RU96113270A - METHOD FOR PRODUCING DIAMOND FILMS BY GAS-PHASE SYNTHESIS - Google Patents

METHOD FOR PRODUCING DIAMOND FILMS BY GAS-PHASE SYNTHESIS

Info

Publication number
RU96113270A
RU96113270A RU96113270/09A RU96113270A RU96113270A RU 96113270 A RU96113270 A RU 96113270A RU 96113270/09 A RU96113270/09 A RU 96113270/09A RU 96113270 A RU96113270 A RU 96113270A RU 96113270 A RU96113270 A RU 96113270A
Authority
RU
Russia
Prior art keywords
substrate
gas
stream
carbon
hydrogen
Prior art date
Application number
RU96113270/09A
Other languages
Russian (ru)
Other versions
RU2158037C2 (en
Inventor
А.Т. Рахимов
В.А. Самородов
Н.В. Суетин
В.В. Починкин
Original Assignee
А.Т. Рахимов
В.А. Самородов
Н.В. Суетин
В.В. Починкин
Filing date
Publication date
Application filed by А.Т. Рахимов, В.А. Самородов, Н.В. Суетин, В.В. Починкин filed Critical А.Т. Рахимов
Priority to RU96113270/09A priority Critical patent/RU2158037C2/en
Priority claimed from RU96113270/09A external-priority patent/RU2158037C2/en
Priority to AU37112/97A priority patent/AU3711297A/en
Priority to JP50590198A priority patent/JP2001506572A/en
Priority to DE69720791T priority patent/DE69720791T2/en
Priority to KR10-1999-7000268A priority patent/KR100532864B1/en
Priority to EP97933934A priority patent/EP0959148B1/en
Priority to PCT/RU1997/000229 priority patent/WO1998002027A2/en
Publication of RU96113270A publication Critical patent/RU96113270A/en
Application granted granted Critical
Publication of RU2158037C2 publication Critical patent/RU2158037C2/en

Links

Claims (3)

1. Способ получения алмазных пленок методом газофазного синтеза, включающий нагрев металлической нити и подложки в потоке водорода, подачу углеродосодержащего газа в поток и осаждение алмазной пленки на подложке в смеси водорода с углеродосодержащим газом, удаление излишков графитовой фазы в водороде, отличающийся тем, что, с целью получения нанокристаллических алмазных пленок с высокими электронно-эмиссионными характеристиками, металлическую нить нагревают до 1800-2800oC, подложку нагревают до 600-1000oC, проводят осаждение через защитный сетчатый экран, расположенный между металлической нитью и подложкой, и нагретый до температуры 800 - 2000oC, при концентрации углеродосодержащего газа в газовом потоке 2-10% и давлении газовой смеси 5-300 Тор.1. A method of producing diamond films by gas-phase synthesis, including heating a metal thread and a substrate in a hydrogen stream, supplying a carbon-containing gas to a stream and depositing a diamond film on a substrate in a mixture of hydrogen with a carbon-containing gas, removing excess graphite phase in hydrogen, characterized in that, to produce nanocrystalline diamond films with high electron emission characteristics the metal filament is heated up to 1800-2800 o C, the substrate is heated to 600-1000 o C, precipitation is carried out through a protective tchaty shield disposed between the metal filament and the substrate and heated to a temperature of 800 - 2000 o C, under carbon containing gas concentration in gas flow 2-10%, and gas mixture pressure of 5-300 torr. 2. Способ по п. 1, отличающийся тем, что в качестве углеродосодержащего газа в поток подают метан с концентрацией 2-8% в газовом потоке. 2. The method according to p. 1, characterized in that as a carbon-containing gas in the stream serves methane with a concentration of 2-8% in the gas stream. 3. Способ по п. 2, отличающийся тем, что осаждение алмазной пленки проводят на кремниевой подложке, перед осаждением пленки проводят удаление естественного окисла кремния с подложки в потоке водорода при температурах металлической нити и подложки, необходимых для осаждения, создают на подложке слой карбида кремния при подаче в газовый поток 5-20% метана в течение 4-20 мин, уменьшают концентрацию метана в газовом потоке до 2-8%, проводят осаждение алмазной пленки и удаляют излишки графитовой фазы. 3. The method according to p. 2, characterized in that the diamond film is deposited on a silicon substrate, before the film is deposited, natural silicon oxide is removed from the substrate in a hydrogen stream at the temperatures of the metal filament and the substrate necessary for deposition, a silicon carbide layer is created on the substrate when 5-20% methane is fed into the gas stream for 4-20 minutes, the methane concentration in the gas stream is reduced to 2-8%, the diamond film is deposited and the excess graphite phase is removed.
RU96113270/09A 1996-07-16 1996-07-16 Process of manufacture of diamond films by method of gas- phase synthesis RU2158037C2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU96113270/09A RU2158037C2 (en) 1996-07-16 1996-07-16 Process of manufacture of diamond films by method of gas- phase synthesis
AU37112/97A AU3711297A (en) 1996-07-16 1997-07-15 Method for producing diamond films using a vapour-phase synthesis system
JP50590198A JP2001506572A (en) 1996-07-16 1997-07-15 Method of forming diamond film by vapor phase synthesis
DE69720791T DE69720791T2 (en) 1996-07-16 1997-07-15 METHOD FOR PRODUCING DIAMOND FILMS USING A STEAM PHASE SYNTHESIS SYSTEM
KR10-1999-7000268A KR100532864B1 (en) 1996-07-16 1997-07-15 Method for producing diamond films using a vapourphase synthesis system
EP97933934A EP0959148B1 (en) 1996-07-16 1997-07-15 Method for producing diamond films using a vapour-phase synthesis system
PCT/RU1997/000229 WO1998002027A2 (en) 1996-07-16 1997-07-15 Method for producing diamond films using a vapour-phase synthesis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96113270/09A RU2158037C2 (en) 1996-07-16 1996-07-16 Process of manufacture of diamond films by method of gas- phase synthesis

Publications (2)

Publication Number Publication Date
RU96113270A true RU96113270A (en) 1998-10-20
RU2158037C2 RU2158037C2 (en) 2000-10-20

Family

ID=20182649

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96113270/09A RU2158037C2 (en) 1996-07-16 1996-07-16 Process of manufacture of diamond films by method of gas- phase synthesis

Country Status (7)

Country Link
EP (1) EP0959148B1 (en)
JP (1) JP2001506572A (en)
KR (1) KR100532864B1 (en)
AU (1) AU3711297A (en)
DE (1) DE69720791T2 (en)
RU (1) RU2158037C2 (en)
WO (1) WO1998002027A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2194328C2 (en) * 1998-05-19 2002-12-10 ООО "Высокие технологии" Cold-emission film cathode and its production process
US6181055B1 (en) 1998-10-12 2001-01-30 Extreme Devices, Inc. Multilayer carbon-based field emission electron device for high current density applications
KR100360686B1 (en) * 2000-07-27 2002-11-13 일진나노텍 주식회사 Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
AU2000278552A1 (en) * 2000-10-04 2002-04-15 Extreme Devices Incorporated Carbon-based field emission electron device for high current density applications
US6624578B2 (en) 2001-06-04 2003-09-23 Extreme Devices Incorporated Cathode ray tube having multiple field emission cathodes
DE102004012044A1 (en) * 2004-03-11 2005-09-29 Infineon Technologies Ag Carbon layer formation, comprises precipitating a layer by introducing a carbon containing gas to a hydrogen atmosphere at high pressure and temperature
RU2653036C2 (en) * 2016-08-24 2018-05-04 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Method for deposition of diamond films from the thermally activated mixture of gases and the reactor for its implementation
RU2656627C1 (en) * 2017-06-27 2018-06-06 Степан Андреевич Линник Method for selectively depositing a polycrystalline diamond coating on silicon bases
CN111747414B (en) * 2020-06-18 2023-03-03 太原理工大学 Multilayer silicon carbide/silicon dioxide/diamond composite self-supporting film and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714334A (en) * 1971-05-03 1973-01-30 Diamond Squared Ind Inc Process for epitaxial growth of diamonds
SU966782A1 (en) * 1979-11-05 1982-10-15 Предприятие П/Я М-5912 Method of manufacturing multifriction autocathode
JPS63159292A (en) * 1986-12-23 1988-07-02 Showa Denko Kk Preparation of diamond film
US5006203A (en) * 1988-08-12 1991-04-09 Texas Instruments Incorporated Diamond growth method
US5129850A (en) * 1991-08-20 1992-07-14 Motorola, Inc. Method of making a molded field emission electron emitter employing a diamond coating
US5141460A (en) * 1991-08-20 1992-08-25 Jaskie James E Method of making a field emission electron source employing a diamond coating
US5474021A (en) * 1992-09-24 1995-12-12 Sumitomo Electric Industries, Ltd. Epitaxial growth of diamond from vapor phase

Similar Documents

Publication Publication Date Title
Suzuki et al. Growth of diamond thin films by dc plasma chemical vapor deposition
US5747118A (en) Plasma enhanced chemical transport process for forming diamond films
US7226643B2 (en) Thermal pyrolysising chemical vapor deposition method for synthesizing nano-carbon material
CA2050456A1 (en) Fabrication of polycrystalline free-standing diamond films
JPS5927753B2 (en) Diamond synthesis method
RU96113270A (en) METHOD FOR PRODUCING DIAMOND FILMS BY GAS-PHASE SYNTHESIS
Hoke et al. Low-temperature vapour deposition of high-purity iridium coatings from cyclooctadiene complexes of iridium. Synthesis of a novel liquid iridium chemical vapour deposition precursor
JPH0931757A (en) Manufacturing of graphite fiber
EP0201696B1 (en) Production of carbon films
Hsu et al. Low‐temperature diamond growth in a microwave discharge
WO1998002027A2 (en) Method for producing diamond films using a vapour-phase synthesis system
Woo et al. Preparation of crystalline carbon nitride films on silicon substrate by chemical vapor deposition
Baik et al. Large size plasma generation using multicathode direct current geometry for diamond deposition
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
Uchida et al. Thermochemical etching effect of H2O vapor on CVD diamond film
Kweon et al. The interface morphology of diamond film grown on Si
Joeris et al. Diamond deposition in an argon–methane–oxygen plasma
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
JPH04226018A (en) Manufacture of semiconductor device
JPS6358798B2 (en)
RU96103349A (en) METHOD FOR PRODUCING DIAMOND FILMS BY GAS-PHASE SYNTHESIS
Vandenbulcke et al. On the control of diamond deposition structure and morphology
Vandenbulcke et al. Microwave plasma assisted chemical vapor deposition of diamond
JP2803396B2 (en) Diamond thin film synthesis equipment
Brunsteiner et al. Influence of carbon monoxide—addition to the reaction gas on the hot-filament diamond deposition