JPS63159292A - Preparation of diamond film - Google Patents
Preparation of diamond filmInfo
- Publication number
- JPS63159292A JPS63159292A JP30707986A JP30707986A JPS63159292A JP S63159292 A JPS63159292 A JP S63159292A JP 30707986 A JP30707986 A JP 30707986A JP 30707986 A JP30707986 A JP 30707986A JP S63159292 A JPS63159292 A JP S63159292A
- Authority
- JP
- Japan
- Prior art keywords
- mesh
- filament
- diamond
- melting point
- high melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 35
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims 2
- 239000007789 gas Substances 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 238000002844 melting Methods 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 229910052762 osmium Inorganic materials 0.000 claims 1
- 229910052702 rhenium Inorganic materials 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 239000002994 raw material Substances 0.000 abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000004050 hot filament vapor deposition Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002065 inelastic X-ray scattering Methods 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910000820 Os alloy Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- -1 methane and ethylene Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ダイヤモンド膜の作製方法に関し、ざらに訂
しくけ、大面積酸tよ曲面を右Jる3%材面上にダイヤ
モンドを均一に析出させる方法に関づる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a diamond film, in which diamond is uniformly deposited on a 3% material surface with a large area acid t or a curved surface. It relates to the method of precipitation.
グイ)フモンドは最も硬い物質で、さらに熱伝導率は銅
の3〜4倍であるにもかかわらず、電気抵抗は10′5
〜10′6Ωcraと^く、極めて優れた絶縁性を示で
。また、ダイヤモンドに硼素、窒素を添加することによ
りP型或はN型の半導体を作成でる研究もすすめられて
いる。Gui) Fumondo is the hardest material, and even though its thermal conductivity is 3 to 4 times that of copper, its electrical resistance is 10'5.
~10'6 Ωcra, exhibiting extremely excellent insulation properties. Research is also underway to create a P-type or N-type semiconductor by adding boron or nitrogen to diamond.
このように、ユニークな特性を4″1−46ダイヤモン
ドは、その特性を利用して、バイト笠の切削工具のコー
ディングや、集積回路のチップのヒートシンク等にも用
いられ、その利用範囲は拡大の一途をたどっている。In this way, the unique properties of 4" 1-46 diamonds are used to coat cutting tools for tool caps, heat sinks for integrated circuit chips, etc., and the scope of its use continues to expand. I'm on my way.
人工的につくられる合成ダイヤモンドとしては、焼結ダ
イヤモンドおよびCVD法によるダイヤモンド膜とある
が、ダイヤモンド膜は、比較的容易につくることができ
、その製造技術は数多く発表されている(例えば、特開
昭58−911001同59−3098等)。Artificially produced synthetic diamonds include sintered diamond and diamond films produced by the CVD method. Diamond films can be produced relatively easily, and many manufacturing techniques have been published (for example, in JP-A (Sho 58-911001, Sho 59-3098, etc.).
上記CVD法としては、熱フイラメントCVD法、マイ
クD波プラズマCVD法、レーザCVD法等があるが、
中でも熱フィラメントCVD法は、装置の構成が単純で
あるという利点を有する。Examples of the above-mentioned CVD methods include thermal filament CVD, microphone D-wave plasma CVD, and laser CVD.
Among these, the hot filament CVD method has the advantage of a simple device configuration.
基本的な熱フィラメントCVD法は、水素で希釈した炭
化水素ガス雰囲気中で、タングステンのフィラメントを
通電加熱して白熱化させ、その直下にシリコンウェハな
どの基板をおき、この基板面にダイヤモンド薄膜を析出
させる方法で、一般的条件としては、フィラメントの温
[1800〜2200”C、フィラメントと基板面との
間隔5〜20mm、圧力30 Torr、原料ガスとし
ては、メタンを水素によって100〜200倍に希釈し
たガスを10〜30ae/sinの速度で導入する。The basic hot filament CVD method involves heating a tungsten filament with electricity to make it incandescent in a hydrocarbon gas atmosphere diluted with hydrogen, placing a substrate such as a silicon wafer directly below it, and depositing a diamond thin film on the substrate surface. The general conditions are: filament temperature [1800 to 2200''C, distance between filament and substrate surface 5 to 20 mm, pressure 30 Torr, and raw material gas: methane diluted 100 to 200 times with hydrogen. The gas is introduced at a rate of 10 to 30 ae/sin.
ところで、上記従来の熱フイラメントCVD法では、例
えば幕板とフィラメントの間隔を5m+とした場合、基
板面にダイヤモンドを均一に析出できるのは、径5m程
度の面積で、これ以上の面積に均一に析出させるために
は、基板を回転させる等の工夫が必要であった。By the way, in the above-mentioned conventional hot filament CVD method, when the distance between the curtain plate and the filament is set to 5 m+, for example, diamond can be uniformly deposited on the substrate surface in an area with a diameter of about 5 m, and diamond can be deposited uniformly on a larger area. In order to deposit, it was necessary to take measures such as rotating the substrate.
すなわら、熱フィラメントが原料ガスをダイヤモンドの
析出可能になるまで励起させる空間の大きさは限られて
いるため、比較的大きな面積、或は曲面にダイヤモンド
を均一に析出させることは困難であった。In other words, because the size of the space in which the hot filament excites the raw material gas until diamond can be precipitated is limited, it is difficult to uniformly precipitate diamond over a relatively large area or curved surface. Ta.
本発明は上記の事情に鑑み、比較的大面積、或は曲面に
均一にダイヤモンドを析出させることができる熱フイラ
メントCVD法によるダイヤモンド膜の作製方法を提供
することを目的とする。In view of the above circumstances, it is an object of the present invention to provide a method for producing a diamond film using a hot filament CVD method, which allows diamond to be uniformly deposited over a relatively large area or a curved surface.
本発明は上記の目的を達成すべくなされたもので、その
要旨は、減圧に保持可能な容器中に、ダイヤモンドを析
出さUる基材と高融点金属フィラメントとを所定の間隔
をおいて配設し、これら基材とフイラメン1への間に高
)11点金属メツシュを設け、上記フィラメントおよび
メツシュを通電加熱すると共に、メツシュに、フィラメ
ントに対して正のバイアス電圧を印加し、有機化合物の
ガスを水素によって希釈して、上記容器内に導入するダ
イヤモンド膜の作製方法にある。The present invention has been made to achieve the above object, and its gist is that a base material on which diamond is deposited and a high melting point metal filament are placed at a predetermined distance in a container that can be maintained at reduced pressure. A high) 11-point metal mesh is provided between these base materials and the filament 1, and the filament and the mesh are electrically heated and a positive bias voltage is applied to the mesh to form an organic compound. The method of manufacturing a diamond film includes diluting gas with hydrogen and introducing the diluted gas into the container.
以下本発明の詳細な説明する。 The present invention will be explained in detail below.
本発明の方法に用いられるダイヤモンドを析出させるS
、%材としては、シリコン、モリブデン、銅、タングス
テン、金、銀等が用いられ、析出に用いるフィラメント
費メツシュを構成する高融点金属としては、融点が20
00℃以上で、通電によって白熱可能なタングステン、
タンタンル、モリブデン、ルテニウム、レニウム、オス
ミウム、インジウムのうりの一種、または複数の合金が
用いられる。S for precipitating diamond used in the method of the present invention
, silicon, molybdenum, copper, tungsten, gold, silver, etc. are used as the material, and as the high melting point metal constituting the filament mesh used for precipitation, the melting point is 20%.
Tungsten that can become incandescent when energized at temperatures above 00℃,
One or more alloys of tantalum, molybdenum, ruthenium, rhenium, osmium, and indium are used.
第1図は、本発明の1ノ法を実施する装置の一例を示す
もので、図中符号1は板状の基材である。FIG. 1 shows an example of an apparatus for carrying out method 1 of the present invention, and reference numeral 1 in the figure is a plate-shaped base material.
この基材1の一方の而1aど所定の間隔をおいて、高融
点金属のフィラメント2が、面1aに対向して平行に配
設されている。このフィラメント2は、必要に応じて1
木の線またはループ状に巻いたものが用いられる。上記
基材面1aとフィラメント2との間には、基1面1aよ
り所定の間隔においてTi融点金属製のメツシュ3が而
1aに平行に設けられている。On one side of the base material 1, filaments 2 of high melting point metal are arranged parallel to and facing the surface 1a at a predetermined interval. This filament 2 can be
Wooden wire or loops are used. Between the base material surface 1a and the filament 2, a mesh 3 made of Ti melting point metal is provided parallel to the base material surface 1a at a predetermined interval from the base material surface 1a.
上記フィラメント2およびメツシュ3には、イれぞれに
これらを別個に加熱する電源2a、3aが接続されてい
る。、さらに、メツシュ3にはフィラメントに対して、
また1&材1にはメツシュに対して、それぞれ正のバイ
アス電圧がかけられるバイアス電源3b、1bが接続さ
れている。Power sources 2a and 3a are connected to the filament 2 and mesh 3, respectively, for heating them separately. , Furthermore, for mesh 3, for the filament,
Further, bias power supplies 3b and 1b are connected to the mesh 1 and the material 1, respectively, to apply a positive bias voltage to the mesh.
上記装置は、減圧状態とすることができる容器(ベルジ
ャ)4内に収納されている。The above device is housed in a container (bell jar) 4 that can be brought into a reduced pressure state.
上記構成の装置を用いてグイrtンド膜を析出させるに
は、次の操作によって行なわれる。先ず、容器4内を所
定の減圧度に保持して原料ガスを所定の速度で導入する
。次いで加熱°電源3aを入れてメツシュ3を加熱すれ
ば、基材面1a近傍空間の原料ガスを広範囲に励起づる
ことが出来る。さらに、フィラメント2を通電加熱し、
メツシュ3に、フィラメント2に対して500〜200
0Vの正のバイアス電圧を印加することによって電子線
を引出し、メッシュ3仝体を均一に加熱すれば、基材面
1aに析出するダイヤモンド膜の均一性はざらに向上す
る。また、メツシュ3にトラップされずに、これを通過
して基材面1aに達する一部の電子線は、ダイヤモンド
の析出を促進する効果を有するが、この際、塞材1をメ
ツシュに対して100〜1000Vの正のバイアス電圧
をかけてお【プば、効果を増大するので好ましい。The following operations are performed to deposit a guided film using the apparatus having the above configuration. First, the inside of the container 4 is maintained at a predetermined degree of vacuum, and the raw material gas is introduced at a predetermined rate. Next, by turning on the heating power supply 3a and heating the mesh 3, the raw material gas in the space near the base material surface 1a can be excited over a wide range. Furthermore, the filament 2 is heated with electricity,
500-200 for mesh 3 and filament 2
If a positive bias voltage of 0 V is applied to draw out the electron beam and uniformly heat the mesh 3 body, the uniformity of the diamond film deposited on the substrate surface 1a will be greatly improved. In addition, some of the electron beams that are not trapped by the mesh 3 and reach the base material surface 1a have the effect of promoting diamond precipitation, but in this case, the plugging material 1 is moved against the mesh. It is preferable to apply a positive bias voltage of 100 to 1000 V to increase the effect.
このように、メツシュ3の形状を基材面1aに合わせ、
平行に配置することにより、メツシュ3と基材面1aと
の間のガスは一定の励起状態に保持される。したがって
本発明の方法は、広い基板面、或は曲面にダイヤモンド
を均一に析出させることが可能となる。In this way, adjust the shape of the mesh 3 to the base material surface 1a,
By arranging them in parallel, the gas between the mesh 3 and the base material surface 1a is maintained in a constant excited state. Therefore, the method of the present invention makes it possible to uniformly deposit diamond on a wide substrate surface or a curved surface.
原料ガス中の水素以外の成分としては、メタン、エチレ
ン等の直鎖炭化水素の他、エタノール、アセトン等、含
酸素有機溶剤が使用されるが、申−ガス、或は複数種の
混合ガスがいずれも使用でき、水素によって10倍以上
に希釈して用いる。Components other than hydrogen in the raw material gas include linear hydrocarbons such as methane and ethylene, as well as oxygen-containing organic solvents such as ethanol and acetone. Either can be used, diluted ten times or more with hydrogen.
次に実施例を示して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to Examples.
実施例1
第2図で示すように、直径約15CIIiの石英ガラス
製ベルジ1#4の内部に、径30m、高ざ40trut
rで表面を粒度1μmのダイヤモンドペーストで鏡面研
摩した円筒状のシリコン111を配置した。Example 1 As shown in Fig. 2, a quartz glass verge 1#4 with a diameter of about 15 CIIi has a diameter of 30 m and a height of 40 truts.
A cylindrical silicon 111 whose surface was mirror-polished with diamond paste having a grain size of 1 μm was placed.
この基材11の面より20Imの間隔をおいて、径0.
2Mのタングステン線をループ状に谷いたフィラメント
12を13材面に平行に配設した。このフィラメント1
2と基材11の面との間に、基材面より511I11の
間隔をおいて、0.2mのタングステン線によってつく
られた100メツシユ網目の173円筒状のメツシュ1
3を基材11の面に平行に配置した。At a distance of 20 Im from the surface of this base material 11, a diameter of 0.
A filament 12 made of a 2M tungsten wire cut into a loop shape was arranged parallel to the surface of the material 13. This filament 1
2 and the surface of the base material 11, a 173 cylindrical mesh 1 with 100 meshes made of 0.2 m tungsten wire is placed at a distance of 511I11 from the surface of the base material.
3 was arranged parallel to the surface of the base material 11.
上記装置を用いてダイヤモンド膜をつくるには、メタン
0.2sccn水索15sccnをベルジ1r−4内に
導入すると共に3 Q Torrに保持し、フィラメン
ト12を2000℃に通電加熱し、メッシュ13に、フ
ィラメントに対し1000Vの正のバイアス電圧を印加
した。この際、エリミネーション電流は500aAに達
した。また基材11に、メツシュ13に対して800V
の正のバイアス電圧を印加した。これによりメツシュ1
3は赤熱した。次いでメツシュ13を通電加熱し、その
温度を1800℃まで昇温した。To make a diamond film using the above apparatus, 0.2 sccn of methane and 15 sccn of water line were introduced into the verge 1r-4 and maintained at 3 Q Torr, the filament 12 was electrically heated to 2000°C, and the mesh 13 was A positive bias voltage of 1000V was applied to the filament. At this time, the elimination current reached 500 aA. In addition, 800 V is applied to the base material 11 with respect to the mesh 13.
A positive bias voltage of . As a result, mesh 1
3 was red hot. Next, the mesh 13 was electrically heated and its temperature was raised to 1800°C.
2時間の運転後、メツシュ13と対向する基材面の約6
0%が直径3μmのダイヤモンドらしい微結晶からなる
膜で被覆された。この膜を、X線回折分析、ラマン分光
分析で分析した結果、析出膜はダイヤモンドであること
が確認された。このダイヤモンド膜の析出速度は17μ
m/hrであった。After 2 hours of operation, about 6 pieces of the base material surface facing mesh 13
0% was covered with a film consisting of diamond-like microcrystals with a diameter of 3 μm. As a result of analyzing this film by X-ray diffraction analysis and Raman spectroscopy, it was confirmed that the deposited film was diamond. The deposition rate of this diamond film is 17μ
m/hr.
実施夕12
第3図に示すように、フィラメント12を5INRの間
隔をおいて2本設け、メツシュ13を半円筒状とし、フ
ィラメント12を1800℃、メツシュ13を1700
℃とした他は、実施例1と同じにしてダイヤエンド膜を
作製した。Implementation Example 12 As shown in Figure 3, two filaments 12 were provided with an interval of 5 INR, the mesh 13 was semi-cylindrical, the filament 12 was heated to 1800°C, and the mesh 13 was heated to 1700°C.
A diamond end film was produced in the same manner as in Example 1 except that the temperature was changed to .degree.
2時間の運転後、メツシュ13と対向する基材11の面
の約80%は微結晶による均一す膜で被覆された。この
膜は、X線回折分析、ラマン分光分析により、ダイヤモ
ンドであることが確認された。このダイ曳7モンド摸の
生成速度は14μvL/h「であった。After 2 hours of operation, approximately 80% of the surface of the base material 11 facing the mesh 13 was covered with a uniform film of microcrystals. This film was confirmed to be diamond by X-ray diffraction analysis and Raman spectroscopy. The production rate of this die-pulled 7-mond sample was 14 μvL/h.
以上述べたように本発明の方法は、高融点金属のメツシ
ュを通電加熱するとともに゛電子線加熱を併用するので
、メツシュが均一に加熱され、原料ガスを広い空間で励
起することができる。また、メツシュを通過した電子線
が基材表面を励起し、広い面積にわたってダイヤモンド
の析出速度が高く保たれる。さらに、メツシュの形状を
1u11面に合わUることによって、曲面ユ、を材の均
一なグイ\71ンドコーティングが可能となる等多くの
長所を右りる。As described above, in the method of the present invention, a mesh of a high melting point metal is electrically heated and electron beam heating is used in combination, so that the mesh can be heated uniformly and the raw material gas can be excited in a wide space. Furthermore, the electron beam passing through the mesh excites the surface of the base material, and the rate of diamond precipitation is maintained at a high rate over a wide area. Furthermore, by adapting the shape of the mesh to the 1u11 surface, there are many advantages, such as the ability to uniformly coat materials on curved surfaces.
第1図は本発明の−実り角例を丞すI京理的説明図、第
2図、第3図は曲面基材にダイヤtンドコーテインクを
行なう方法の例を丞す斜視図である。
1・・・・・・板状の基材、
1a・・・・・・一方の面、
1b・・・・・・バイアス電源、
2・・・・・・高融点金属フィラメント(フィラメント
)、2a・・・・・・加熱゛電源、
3・・・・・・高融点金属メツシュ(メツシュ)、3a
・・・・・・加熱電源、
3b・・・・・・バイアス電源、
4・・・・・・容3(ベルジp −)、11・・・・・
・基材、
12・・・・・・フィラメント、
13・・・・・・メツシュ。Fig. 1 is a scientific explanatory diagram showing an example of the fruiting angle of the present invention, and Figs. 2 and 3 are perspective views showing an example of a method of applying diamond coated ink to a curved substrate. . 1... Plate-shaped base material, 1a... One side, 1b... Bias power supply, 2... High melting point metal filament (filament), 2a ... Heating power supply, 3 ... High melting point metal mesh (mesh), 3a
... Heating power supply, 3b ... Bias power supply, 4 ... Capacity 3 (belge p -), 11 ...
-Base material, 12...Filament, 13...Mesh.
Claims (2)
させる基材と高融点金属フィラメントとを所定の間隔を
おいて配設し、これら基材とフィラメントの間に高融点
金属メッシュを設け、上記フィラメントおよびメッシュ
を通電加熱すると共に、メッシュに、フィラメントに対
して正のバイアス電圧を印加し、有機化合物のガスを水
素によつて希釈して、上記容器内に導入することを特徴
とするダイヤモンド膜の作製方法。(1) A base material for depositing diamond and a high melting point metal filament are arranged at a predetermined distance in a container that can be maintained at reduced pressure, and a high melting point metal mesh is provided between these base materials and the filament, A diamond characterized in that the filament and the mesh are heated with electricity, a positive bias voltage is applied to the mesh to dilute the organic compound gas with hydrogen, and the diluted gas is introduced into the container. Membrane preparation method.
デン、ルテニウム、レニウム、オスミウム、インジウム
のうち一種、または複数種の合金である特許請求の範囲
第1項記載のダイヤモンド膜の作製方法。(2) The method for producing a diamond film according to claim 1, wherein the high melting point metal is an alloy of one or more of tungsten, tantalum, molybdenum, ruthenium, rhenium, osmium, and indium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30707986A JPS63159292A (en) | 1986-12-23 | 1986-12-23 | Preparation of diamond film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30707986A JPS63159292A (en) | 1986-12-23 | 1986-12-23 | Preparation of diamond film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63159292A true JPS63159292A (en) | 1988-07-02 |
Family
ID=17964783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30707986A Pending JPS63159292A (en) | 1986-12-23 | 1986-12-23 | Preparation of diamond film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63159292A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145712A (en) * | 1991-02-08 | 1992-09-08 | Center For Innovative Technology | Chemical deposition of diamond |
US5146481A (en) * | 1991-06-25 | 1992-09-08 | Diwakar Garg | Diamond membranes for X-ray lithography |
EP0774532A3 (en) * | 1995-11-14 | 1998-06-17 | Philips Patentverwaltung GmbH | Process for the production of a diamond layer with homogensed thickness profile, diamond windows and membranes thus produced |
US5939140A (en) * | 1994-06-13 | 1999-08-17 | Sumitomo Electric Industries, Ltd. | Hot filament CVD of diamond films |
EP0959148A2 (en) * | 1996-07-16 | 1999-11-24 | OOO "Vysokie Tekhnologii" | Method for producing diamond films using a vapour-phase synthesis system |
JP2007238989A (en) * | 2006-03-07 | 2007-09-20 | Ebara Corp | Method for manufacturing diamond electrode |
US7404980B2 (en) * | 2000-02-25 | 2008-07-29 | Blyablin Alexandr Alexandrovic | Method for producing an addressable field-emission cathode and an associated display structure |
-
1986
- 1986-12-23 JP JP30707986A patent/JPS63159292A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145712A (en) * | 1991-02-08 | 1992-09-08 | Center For Innovative Technology | Chemical deposition of diamond |
US5146481A (en) * | 1991-06-25 | 1992-09-08 | Diwakar Garg | Diamond membranes for X-ray lithography |
US5939140A (en) * | 1994-06-13 | 1999-08-17 | Sumitomo Electric Industries, Ltd. | Hot filament CVD of diamond films |
EP0774532A3 (en) * | 1995-11-14 | 1998-06-17 | Philips Patentverwaltung GmbH | Process for the production of a diamond layer with homogensed thickness profile, diamond windows and membranes thus produced |
EP0959148A2 (en) * | 1996-07-16 | 1999-11-24 | OOO "Vysokie Tekhnologii" | Method for producing diamond films using a vapour-phase synthesis system |
EP0959148A4 (en) * | 1996-07-16 | 2001-09-12 | Ooo Vysokie T | Method for producing diamond films using a vapour-phase synthesis system |
US7404980B2 (en) * | 2000-02-25 | 2008-07-29 | Blyablin Alexandr Alexandrovic | Method for producing an addressable field-emission cathode and an associated display structure |
JP2007238989A (en) * | 2006-03-07 | 2007-09-20 | Ebara Corp | Method for manufacturing diamond electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nemanich et al. | CVD diamond—Research, applications, and challenges | |
KR910001367B1 (en) | Gaseous phase synthesized diamond film and method for synthesizing same | |
JP3136307B2 (en) | Diamond mounting substrate for electronic applications | |
KR101878746B1 (en) | Hexagonal boron nitride sheet, process for preparing the sheet and electronic device comprising the sheet | |
GB2295401A (en) | Monocrystalline diamond films | |
TWI248469B (en) | Manufacturing method of zinc oxide nanowires | |
JP2007238377A (en) | Manufacturing method of base material for growing single crystal diamond | |
CN109437124B (en) | Method for synthesizing single-layer transition metal chalcogenide | |
Kawamoto et al. | Micrometer-scale monolayer SnS growth by physical vapor deposition | |
EP0519472A2 (en) | Diamond-metal junction product | |
US8158011B2 (en) | Method of fabrication of cubic boron nitride conical microstructures | |
JPS63159292A (en) | Preparation of diamond film | |
JP3728464B2 (en) | Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film | |
JPH0948693A (en) | Method for forming diamond single crystal film | |
JP2016066756A (en) | Method for manufacturing crystal laminate structure, and semiconductor device | |
Kaloyeros et al. | Silicon Carbide Thin Film Technologies: Recent Advances in Processing, Properties, and Applications: Part II. PVD and Alternative (Non-PVD and Non-CVD) Deposition Techniques | |
JPS62202897A (en) | Production of diamond | |
Mukherjee et al. | Synthesis, characterization and electrical properties of hybrid Zn2GeO4–ZnO beaded nanowire arrays | |
JPS616198A (en) | Production of diamond thin film | |
KR102270354B1 (en) | A method for epitaxial growth of single crystalline heterogeneous 2D materials and stacked structure | |
JPS62171993A (en) | Production of diamond semiconductor | |
JPS63283014A (en) | Silicon carbide semiconductor element | |
CN111910171A (en) | Device and method for synthesizing two-dimensional material by regulating and controlling electric field and/or magnetic field | |
May et al. | Diamond thin films: a 21st century material. Part 2: a new hope | |
JP3728469B2 (en) | Method for forming single crystal diamond film |