A (en) * 1996-04-12 1999-01-12 Ztek Corporation Thermally enhanced compact reformer
US6245303B1 (en) * 1998-01-14 2001-06-12 Arthur D. Little, Inc. Reactor for producing hydrogen from hydrocarbon fuels
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6152995A (en) 1999-03-22 2000-11-28 Idatech Llc Hydrogen-permeable metal membrane and method for producing the same
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6783741B2 (en) * 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US7195663B2 (en) * 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6376113B1 (en) * 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
JPH10265202A (en) * 1997-03-25 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd Hydrogen producing device
US6244367B1 (en) * 1997-06-02 2001-06-12 The University Of Chicago Methanol partial oxidation reformer
US6540975B2 (en) * 1998-07-27 2003-04-01 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US6616909B1 (en) * 1998-07-27 2003-09-09 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
AU767080B2 (en) * 1998-11-10 2003-10-30 Ati Properties, Inc. Hydrogen separation membrane
US6835232B2 (en) * 1998-11-10 2004-12-28 Frost Chester B Fluid separation assembly and fluid separation module
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6203587B1 (en) * 1999-01-19 2001-03-20 International Fuel Cells Llc Compact fuel gas reformer assemblage
US6200696B1 (en) * 1999-02-16 2001-03-13 Energy Research Corporation Internal reforming fuel cell assembly with simplified fuel feed
US6596057B2 (en) 1999-03-22 2003-07-22 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6767389B2 (en) * 1999-03-22 2004-07-27 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
US6190623B1 (en) 1999-06-18 2001-02-20 Uop Llc Apparatus for providing a pure hydrogen stream for use with fuel cells
US6299994B1 (en) 1999-06-18 2001-10-09 Uop Llc Process for providing a pure hydrogen stream for use with fuel cells
US6280864B1 (en) 1999-06-18 2001-08-28 Uop Llc Control system for providing hydrogen for use with fuel cells
US6746651B1 (en) * 1999-08-10 2004-06-08 Aerojet-General Corporation Axial flow catalyst pack
US6375906B1 (en) * 1999-08-12 2002-04-23 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
US7135048B1 (en) 1999-08-12 2006-11-14 Idatech, Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US6969506B2 (en) * 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
US6488838B1 (en) * 1999-08-17 2002-12-03 Battelle Memorial Institute Chemical reactor and method for gas phase reactant catalytic reactions
US6322920B1 (en) * 1999-08-26 2001-11-27 Plug Power, Inc. Fuel cell isolation system
JP4045564B2 (en) * 1999-10-20 2008-02-13 株式会社日本ケミカル・プラント・コンサルタント Self-oxidation internal heating type reformer and method
US6465118B1 (en) 2000-01-03 2002-10-15 Idatech, Llc System and method for recovering thermal energy from a fuel processing system
US6653005B1 (en) 2000-05-10 2003-11-25 University Of Central Florida Portable hydrogen generator-fuel cell apparatus
US7691271B1 (en) 2007-05-30 2010-04-06 University Of Central Florida Research Foundation, Inc. Filamentous carbon particles for cleaning oil spills and method of production
US7125540B1 (en) * 2000-06-06 2006-10-24 Battelle Memorial Institute Microsystem process networks
US7048897B1 (en) * 2000-08-28 2006-05-23 Motorola, Inc. Hydrogen generator utilizing ceramic technology
US6569553B1 (en) * 2000-08-28 2003-05-27 Motorola, Inc. Fuel processor with integrated fuel cell utilizing ceramic technology
US7081312B1 (en) * 2000-09-26 2006-07-25 General Motors Corporation Multiple stage combustion process to maintain a controllable reformation temperature profile
US6531238B1 (en) 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
KR100584047B1 (en) * 2000-10-30 2006-05-30 지텍 코포레이션 Multi-function energy system operable as a fuel cell, reformer, or thermal plant
CA2430822C (en) * 2000-12-12 2010-07-13 Texaco Development Corporation Dual stack compact fuel processor for producing a hydrogen rich gas
US7160342B2 (en) * 2001-02-13 2007-01-09 Delphi Technologies, Inc. Fuel reformer system
CA2439586C (en) * 2001-03-02 2012-02-28 Mesosystems Technology, Inc. Ammonia-based hydrogen generation apparatus and method for using same
US7867300B2 (en) * 2001-03-02 2011-01-11 Intelligent Energy, Inc. Ammonia-based hydrogen generation apparatus and method for using same
US7922781B2 (en) 2001-03-02 2011-04-12 Chellappa Anand S Hydrogen generation apparatus and method for using same
US6569227B2 (en) * 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US20060037476A1 (en) * 2001-03-08 2006-02-23 Edlund David J Hydrogen purification devices, components and fuel processing systems containing the same
DE10119721A1 (en) * 2001-04-21 2002-10-31 Bayer Cropscience Gmbh Herbicidal compositions containing benzoylcyclohexanediones and safeners
US6635375B1 (en) * 2001-05-29 2003-10-21 The United States Of America As Represented By The United States Department Of Energy Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation
ATE372956T1 (en) * 2001-06-15 2007-09-15 Umicore Ag & Co Kg METHOD FOR PRODUCING A LOW SULFUR REFORMATE GAS FOR USE IN A FUEL CELL SYSTEM
US7550218B2 (en) * 2001-10-11 2009-06-23 Airbus Deutschland Gmbh Apparatus for producing water onboard of a craft driven by a power plant
US7585472B2 (en) * 2001-11-07 2009-09-08 Battelle Memorial Institute Microcombustors, microreformers, and methods involving combusting or reforming fluids
US7077643B2 (en) * 2001-11-07 2006-07-18 Battelle Memorial Institute Microcombustors, microreformers, and methods for combusting and for reforming fluids
US7967878B2 (en) * 2002-01-04 2011-06-28 Meggitt (Uk) Limited Reformer apparatus and method
AUPR981702A0 (en) * 2002-01-04 2002-01-31 Meggitt (Uk) Limited Steam reformer
DE10203022B4 (en) * 2002-01-26 2008-02-07 Forschungszentrum Jülich GmbH Sieve-shaped reactor and method for reactor operation
US7122262B2 (en) * 2002-03-05 2006-10-17 Guan-Wu Wang Miniature fuel cell system having integrated fuel processor and electronic devices
US7070743B2 (en) * 2002-03-14 2006-07-04 Invista North America S.A R.L. Induction-heated reactors for gas phase catalyzed reactions
US6936366B2 (en) 2002-04-03 2005-08-30 Hewlett-Packard Development Company, L.P. Single chamber solid oxide fuel cell architecture for high temperature operation
US20030194363A1 (en) * 2002-04-12 2003-10-16 Koripella Chowdary Ramesh Chemical reactor and fuel processor utilizing ceramic technology
US7527661B2 (en) * 2005-04-18 2009-05-05 Intelligent Energy, Inc. Compact devices for generating pure hydrogen
US8172913B2 (en) * 2002-04-23 2012-05-08 Vencill Thomas R Array of planar membrane modules for producing hydrogen
US7115148B2 (en) * 2002-05-14 2006-10-03 Her Majesty The Queen In Right Of Canada, As Respresented By The Minister Of Defence Of Her Majesty's Canadian Government Compact methanol steam reformer with integrated hydrogen separation
US6858341B2 (en) * 2002-05-21 2005-02-22 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
EP1581784A4 (en) * 2002-06-13 2009-06-24 Nuvera Fuel Cells Inc Preferential oxidation reactor temperature regulation
US20040232982A1 (en) * 2002-07-19 2004-11-25 Ikuroh Ichitsubo RF front-end module for wireless communication devices
US7071783B2 (en) * 2002-07-19 2006-07-04 Micro Mobio Corporation Temperature-compensated power sensing circuit for power amplifiers
US6774718B2 (en) * 2002-07-19 2004-08-10 Micro Mobio Inc. Power amplifier module for wireless communication devices
US7493094B2 (en) * 2005-01-19 2009-02-17 Micro Mobio Corporation Multi-mode power amplifier module for wireless communication devices
US6622519B1 (en) 2002-08-15 2003-09-23 Velocys, Inc. Process for cooling a product in a heat exchanger employing microchannels for the flow of refrigerant and product
US7014835B2 (en) * 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
US7250151B2 (en) * 2002-08-15 2007-07-31 Velocys Methods of conducting simultaneous endothermic and exothermic reactions
US6969505B2 (en) * 2002-08-15 2005-11-29 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
US6915796B2 (en) * 2002-09-24 2005-07-12 Chien-Min Sung Superabrasive wire saw and associated methods of manufacture
FR2846002B1 (en) * 2002-10-22 2006-12-15 Totalfinaelf France NEW FUEL WITH HIGH OCTANE INDEX AND LOW LEVEL CONTENT
DE10313868B4 (en) * 2003-03-21 2009-11-19 Siemens Ag Catheter for magnetic navigation
WO2004094571A1 (en) * 2003-03-27 2004-11-04 Total France Novel fuel with a high octane number and a low aromatic content
US7220699B2 (en) * 2003-03-31 2007-05-22 Intelligent Energy, Inc. Catalyst incorporation in a microreactor
US7244526B1 (en) 2003-04-28 2007-07-17 Battelle Memorial Institute Solid oxide fuel cell anodes and electrodes for other electrochemical devices
US7351491B2 (en) * 2003-04-28 2008-04-01 Battelle Memorial Institute Supporting electrodes for solid oxide fuel cells and other electrochemical devices
US20040219418A1 (en) * 2003-04-30 2004-11-04 Peter Mardilovich Fuel cell assembly and method for controlling reaction equilibrium
US7294734B2 (en) * 2003-05-02 2007-11-13 Velocys, Inc. Process for converting a hydrocarbon to an oxygenate or a nitrile
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US8580211B2 (en) * 2003-05-16 2013-11-12 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
JP4611989B2 (en) * 2003-05-16 2011-01-12 ヴェロシス,インク. Process for making emulsions using microchannel process technology
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US20040253495A1 (en) * 2003-06-11 2004-12-16 Laven Arne Fuel cell device condition detection
US7604673B2 (en) * 2003-06-27 2009-10-20 Ultracell Corporation Annular fuel processor and methods
US20060156627A1 (en) * 2003-06-27 2006-07-20 Ultracell Corporation Fuel processor for use with portable fuel cells
US8821832B2 (en) 2003-06-27 2014-09-02 UltraCell, L.L.C. Fuel processor for use with portable fuel cells
US20050112425A1 (en) * 2003-10-07 2005-05-26 Ztek Corporation Fuel cell for hydrogen production, electricity generation and co-production
KR100542911B1 (en) * 2003-10-25 2006-01-11 한국과학기술연구원 POX reforming structured catalyst of gasoline for fuel cell powered vehicle application, and method for preparing the structured catalyst
DE60328102D1 (en) * 2003-11-04 2009-08-06 Methanol Casale Sa Heat exchanger and method for carrying out chemical reactions under pseudo-isothermal conditions
US7029647B2 (en) * 2004-01-27 2006-04-18 Velocys, Inc. Process for producing hydrogen peroxide using microchannel technology
US7084180B2 (en) * 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US9023900B2 (en) 2004-01-28 2015-05-05 Velocys, Inc. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US8747805B2 (en) * 2004-02-11 2014-06-10 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction using microchannel technology
US20050205986A1 (en) * 2004-03-18 2005-09-22 Ikuroh Ichitsubo Module with integrated active substrate and passive substrate
KR100627334B1 (en) * 2004-06-29 2006-09-25 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system comprising the same
US7305850B2 (en) * 2004-07-23 2007-12-11 Velocys, Inc. Distillation process using microchannel technology
US7610775B2 (en) 2004-07-23 2009-11-03 Velocys, Inc. Distillation process using microchannel technology
WO2006020709A1 (en) * 2004-08-12 2006-02-23 Velocys Inc. Process for converting ethylene to ethylene oxide using microchannel process technology
US7254371B2 (en) 2004-08-16 2007-08-07 Micro-Mobio, Inc. Multi-port multi-band RF switch
DE102004040664A1 (en) * 2004-08-20 2006-02-23 Behr Gmbh & Co. Kg Heat exchangers, generators and heating and / or air conditioning
US7374834B2 (en) * 2004-09-07 2008-05-20 Gas Technology Institute Gas flow panels integrated with solid oxide fuel cell stacks
US7297183B2 (en) * 2004-09-20 2007-11-20 Idatech, Llc Hydrogen purification devices, components, and fuel processing systems containing the same
US7622509B2 (en) 2004-10-01 2009-11-24 Velocys, Inc. Multiphase mixing process using microchannel process technology
US7389090B1 (en) 2004-10-25 2008-06-17 Micro Mobio, Inc. Diplexer circuit for wireless communication devices
US7262677B2 (en) * 2004-10-25 2007-08-28 Micro-Mobio, Inc. Frequency filtering circuit for wireless communication devices
US20060093890A1 (en) * 2004-10-29 2006-05-04 Steinbroner Matthew P Fuel cell stack compression systems, and fuel cell stacks and fuel cell systems incorporating the same
US7470293B2 (en) * 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
EP1820232B1 (en) * 2004-10-31 2014-05-14 Dcns Sa Hydrogen generation and energy production assemblies
CN101128257B (en) * 2004-11-12 2010-10-27 万罗赛斯公司 Process using microchannel technology for conducting alkylation or acylation reaction
KR100965032B1 (en) 2004-11-16 2010-06-21 벨로시스, 인코포레이티드 Multiphase reaction process using microchannel technology
WO2006057895A2 (en) * 2004-11-17 2006-06-01 Velocys Inc. Process for making or treating an emulsion using microchannel technology
US7221225B2 (en) 2004-12-03 2007-05-22 Micro-Mobio Dual band power amplifier module for wireless communication devices
DE102004059014B4 (en) * 2004-12-08 2009-02-05 Lurgi Gmbh Reaction vessel for the production of synthesis gas containing H2 and CO
US7084702B1 (en) * 2005-01-19 2006-08-01 Micro Mobio Corp. Multi-band power amplifier module for wireless communication devices
US7548111B2 (en) * 2005-01-19 2009-06-16 Micro Mobio Corporation Miniature dual band power amplifier with reserved pins
US7580687B2 (en) * 2005-01-19 2009-08-25 Micro Mobio Corporation System-in-package wireless communication device comprising prepackaged power amplifier
US7769355B2 (en) * 2005-01-19 2010-08-03 Micro Mobio Corporation System-in-package wireless communication device comprising prepackaged power amplifier
US7507274B2 (en) * 2005-03-02 2009-03-24 Velocys, Inc. Separation process using microchannel technology
US20060246331A1 (en) * 2005-04-29 2006-11-02 Steinbroner Matthew P Partitioned fuel cell stacks and fuel cell systems including the same
GB0509670D0 (en) * 2005-05-11 2005-06-15 Prototech As Fuel processing system
CA2608400C (en) * 2005-05-25 2014-08-19 Velocys Inc. Support for use in microchannel processing
JP4673679B2 (en) * 2005-06-20 2011-04-20 大日本印刷株式会社 Hydrogen production equipment
US20070004810A1 (en) * 2005-06-30 2007-01-04 Yong Wang Novel catalyst and fischer-tropsch synthesis process using same
US7935734B2 (en) * 2005-07-08 2011-05-03 Anna Lee Tonkovich Catalytic reaction process using microchannel technology
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
ES2482791T3 (en) * 2005-09-16 2014-08-04 Dcns Sa Raw material supply system of self-regulated feed and hydrogen generator fuel processing assembly incorporating the same
US20070063982A1 (en) * 2005-09-19 2007-03-22 Tran Bao Q Integrated rendering of sound and image on a display
WO2007047898A1 (en) * 2005-10-17 2007-04-26 Intelligent Energy, Inc. Steam reforming unit
US8696771B2 (en) * 2005-12-16 2014-04-15 Battelle Memorial Institute Compact integrated combustion reactors, systems and methods of conducting integrated combustion reactions
CN100535572C (en) * 2005-12-28 2009-09-02 中国科学院大连化学物理研究所 Catalytic combustion evaporator
US7477204B2 (en) * 2005-12-30 2009-01-13 Micro-Mobio, Inc. Printed circuit board based smart antenna
JP2007200702A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell and its operating method
JP2007200709A (en) * 2006-01-26 2007-08-09 Nippon Oil Corp Solid oxide fuel cell stack and its operation method
US7972420B2 (en) * 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7939051B2 (en) * 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US7477108B2 (en) * 2006-07-14 2009-01-13 Micro Mobio, Inc. Thermally distributed integrated power amplifier module
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US8318131B2 (en) 2008-01-07 2012-11-27 Mcalister Technologies, Llc Chemical processes and reactors for efficiently producing hydrogen fuels and structural materials, and associated systems and methods
CN101771160B (en) * 2008-12-29 2012-02-15 中国科学院宁波材料技术与工程研究所 Thermal-coupling natural gas reformer
US8441361B2 (en) 2010-02-13 2013-05-14 Mcallister Technologies, Llc Methods and apparatuses for detection of properties of fluid conveyance systems
US8318269B2 (en) * 2009-02-17 2012-11-27 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
JP5317756B2 (en) * 2009-02-25 2013-10-16 京セラ株式会社 Reformer, cell stack device, fuel cell module, and fuel cell device
JP2010210118A (en) * 2009-03-09 2010-09-24 Jamco Corp Passenger plane mounted steam oven including safety valve for water leakage prevention purposes
JP2010235406A (en) * 2009-03-31 2010-10-21 Toyota Industries Corp Reformer
JP5627673B2 (en) * 2009-04-30 2014-11-19 エフディーアイ エナジー インク.Fdi Energy,Inc. Arrangement of fuel cell by mass production and manufacturing method thereof
DE102009037148B4 (en) 2009-08-06 2014-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solid oxide fuel cell system
US8759047B2 (en) * 2009-09-16 2014-06-24 Coskata, Inc. Process for fermentation of syngas from indirect gasification
CA2789688C (en) * 2010-02-13 2014-07-08 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
BR112012020286A2 (en) * 2010-02-13 2016-05-03 Mcalister Technologies Llc reactive vessels with transmissive surfaces for the production of hydrogen-based fuels and structural elements, and associated systems and methods
KR101973576B1 (en) 2010-03-02 2019-04-29 벨로시스, 인코포레이티드 Welded, laminated apparatus, methods of making, and methods of using the apparatus
JP5900011B2 (en) * 2011-03-11 2016-04-06 日産自動車株式会社 Thin heater module
WO2012151545A2 (en) * 2011-05-04 2012-11-08 Ztek Corporation Zero emission power plant with co2 waste utilization
RU2465194C1 (en) * 2011-05-18 2012-10-27 Общество с ограниченной ответственностью "Газохим Техно" Synthesis gas generator reactor
US8734546B2 (en) 2011-08-12 2014-05-27 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2013025650A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials and associated systems and methods
US8826657B2 (en) 2011-08-12 2014-09-09 Mcallister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8673509B2 (en) 2011-08-12 2014-03-18 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8888408B2 (en) 2011-08-12 2014-11-18 Mcalister Technologies, Llc Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8669014B2 (en) 2011-08-12 2014-03-11 Mcalister Technologies, Llc Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
EP2742207A4 (en) 2011-08-12 2016-06-29 Mcalister Technologies Llc Systems and methods for extracting and processing gases from submerged sources
WO2013025655A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
GB201214122D0 (en) 2012-08-07 2012-09-19 Oxford Catalysts Ltd Treating of catalyst support
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
FR3004179B1 (en) * 2013-04-08 2015-05-01 Commissariat Energie Atomique METHODS FOR OBTAINING COMBUSTIBLE GAS FROM WATER ELECTROLYSIS (EHT) OR CO-ELECTROLYSIS WITH H2O / CO2 WITHIN THE SAME ENCLOSURE, CATALYTIC REACTOR AND SYSTEM THEREOF
RU2554008C1 (en) 2014-01-13 2015-06-20 Общество с ограниченной ответственностью "Газохим Техно" Reactor for partial oxidation of hydrocarbon gases
US10270119B2 (en) 2014-03-12 2019-04-23 Ceres Intellectual Property Company Limited Fuel cell stack arrangement
US10071333B2 (en) * 2014-10-07 2018-09-11 Honeywell International Inc. Gas separation cartridge
WO2016201218A2 (en) 2015-06-12 2016-12-15 Velocys, Inc. Synthesis gas conversion process
IL244698A (en) 2016-03-21 2017-10-31 Elbit Systems Land & C4I Ltd Alkaline exchange membrane fuel cells system having a bi-polar plate
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
WO2018104526A1 (en) * 2016-12-08 2018-06-14 Technip France Scalable heat exchanger reformer for syngas production
WO2018234971A1 (en) * 2017-06-19 2018-12-27 Sabic Global Technologies, B.V. An improved process for syngas production for petrochemical applications
CN109950590B (en) * 2019-04-02 2020-11-10 中氢新能技术有限公司 Fuel cell methanol reformer
US10697630B1 (en) 2019-08-02 2020-06-30 Edan Prabhu Apparatus and method for reacting fluids using a porous heat exchanger
GB201917650D0 (en) * 2019-12-03 2020-01-15 Ceres Ip Co Ltd Cell unit and cell stack
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers
SE544946C2 (en) * 2021-06-14 2023-02-07 Catator Ab A catalytic reactor and a method for providing a catalytic reaction
US11433352B1 (en) 2021-10-18 2022-09-06 Edan Prabhu Apparatus and method for oxidizing fluid mixtures using porous and non-porous heat exchangers
US11933216B2 (en) 2022-01-04 2024-03-19 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11719441B2 (en) 2022-01-04 2023-08-08 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11794912B2 (en) 2022-01-04 2023-10-24 General Electric Company Systems and methods for reducing emissions with a fuel cell
US12037952B2 (en) 2022-01-04 2024-07-16 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11970282B2 (en) 2022-01-05 2024-04-30 General Electric Company Aircraft thrust management with a fuel cell
US12034298B2 (en) 2022-01-10 2024-07-09 General Electric Company Power source for an aircraft
US11804607B2 (en) 2022-01-21 2023-10-31 General Electric Company Cooling of a fuel cell assembly
US12037124B2 (en) 2022-01-21 2024-07-16 General Electric Company Systems and method of operating a fuel cell assembly
US11967743B2 (en) 2022-02-21 2024-04-23 General Electric Company Modular fuel cell assembly
US12025061B2 (en) 2022-04-04 2024-07-02 General Electric Company Gas turbine engine with fuel cell assembly
US12043406B2 (en) 2022-05-27 2024-07-23 General Electric Company Method of operating a fuel cell assembly for an aircraft
US11817700B1 (en) 2022-07-20 2023-11-14 General Electric Company Decentralized electrical power allocation system
US11859820B1 (en) 2022-11-10 2024-01-02 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly
US11923586B1 (en) 2022-11-10 2024-03-05 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly
US11939901B1 (en) 2023-06-12 2024-03-26 Edan Prabhu Oxidizing reactor apparatus

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1452145A (en) * 1922-03-14 1923-04-17 Cederberg Ivar Walfrid Apparatus and method for carrying out catalytic oxidation of ammonia with oxygen
US2127561A (en) * 1936-04-29 1938-08-23 Du Pont Heat exchange catalytic converter
US4174954A (en) * 1975-12-29 1979-11-20 Siemens Aktiengesellschaft Method for converting a reaction mixture consisting of hydrocarbon-containing fuel and an oxygen-containing gas into a fuel gas
GB2057908A (en) * 1979-09-06 1981-04-08 Ici Ltd Fluid-solid contact
US4490445A (en) * 1982-05-24 1984-12-25 Massachusetts Institute Of Technology Solid oxide electrochemical energy converter
US4614628A (en) * 1982-05-26 1986-09-30 Massachusetts Institute Of Technology Solid electrolyte structure and method for forming
US5039510A (en) * 1983-03-25 1991-08-13 Imperial Chemical Industries Plc Steam reforming
US4629537A (en) * 1985-05-17 1986-12-16 Hsu Michael S Compact, light-weight, solid-oxide electrochemical converter
JPH0692242B2 (en) * 1986-01-16 1994-11-16 株式会社日立製作所 Fuel reformer
DE3611291A1 (en) * 1986-04-04 1987-10-15 Dornier System Gmbh MANUFACTURE OF LONG-TERM-RESISTANT OXYGEN ELECTRODES FOR ELECTROLYSIS CELLS WITH FIXED ELECTROLYTE
US4812329A (en) * 1986-05-28 1989-03-14 Westinghouse Electric Corp. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
JPS63110557A (en) * 1986-10-27 1988-05-16 Mitsubishi Heavy Ind Ltd Operating method for solid electrolyte fuel cell
US4770955A (en) * 1987-04-28 1988-09-13 The Standard Oil Company Solid electrolyte fuel cell and assembly
JPH0422827Y2 (en) * 1987-09-25 1992-05-26
GB8722847D0 (en) * 1987-09-29 1987-11-04 Electricity Council Performing endothermic catalytic reactions
DE3806408A1 (en) * 1988-02-29 1989-09-07 Uhde Gmbh METHOD AND DEVICE FOR GENERATING AN H (ARROW DOWN) 2 (ARROW DOWN) AND CO-CONTAINING SYNTHESIS GAS
JPH02120206A (en) * 1988-10-28 1990-05-08 Yamaha Motor Co Ltd Reformer for fuel cell
US5021304A (en) * 1989-03-22 1991-06-04 Westinghouse Electric Corp. Modified cermet fuel electrodes for solid oxide electrochemical cells
US4921680A (en) * 1989-09-12 1990-05-01 International Fuel Cells Corporation Reformer seal plate arrangement
JPH085644B2 (en) * 1989-11-27 1996-01-24 石川島播磨重工業株式会社 Plate reformer
JPH03283266A (en) * 1990-03-29 1991-12-13 Nkk Corp Solid electrolyte fuel cell of inside reformed type
US5080689A (en) * 1990-04-27 1992-01-14 Westinghouse Electric Co. Method of bonding an interconnection layer on an electrode of an electrochemical cell
US5085742A (en) * 1990-10-15 1992-02-04 Westinghouse Electric Corp. Solid oxide electrochemical cell fabrication process
ATE153801T1 (en) * 1990-11-23 1997-06-15 Vickers Shipbuilding & Eng APPLICATION OF FUEL CELLS IN POWER SUPPLY SYSTEMS
US5073405A (en) * 1991-01-15 1991-12-17 Westinghouse Electric Corp. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction
CH682270A5 (en) * 1991-03-05 1993-08-13 Ulf Dr Bossel
JP3151933B2 (en) * 1992-05-28 2001-04-03 株式会社村田製作所 Solid oxide fuel cell
JPH0613096A (en) * 1992-06-25 1994-01-21 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for reformation in fuel cell power generation system
TW216453B (en) * 1992-07-08 1993-11-21 Air Prod & Chem Integrated plate-fin heat exchange reformation
AU671722B2 (en) * 1992-11-25 1996-09-05 Michael S. Hsu Radiant thermal integration with regenerative heating in a high temperature electrochemical covverter
GB9225188D0 (en) * 1992-12-02 1993-01-20 Rolls Royce & Ass Combined reformer and shift reactor
JPH06260189A (en) * 1993-03-01 1994-09-16 Matsushita Electric Ind Co Ltd Fuel cell
US5338622A (en) * 1993-04-12 1994-08-16 Ztek Corporation Thermal control apparatus
JPH0729589A (en) * 1993-07-09 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd Differential pressure control method of plate type reformer in fuel cell power generating system
US5366819A (en) * 1993-10-06 1994-11-22 Ceramatec, Inc. Thermally integrated reformer for solid oxide fuel cells
ATE189560T1 (en) * 1994-03-21 2000-02-15 Ztek Corp ELECTROCHEMICAL CONVERTER WITH OPTIMAL PRESSURE DISTRIBUTION
US5693201A (en) * 1994-08-08 1997-12-02 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
JPH0812303A (en) * 1994-07-05 1996-01-16 Ishikawajima Harima Heavy Ind Co Ltd Plate reformer
US5858314A (en) * 1996-04-12 1999-01-12 Ztek Corporation Thermally enhanced compact reformer

Similar Documents

Publication Publication Date Title
RU98120512A (en) REFORMING INSTALLATION FOR CONVERSION OF REAGENT IN REACTION PRODUCTS (OPTIONS) AND METHOD FOR IMPLEMENTING REFORMING
US20200361768A1 (en) Heat integrated reformer with catalytic combustion for hydrogen production
RU2175799C2 (en) Reforming unit and method for converting reagent into reaction products (alternatives)
EP1157434B1 (en) Compact and light weight catalyst bed for use in a fuel cell power plant and method for forming the same
TW575467B (en) Catalytic reactor
CA2501137C (en) Reforming and hydrogen purification system
CA2396191C (en) Catalytic reactor
CA2862538C (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
JP5086516B2 (en) Microchannel reactor with temperature control
CA2685299A1 (en) Highly heat integrated reformer for hydrogen production
RU2310677C2 (en) Catalytic reactor and process
JP5785659B2 (en) Laminated hydrocarbon reformer using microchannel heater
US20060147370A1 (en) Multi-stream microchannel device
JPH09503615A (en) Built-in converter / CPN solid oxide fuel cell stack / module design
EP1556165A2 (en) Catalyst in microchannel apparatus and reactions using same
KR101245910B1 (en) Cylindrical steam reformer
RU2220901C2 (en) Production of a synthesis gas by the vapor reforming with use of the catalyzed equipment
CN204841618U (en) Methanization reactor
AU2018330243A1 (en) Conversion reactor and management of method
JP2009248083A (en) Compact reactor
KR20110092416A (en) Hydrocarbon reforming device using micro channel heater
KR101246714B1 (en) Penetrating high pressure micro-channel reacting device
Kolb et al. Wash-coat Catalysts Applied for Partial and Total Oxidation Reactions of Propane in Micro-channels
JPH06287002A (en) Device for reforming fuel
RU2192924C2 (en) Reaction member of heterogeneous catalytic reactor