JPS63159292A - Preparation of diamond film - Google Patents

Preparation of diamond film

Info

Publication number
JPS63159292A
JPS63159292A JP30707986A JP30707986A JPS63159292A JP S63159292 A JPS63159292 A JP S63159292A JP 30707986 A JP30707986 A JP 30707986A JP 30707986 A JP30707986 A JP 30707986A JP S63159292 A JPS63159292 A JP S63159292A
Authority
JP
Japan
Prior art keywords
mesh
filament
diamond
melting point
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30707986A
Other languages
Japanese (ja)
Inventor
Tatsuo Obata
龍夫 小畑
Hiroshi Daiou
大王 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP30707986A priority Critical patent/JPS63159292A/en
Publication of JPS63159292A publication Critical patent/JPS63159292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To uniformly deposit a diamond on a substrate having large area or a curved substrate, by applying an electric current to a metal mesh having high melting point and heating the metal mesh and exciting a raw material gas introduced into a decompressed vessel by using electron rays jointly at the same time. CONSTITUTION:A substrate 1 depositing a diamond in a decompressed vessel 4 and a metal filament 2 having high melting point are arranged. A metal mesh 3 having high melting point is provided between the filament 2 and substrate 1. Then a electric current is applied to the mesh 3 and the above- mentioned filament 2, which is then heated. Bias voltage positive to the filament 2 is applied to the mesh 3. Then a gas of organic compound is diluted with hydrogen and introduced into the above-mentioned vessel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤモンド膜の作製方法に関し、ざらに訂
しくけ、大面積酸tよ曲面を右Jる3%材面上にダイヤ
モンドを均一に析出させる方法に関づる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a diamond film, in which diamond is uniformly deposited on a 3% material surface with a large area acid t or a curved surface. It relates to the method of precipitation.

〔従来の技術〕[Conventional technology]

グイ)フモンドは最も硬い物質で、さらに熱伝導率は銅
の3〜4倍であるにもかかわらず、電気抵抗は10′5
〜10′6Ωcraと^く、極めて優れた絶縁性を示で
。また、ダイヤモンドに硼素、窒素を添加することによ
りP型或はN型の半導体を作成でる研究もすすめられて
いる。
Gui) Fumondo is the hardest material, and even though its thermal conductivity is 3 to 4 times that of copper, its electrical resistance is 10'5.
~10'6 Ωcra, exhibiting extremely excellent insulation properties. Research is also underway to create a P-type or N-type semiconductor by adding boron or nitrogen to diamond.

このように、ユニークな特性を4″1−46ダイヤモン
ドは、その特性を利用して、バイト笠の切削工具のコー
ディングや、集積回路のチップのヒートシンク等にも用
いられ、その利用範囲は拡大の一途をたどっている。
In this way, the unique properties of 4" 1-46 diamonds are used to coat cutting tools for tool caps, heat sinks for integrated circuit chips, etc., and the scope of its use continues to expand. I'm on my way.

人工的につくられる合成ダイヤモンドとしては、焼結ダ
イヤモンドおよびCVD法によるダイヤモンド膜とある
が、ダイヤモンド膜は、比較的容易につくることができ
、その製造技術は数多く発表されている(例えば、特開
昭58−911001同59−3098等)。
Artificially produced synthetic diamonds include sintered diamond and diamond films produced by the CVD method. Diamond films can be produced relatively easily, and many manufacturing techniques have been published (for example, in JP-A (Sho 58-911001, Sho 59-3098, etc.).

上記CVD法としては、熱フイラメントCVD法、マイ
クD波プラズマCVD法、レーザCVD法等があるが、
中でも熱フィラメントCVD法は、装置の構成が単純で
あるという利点を有する。
Examples of the above-mentioned CVD methods include thermal filament CVD, microphone D-wave plasma CVD, and laser CVD.
Among these, the hot filament CVD method has the advantage of a simple device configuration.

基本的な熱フィラメントCVD法は、水素で希釈した炭
化水素ガス雰囲気中で、タングステンのフィラメントを
通電加熱して白熱化させ、その直下にシリコンウェハな
どの基板をおき、この基板面にダイヤモンド薄膜を析出
させる方法で、一般的条件としては、フィラメントの温
[1800〜2200”C、フィラメントと基板面との
間隔5〜20mm、圧力30 Torr、原料ガスとし
ては、メタンを水素によって100〜200倍に希釈し
たガスを10〜30ae/sinの速度で導入する。
The basic hot filament CVD method involves heating a tungsten filament with electricity to make it incandescent in a hydrocarbon gas atmosphere diluted with hydrogen, placing a substrate such as a silicon wafer directly below it, and depositing a diamond thin film on the substrate surface. The general conditions are: filament temperature [1800 to 2200''C, distance between filament and substrate surface 5 to 20 mm, pressure 30 Torr, and raw material gas: methane diluted 100 to 200 times with hydrogen. The gas is introduced at a rate of 10 to 30 ae/sin.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記従来の熱フイラメントCVD法では、例
えば幕板とフィラメントの間隔を5m+とした場合、基
板面にダイヤモンドを均一に析出できるのは、径5m程
度の面積で、これ以上の面積に均一に析出させるために
は、基板を回転させる等の工夫が必要であった。
By the way, in the above-mentioned conventional hot filament CVD method, when the distance between the curtain plate and the filament is set to 5 m+, for example, diamond can be uniformly deposited on the substrate surface in an area with a diameter of about 5 m, and diamond can be deposited uniformly on a larger area. In order to deposit, it was necessary to take measures such as rotating the substrate.

すなわら、熱フィラメントが原料ガスをダイヤモンドの
析出可能になるまで励起させる空間の大きさは限られて
いるため、比較的大きな面積、或は曲面にダイヤモンド
を均一に析出させることは困難であった。
In other words, because the size of the space in which the hot filament excites the raw material gas until diamond can be precipitated is limited, it is difficult to uniformly precipitate diamond over a relatively large area or curved surface. Ta.

本発明は上記の事情に鑑み、比較的大面積、或は曲面に
均一にダイヤモンドを析出させることができる熱フイラ
メントCVD法によるダイヤモンド膜の作製方法を提供
することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a method for producing a diamond film using a hot filament CVD method, which allows diamond to be uniformly deposited over a relatively large area or a curved surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成すべくなされたもので、その
要旨は、減圧に保持可能な容器中に、ダイヤモンドを析
出さUる基材と高融点金属フィラメントとを所定の間隔
をおいて配設し、これら基材とフイラメン1への間に高
)11点金属メツシュを設け、上記フィラメントおよび
メツシュを通電加熱すると共に、メツシュに、フィラメ
ントに対して正のバイアス電圧を印加し、有機化合物の
ガスを水素によって希釈して、上記容器内に導入するダ
イヤモンド膜の作製方法にある。
The present invention has been made to achieve the above object, and its gist is that a base material on which diamond is deposited and a high melting point metal filament are placed at a predetermined distance in a container that can be maintained at reduced pressure. A high) 11-point metal mesh is provided between these base materials and the filament 1, and the filament and the mesh are electrically heated and a positive bias voltage is applied to the mesh to form an organic compound. The method of manufacturing a diamond film includes diluting gas with hydrogen and introducing the diluted gas into the container.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明の方法に用いられるダイヤモンドを析出させるS
、%材としては、シリコン、モリブデン、銅、タングス
テン、金、銀等が用いられ、析出に用いるフィラメント
費メツシュを構成する高融点金属としては、融点が20
00℃以上で、通電によって白熱可能なタングステン、
タンタンル、モリブデン、ルテニウム、レニウム、オス
ミウム、インジウムのうりの一種、または複数の合金が
用いられる。
S for precipitating diamond used in the method of the present invention
, silicon, molybdenum, copper, tungsten, gold, silver, etc. are used as the material, and as the high melting point metal constituting the filament mesh used for precipitation, the melting point is 20%.
Tungsten that can become incandescent when energized at temperatures above 00℃,
One or more alloys of tantalum, molybdenum, ruthenium, rhenium, osmium, and indium are used.

第1図は、本発明の1ノ法を実施する装置の一例を示す
もので、図中符号1は板状の基材である。
FIG. 1 shows an example of an apparatus for carrying out method 1 of the present invention, and reference numeral 1 in the figure is a plate-shaped base material.

この基材1の一方の而1aど所定の間隔をおいて、高融
点金属のフィラメント2が、面1aに対向して平行に配
設されている。このフィラメント2は、必要に応じて1
木の線またはループ状に巻いたものが用いられる。上記
基材面1aとフィラメント2との間には、基1面1aよ
り所定の間隔においてTi融点金属製のメツシュ3が而
1aに平行に設けられている。
On one side of the base material 1, filaments 2 of high melting point metal are arranged parallel to and facing the surface 1a at a predetermined interval. This filament 2 can be
Wooden wire or loops are used. Between the base material surface 1a and the filament 2, a mesh 3 made of Ti melting point metal is provided parallel to the base material surface 1a at a predetermined interval from the base material surface 1a.

上記フィラメント2およびメツシュ3には、イれぞれに
これらを別個に加熱する電源2a、3aが接続されてい
る。、さらに、メツシュ3にはフィラメントに対して、
また1&材1にはメツシュに対して、それぞれ正のバイ
アス電圧がかけられるバイアス電源3b、1bが接続さ
れている。
Power sources 2a and 3a are connected to the filament 2 and mesh 3, respectively, for heating them separately. , Furthermore, for mesh 3, for the filament,
Further, bias power supplies 3b and 1b are connected to the mesh 1 and the material 1, respectively, to apply a positive bias voltage to the mesh.

上記装置は、減圧状態とすることができる容器(ベルジ
ャ)4内に収納されている。
The above device is housed in a container (bell jar) 4 that can be brought into a reduced pressure state.

上記構成の装置を用いてグイrtンド膜を析出させるに
は、次の操作によって行なわれる。先ず、容器4内を所
定の減圧度に保持して原料ガスを所定の速度で導入する
。次いで加熱°電源3aを入れてメツシュ3を加熱すれ
ば、基材面1a近傍空間の原料ガスを広範囲に励起づる
ことが出来る。さらに、フィラメント2を通電加熱し、
メツシュ3に、フィラメント2に対して500〜200
0Vの正のバイアス電圧を印加することによって電子線
を引出し、メッシュ3仝体を均一に加熱すれば、基材面
1aに析出するダイヤモンド膜の均一性はざらに向上す
る。また、メツシュ3にトラップされずに、これを通過
して基材面1aに達する一部の電子線は、ダイヤモンド
の析出を促進する効果を有するが、この際、塞材1をメ
ツシュに対して100〜1000Vの正のバイアス電圧
をかけてお【プば、効果を増大するので好ましい。
The following operations are performed to deposit a guided film using the apparatus having the above configuration. First, the inside of the container 4 is maintained at a predetermined degree of vacuum, and the raw material gas is introduced at a predetermined rate. Next, by turning on the heating power supply 3a and heating the mesh 3, the raw material gas in the space near the base material surface 1a can be excited over a wide range. Furthermore, the filament 2 is heated with electricity,
500-200 for mesh 3 and filament 2
If a positive bias voltage of 0 V is applied to draw out the electron beam and uniformly heat the mesh 3 body, the uniformity of the diamond film deposited on the substrate surface 1a will be greatly improved. In addition, some of the electron beams that are not trapped by the mesh 3 and reach the base material surface 1a have the effect of promoting diamond precipitation, but in this case, the plugging material 1 is moved against the mesh. It is preferable to apply a positive bias voltage of 100 to 1000 V to increase the effect.

このように、メツシュ3の形状を基材面1aに合わせ、
平行に配置することにより、メツシュ3と基材面1aと
の間のガスは一定の励起状態に保持される。したがって
本発明の方法は、広い基板面、或は曲面にダイヤモンド
を均一に析出させることが可能となる。
In this way, adjust the shape of the mesh 3 to the base material surface 1a,
By arranging them in parallel, the gas between the mesh 3 and the base material surface 1a is maintained in a constant excited state. Therefore, the method of the present invention makes it possible to uniformly deposit diamond on a wide substrate surface or a curved surface.

原料ガス中の水素以外の成分としては、メタン、エチレ
ン等の直鎖炭化水素の他、エタノール、アセトン等、含
酸素有機溶剤が使用されるが、申−ガス、或は複数種の
混合ガスがいずれも使用でき、水素によって10倍以上
に希釈して用いる。
Components other than hydrogen in the raw material gas include linear hydrocarbons such as methane and ethylene, as well as oxygen-containing organic solvents such as ethanol and acetone. Either can be used, diluted ten times or more with hydrogen.

〔実施例〕〔Example〕

次に実施例を示して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to Examples.

実施例1 第2図で示すように、直径約15CIIiの石英ガラス
製ベルジ1#4の内部に、径30m、高ざ40trut
rで表面を粒度1μmのダイヤモンドペーストで鏡面研
摩した円筒状のシリコン111を配置した。
Example 1 As shown in Fig. 2, a quartz glass verge 1#4 with a diameter of about 15 CIIi has a diameter of 30 m and a height of 40 truts.
A cylindrical silicon 111 whose surface was mirror-polished with diamond paste having a grain size of 1 μm was placed.

この基材11の面より20Imの間隔をおいて、径0.
2Mのタングステン線をループ状に谷いたフィラメント
12を13材面に平行に配設した。このフィラメント1
2と基材11の面との間に、基材面より511I11の
間隔をおいて、0.2mのタングステン線によってつく
られた100メツシユ網目の173円筒状のメツシュ1
3を基材11の面に平行に配置した。
At a distance of 20 Im from the surface of this base material 11, a diameter of 0.
A filament 12 made of a 2M tungsten wire cut into a loop shape was arranged parallel to the surface of the material 13. This filament 1
2 and the surface of the base material 11, a 173 cylindrical mesh 1 with 100 meshes made of 0.2 m tungsten wire is placed at a distance of 511I11 from the surface of the base material.
3 was arranged parallel to the surface of the base material 11.

上記装置を用いてダイヤモンド膜をつくるには、メタン
0.2sccn水索15sccnをベルジ1r−4内に
導入すると共に3 Q Torrに保持し、フィラメン
ト12を2000℃に通電加熱し、メッシュ13に、フ
ィラメントに対し1000Vの正のバイアス電圧を印加
した。この際、エリミネーション電流は500aAに達
した。また基材11に、メツシュ13に対して800V
の正のバイアス電圧を印加した。これによりメツシュ1
3は赤熱した。次いでメツシュ13を通電加熱し、その
温度を1800℃まで昇温した。
To make a diamond film using the above apparatus, 0.2 sccn of methane and 15 sccn of water line were introduced into the verge 1r-4 and maintained at 3 Q Torr, the filament 12 was electrically heated to 2000°C, and the mesh 13 was A positive bias voltage of 1000V was applied to the filament. At this time, the elimination current reached 500 aA. In addition, 800 V is applied to the base material 11 with respect to the mesh 13.
A positive bias voltage of . As a result, mesh 1
3 was red hot. Next, the mesh 13 was electrically heated and its temperature was raised to 1800°C.

2時間の運転後、メツシュ13と対向する基材面の約6
0%が直径3μmのダイヤモンドらしい微結晶からなる
膜で被覆された。この膜を、X線回折分析、ラマン分光
分析で分析した結果、析出膜はダイヤモンドであること
が確認された。このダイヤモンド膜の析出速度は17μ
m/hrであった。
After 2 hours of operation, about 6 pieces of the base material surface facing mesh 13
0% was covered with a film consisting of diamond-like microcrystals with a diameter of 3 μm. As a result of analyzing this film by X-ray diffraction analysis and Raman spectroscopy, it was confirmed that the deposited film was diamond. The deposition rate of this diamond film is 17μ
m/hr.

実施夕12 第3図に示すように、フィラメント12を5INRの間
隔をおいて2本設け、メツシュ13を半円筒状とし、フ
ィラメント12を1800℃、メツシュ13を1700
℃とした他は、実施例1と同じにしてダイヤエンド膜を
作製した。
Implementation Example 12 As shown in Figure 3, two filaments 12 were provided with an interval of 5 INR, the mesh 13 was semi-cylindrical, the filament 12 was heated to 1800°C, and the mesh 13 was heated to 1700°C.
A diamond end film was produced in the same manner as in Example 1 except that the temperature was changed to .degree.

2時間の運転後、メツシュ13と対向する基材11の面
の約80%は微結晶による均一す膜で被覆された。この
膜は、X線回折分析、ラマン分光分析により、ダイヤモ
ンドであることが確認された。このダイ曳7モンド摸の
生成速度は14μvL/h「であった。
After 2 hours of operation, approximately 80% of the surface of the base material 11 facing the mesh 13 was covered with a uniform film of microcrystals. This film was confirmed to be diamond by X-ray diffraction analysis and Raman spectroscopy. The production rate of this die-pulled 7-mond sample was 14 μvL/h.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法は、高融点金属のメツシ
ュを通電加熱するとともに゛電子線加熱を併用するので
、メツシュが均一に加熱され、原料ガスを広い空間で励
起することができる。また、メツシュを通過した電子線
が基材表面を励起し、広い面積にわたってダイヤモンド
の析出速度が高く保たれる。さらに、メツシュの形状を
1u11面に合わUることによって、曲面ユ、を材の均
一なグイ\71ンドコーティングが可能となる等多くの
長所を右りる。
As described above, in the method of the present invention, a mesh of a high melting point metal is electrically heated and electron beam heating is used in combination, so that the mesh can be heated uniformly and the raw material gas can be excited in a wide space. Furthermore, the electron beam passing through the mesh excites the surface of the base material, and the rate of diamond precipitation is maintained at a high rate over a wide area. Furthermore, by adapting the shape of the mesh to the 1u11 surface, there are many advantages, such as the ability to uniformly coat materials on curved surfaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−実り角例を丞すI京理的説明図、第
2図、第3図は曲面基材にダイヤtンドコーテインクを
行なう方法の例を丞す斜視図である。 1・・・・・・板状の基材、 1a・・・・・・一方の面、 1b・・・・・・バイアス電源、 2・・・・・・高融点金属フィラメント(フィラメント
)、2a・・・・・・加熱゛電源、 3・・・・・・高融点金属メツシュ(メツシュ)、3a
・・・・・・加熱電源、 3b・・・・・・バイアス電源、 4・・・・・・容3(ベルジp −)、11・・・・・
・基材、 12・・・・・・フィラメント、 13・・・・・・メツシュ。
Fig. 1 is a scientific explanatory diagram showing an example of the fruiting angle of the present invention, and Figs. 2 and 3 are perspective views showing an example of a method of applying diamond coated ink to a curved substrate. . 1... Plate-shaped base material, 1a... One side, 1b... Bias power supply, 2... High melting point metal filament (filament), 2a ... Heating power supply, 3 ... High melting point metal mesh (mesh), 3a
... Heating power supply, 3b ... Bias power supply, 4 ... Capacity 3 (belge p -), 11 ...
-Base material, 12...Filament, 13...Mesh.

Claims (2)

【特許請求の範囲】[Claims] (1)減圧に保持可能な容器中に、ダイヤモンドを析出
させる基材と高融点金属フィラメントとを所定の間隔を
おいて配設し、これら基材とフィラメントの間に高融点
金属メッシュを設け、上記フィラメントおよびメッシュ
を通電加熱すると共に、メッシュに、フィラメントに対
して正のバイアス電圧を印加し、有機化合物のガスを水
素によつて希釈して、上記容器内に導入することを特徴
とするダイヤモンド膜の作製方法。
(1) A base material for depositing diamond and a high melting point metal filament are arranged at a predetermined distance in a container that can be maintained at reduced pressure, and a high melting point metal mesh is provided between these base materials and the filament, A diamond characterized in that the filament and the mesh are heated with electricity, a positive bias voltage is applied to the mesh to dilute the organic compound gas with hydrogen, and the diluted gas is introduced into the container. Membrane preparation method.
(2)高融点金属が、タングステン、タンタル、モリブ
デン、ルテニウム、レニウム、オスミウム、インジウム
のうち一種、または複数種の合金である特許請求の範囲
第1項記載のダイヤモンド膜の作製方法。
(2) The method for producing a diamond film according to claim 1, wherein the high melting point metal is an alloy of one or more of tungsten, tantalum, molybdenum, ruthenium, rhenium, osmium, and indium.
JP30707986A 1986-12-23 1986-12-23 Preparation of diamond film Pending JPS63159292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30707986A JPS63159292A (en) 1986-12-23 1986-12-23 Preparation of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30707986A JPS63159292A (en) 1986-12-23 1986-12-23 Preparation of diamond film

Publications (1)

Publication Number Publication Date
JPS63159292A true JPS63159292A (en) 1988-07-02

Family

ID=17964783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30707986A Pending JPS63159292A (en) 1986-12-23 1986-12-23 Preparation of diamond film

Country Status (1)

Country Link
JP (1) JPS63159292A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145712A (en) * 1991-02-08 1992-09-08 Center For Innovative Technology Chemical deposition of diamond
US5146481A (en) * 1991-06-25 1992-09-08 Diwakar Garg Diamond membranes for X-ray lithography
EP0774532A3 (en) * 1995-11-14 1998-06-17 Philips Patentverwaltung GmbH Process for the production of a diamond layer with homogensed thickness profile, diamond windows and membranes thus produced
US5939140A (en) * 1994-06-13 1999-08-17 Sumitomo Electric Industries, Ltd. Hot filament CVD of diamond films
EP0959148A2 (en) * 1996-07-16 1999-11-24 OOO "Vysokie Tekhnologii" Method for producing diamond films using a vapour-phase synthesis system
JP2007238989A (en) * 2006-03-07 2007-09-20 Ebara Corp Method for manufacturing diamond electrode
US7404980B2 (en) * 2000-02-25 2008-07-29 Blyablin Alexandr Alexandrovic Method for producing an addressable field-emission cathode and an associated display structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145712A (en) * 1991-02-08 1992-09-08 Center For Innovative Technology Chemical deposition of diamond
US5146481A (en) * 1991-06-25 1992-09-08 Diwakar Garg Diamond membranes for X-ray lithography
US5939140A (en) * 1994-06-13 1999-08-17 Sumitomo Electric Industries, Ltd. Hot filament CVD of diamond films
EP0774532A3 (en) * 1995-11-14 1998-06-17 Philips Patentverwaltung GmbH Process for the production of a diamond layer with homogensed thickness profile, diamond windows and membranes thus produced
EP0959148A2 (en) * 1996-07-16 1999-11-24 OOO "Vysokie Tekhnologii" Method for producing diamond films using a vapour-phase synthesis system
EP0959148A4 (en) * 1996-07-16 2001-09-12 Ooo Vysokie T Method for producing diamond films using a vapour-phase synthesis system
US7404980B2 (en) * 2000-02-25 2008-07-29 Blyablin Alexandr Alexandrovic Method for producing an addressable field-emission cathode and an associated display structure
JP2007238989A (en) * 2006-03-07 2007-09-20 Ebara Corp Method for manufacturing diamond electrode

Similar Documents

Publication Publication Date Title
Nemanich et al. CVD diamond—Research, applications, and challenges
KR910001367B1 (en) Gaseous phase synthesized diamond film and method for synthesizing same
JP3136307B2 (en) Diamond mounting substrate for electronic applications
KR101878746B1 (en) Hexagonal boron nitride sheet, process for preparing the sheet and electronic device comprising the sheet
GB2295401A (en) Monocrystalline diamond films
TWI248469B (en) Manufacturing method of zinc oxide nanowires
JP2007238377A (en) Manufacturing method of base material for growing single crystal diamond
CN109437124B (en) Method for synthesizing single-layer transition metal chalcogenide
Kawamoto et al. Micrometer-scale monolayer SnS growth by physical vapor deposition
EP0519472A2 (en) Diamond-metal junction product
US8158011B2 (en) Method of fabrication of cubic boron nitride conical microstructures
JPS63159292A (en) Preparation of diamond film
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JPH0948693A (en) Method for forming diamond single crystal film
JP2016066756A (en) Method for manufacturing crystal laminate structure, and semiconductor device
Kaloyeros et al. Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications: Part II. PVD and Alternative (Non-PVD and Non-CVD) Deposition Techniques
JPS62202897A (en) Production of diamond
Mukherjee et al. Synthesis, characterization and electrical properties of hybrid Zn2GeO4–ZnO beaded nanowire arrays
JPS616198A (en) Production of diamond thin film
KR102270354B1 (en) A method for epitaxial growth of single crystalline heterogeneous 2D materials and stacked structure
JPS62171993A (en) Production of diamond semiconductor
JPS63283014A (en) Silicon carbide semiconductor element
CN111910171A (en) Device and method for synthesizing two-dimensional material by regulating and controlling electric field and/or magnetic field
May et al. Diamond thin films: a 21st century material. Part 2: a new hope
JP3728469B2 (en) Method for forming single crystal diamond film