RU92159U1 - Система оборотного водоснабжения - Google Patents

Система оборотного водоснабжения Download PDF

Info

Publication number
RU92159U1
RU92159U1 RU2009139515/22U RU2009139515U RU92159U1 RU 92159 U1 RU92159 U1 RU 92159U1 RU 2009139515/22 U RU2009139515/22 U RU 2009139515/22U RU 2009139515 U RU2009139515 U RU 2009139515U RU 92159 U1 RU92159 U1 RU 92159U1
Authority
RU
Russia
Prior art keywords
diffusers
confusers
cooler
ejector
water
Prior art date
Application number
RU2009139515/22U
Other languages
English (en)
Inventor
Николай Сергеевич Кобелев
Татьяна Васильевна Алябьева
Анатолий Платонович Дубяга
Виктор Васильевич Свиридов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (КурскГТУ)
Priority to RU2009139515/22U priority Critical patent/RU92159U1/ru
Application granted granted Critical
Publication of RU92159U1 publication Critical patent/RU92159U1/ru

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну - смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, отличающаяся тем, что перегородки диффузоров и конфузоров выполнены из биметалла, при этом внутренний металл диффузоров имеет коэффициент теплопроводности в 2,5-3 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров.

Description

Система оборотного водоснабжения
Полезная модель относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий.
Известна система оборотного водоснабжения (см. патент №2128316 МКИ F28С 1/108, 1999, Бюл. №9), содержащая теплообменники, подключаемые прямо и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений.
Недостатком данной системы оборотного водоснабжения является неэффективная работа охладителя, особенно при высоких температурах атмосферного воздуха, когда температурная разность между охлаждаемой водой и атмосферным воздухом незначительна и передача тепла в окружающую среду от корпуса охладителя имеет минимальное значение.
Известна система оборотного водоснабжения (см. патент РФ №2197691 МПК F28С 1/108, опубл. 27.01.2003), содержащая теплообменники, подключаемые прямо и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке.
Недостатком данной системы является снижение эффективности работы охладителя при длительной эксплуатации, что обусловлено процессом налипания загрязнений в виде твердых частиц, например, ржавчины и окалины, на внутренние поверхности диффузоров, а это приводит не только к изменению гидравлического режима перемещения охлажденной жидкости в охладителе, но и ухудшению процесса тепломассообмена из-за резкого возрастания термического сопротивления загрязнений.
Технической задачей полезной модели является поддержание эффективной работы системы оборотного водоснабжения при длительной эксплуатации в условиях накопления загрязнений при движении охлаждаемой воды в охладителе, что достигается путем вибрационного стряхивания налипающих на внутренние поверхности диффузоров и конфузоров твердых частиц, например, ржавчины и окалины.
Технический результат достигается тем, что система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну - смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, причем перегородки диффузоров и конфузоров выполнены из биметалла, при этом внутренний металл диффузоров имеет коэффициент теплопроводности в 2,5 - 3 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров.
На фиг.1 схематически изображена система оборотного водоснабжения, а на фиг.2 _ общий вид корпуса охладителя с диффузорами и конфузорами из биметалла.
Система оборотного водоснабжения (фиг.1) состоит из теплообменников 1, подключенных прямой напорной 2 и обратной 3 магистралями к водосборному бассейну - смесителю 4 с охладителем 5, над которым установлен ороситель 6. Прямая магистраль 2 с термореле 7 через задвижку 8, регулятор расхода 9 соединительным трубопроводом 10 с установленным эжектором 11 соединена с оросителем 6. Камера смешивания 12 эжектора 11 всасывающим трубопроводом 13 через регулятор 14 соединена с обратной магистралью воды 3, на которой перед бассейном - смесителем 4 установлен регулятор давления 15. На прямой магистрали 2 установлен насос 16 с регулятором давления 17, при этом на пропуск максимального расхода воды на охладитель 5 при максимальной его подаче на теплообменники 1 обеспечивается оптимальной всасывающей способностью эжектора 11, которая регулируется регулятором давления 15. Вдоль сопловой части 18 от меньшего сечения к большему выполнены канавки 19, соединенные в большем сечении сопловой части 18 эжектора 11 с кольцевой канавкой 20, которая подключена к сборнику загрязнений 21 в своей нижней части.
Охладитель 5 (фиг.1 и фиг.2) включает корпус, боковые стенки 22 которого и установленные в нем секционные перегородки 23 выполнены зигзагообразными и образуют в каждой секции 24 диффузоры 25 и конфузоры 26, расположенные относительно соседних секций в шахматном порядке. Перегородки 23 каждой секции 24 диффузоров 25 и конфузоров 26 выполнены из биметалла, при этом внутренняя поверхность диффузоров 25 выполнена из материала 27 с коэффициентом теплопроводности в 2,5 - 3 раза выше, чем коэффициент теплопроводности материала 28 внутренней поверхности конфузоров 26.
Система оборотного водоснабжения работает следующим образом.
Оборотная вода после теплообменников 1 поступает по обратной магистрали в водосборный бассейн - смеситель 4, в котором находится ранее охлажденная в охладителе 5 вода. Если температура атмосферного воздуха ниже расчетной, то в водосборном бассейне - смесителе 4 вода, подаваемая в теплообменники 1, имеет температуру ниже, чем это необходимо. В это время задвижка 8 закрыта и вода в ороситель 6 не подается. Горячая вода из обратной магистрали 3 перемешивается с холодной водой в водосборном бассейне - смесителе 4 и повышает его температуру.
При температуре атмосферного воздуха, не обеспечивающей охлаждение оборотной воды то в водосборном бассейне - смесителе 4 до максимально заданной температуры охлажденной воды, регистрируемой термореле 7 и подаваемой в теплообменники, осуществляется подача команды термореле 7 на открытие задвижки 8 и охлажденная вода, смешанная в эжекторе 11 с горячей водой, из обратной магистрали 3 подается по соединительному трубопроводу 10 на ороситель 6 и далее на охладитель 5 для более глубокого охлаждения.
Форсунки оросителя 6 в охладителе 5 расположены таким образом, что каждая форсунка подает воду только в одну из секций 24. В результате обеспечивается равномерная эпюра скоростей водяного потока в поперечном сечении корпуса охладителя 5, поддерживаемая за счет «живого» сечения выходных отверстий форсунок оросителя 6. Распыляемый поток воды с оптимальной эпюрой скоростей, обеспечивающей рациональный контакт воды с зигзагообразными перегородками 23, поступает в секции 24 и, проходя последовательно участки диффузоров 25 и конфузоров 26, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению теплообмена, а также к распределению в секциях 24 давления движущегося потока воды. Это выравнивает гидравлическое сопротивление воды в секциях 24 и приводит к равномерному омыванию водой всего объема охладителя 5, что в конечном итоге и обеспечивает эффективную работу охладителя 5 даже при незначительном перепаде температур между атмосферным воздухом и охлаждаемой водой.
Увеличение скорости охлаждаемой воды в диффузорах 25 за счет уменьшения проходного сечения по мере движения потока приводит к возрастанию теплоты трения пограничного слоя о внутреннюю поверхность диффузоров 25, выполненных из материала 27, что приводит к увеличению температурного градиента (см., например, Лариков Н.Н. Теплотехника - М.: Строительство, 1975-369 с.). Последующий переход движущегося потока охлаждаемой воды по конфузорам 26 секций 24 приводит к уменьшению его скорости и, соответственно, теплоты трения о внутреннюю поверхность конфузоров 26, выполненных из материала 28, что приводит к резкому уменьшению температурного градиента. В результате в секциях 24 на внутренних поверхностях диффузоров 25 и конфузоров 26, выполненных, соответственно, из материалов 27 и 28, имеющих коэффициенты теплопроводности в 2,5 - 3 раза отличающиеся друг от друга (например, при выполнении перегородки 23 из биметалла с материалом 27 из алюминия с коэффициентом теплопроводности и материалом 28 из латуни с коэффициентом теплопроводности стр.379 Нащокин В.В. Техническая термодинамика и теплопередача. -М.: Высшая школа, 1975 - 496 с., ил.) наблюдаются термовибрации, которые постоянно стряхивают твердые частицы с поверхностей перегородок 23 секций 24, не допуская их налипания (см., например, Дмитриев В.П. Биметаллы. - Пермь: Наука, 1991 - 487 с., ил.). Все это приводит к поддержанию постоянства теплообмена в секциях 24 при длительной эксплуатации охладителя 5.
Известно, что вода, имеющая повышенную температуру, интенсифицирует процесс образования окалины и ржавчины, то есть загрязнений сопутствующих систем оборотного водоснабжения. В результате наблюдается увеличение гидравлического сопротивления трубопроводов, возрастает частота закупорки (засорения) насадок оросителя 6 и как следствие этого эффективность работы системы оборотного водоснабжения и возрастают энергозатраты на насосную установку. Поэтому горячая вода с загрязнениями (окалина, ржавчина и т.д.), перемешанная в камере смешивания 12, поступает в сопловую часть 18 эжектора 11 и, перемещаясь по винтообразным канавкам 19, закручивается. Твердые частицы сталкиваются в канавках 19, перемещаются в кольцевую канавку 20 и далее в сборник загрязнений 21, откуда удаляются вручную или автоматически (не показано). Очищенный от загрязнений поток воды поступает в ороситель 6 и далее в охладитель 5 для более глубокого охлаждения. Оптимальная всасывающая способность эжектора 11 поддерживается регулятором давления 15. Очищенная в эжекторе 11 и охлажденная в охладителе 5 вода смешивается в водосборном бассейне - смесителе 4 с горячей водой, поступающей из теплообменников 1 В процессе смешивания постепенно понижается температура воды до расчетного минимального значения, после чего термореле 7 дает сигнал на закрытие задвижки 8.
Оригинальность предлагаемой полезной модели заключается в том, что поддержание эффективной работы системы оборотного водоснабжения при длительной эксплуатации достигается устранением возможности налипания твердых загрязнений на внутренние поверхности секционных перегородок усовершенствованием конструктивного выполнения охладителя путем выполнения диффузоров и конфузоров из биметалла таким образом, что внутренняя поверхность диффузоров выполнена из материала с коэффициентом теплопроводности в 2,5-3 раза выше, чем коэффициент теплопроводности материала внутренней поверхности конфузоров.

Claims (1)

  1. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну - смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, при этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке, отличающаяся тем, что перегородки диффузоров и конфузоров выполнены из биметалла, при этом внутренний металл диффузоров имеет коэффициент теплопроводности в 2,5-3 раза выше, чем коэффициент теплопроводности внутреннего материала конфузоров.
    Figure 00000001
RU2009139515/22U 2009-10-26 2009-10-26 Система оборотного водоснабжения RU92159U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009139515/22U RU92159U1 (ru) 2009-10-26 2009-10-26 Система оборотного водоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009139515/22U RU92159U1 (ru) 2009-10-26 2009-10-26 Система оборотного водоснабжения

Publications (1)

Publication Number Publication Date
RU92159U1 true RU92159U1 (ru) 2010-03-10

Family

ID=42135770

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139515/22U RU92159U1 (ru) 2009-10-26 2009-10-26 Система оборотного водоснабжения

Country Status (1)

Country Link
RU (1) RU92159U1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442936C1 (ru) * 2010-07-19 2012-02-20 Олег Савельевич Кочетов Система оборотного водоснабжения с теплообменными аппаратами
RU2482409C1 (ru) * 2011-09-30 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения
RU2643407C2 (ru) * 2016-07-28 2018-02-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442936C1 (ru) * 2010-07-19 2012-02-20 Олег Савельевич Кочетов Система оборотного водоснабжения с теплообменными аппаратами
RU2482409C1 (ru) * 2011-09-30 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения
RU2643407C2 (ru) * 2016-07-28 2018-02-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения

Similar Documents

Publication Publication Date Title
RU2482409C1 (ru) Система оборотного водоснабжения
CN103776276B (zh) 逆流式闭式冷却塔
CN201152693Y (zh) 管箱式蒸发冷凝器
EP3806979B1 (en) Self-cleaning ventilation unit
RU92159U1 (ru) Система оборотного водоснабжения
RU2486422C2 (ru) Система оборотного водоснабжения с применением градирен
CN202274764U (zh) 立式全蒸发空冷器
KR20160113170A (ko) 공랭식 열교환기를 포함하는 냉장 시스템
RU2425314C1 (ru) Система оборотного водоснабжения
RU2433366C1 (ru) Система оборотного водоснабжения
RU2442940C1 (ru) Система оборотного водоснабжения
RU2197691C2 (ru) Система оборотного водоснабжения
RU135097U1 (ru) Система оборотного водоснабжения
RU2309832C2 (ru) Установка для очистки поверхности
RU111269U1 (ru) Эжекционное устройство с водовоздушным теплообменником для охлаждения оборотной воды
RU121913U1 (ru) Система оборотного водоснабжения
RU2569798C2 (ru) Система оборотного водоснабжения
CN113405373A (zh) 一种新型防冻冷却塔及其除冰方法
CN202133050U (zh) 闭式蒸发制冷冷水机组
CN218672877U (zh) 一种新型冷却系统
CN213631095U (zh) 一种环保设备用循环降温装置
RU2128318C1 (ru) Система оборотного водоснабжения
CN217704582U (zh) 一种塑胶成品快速冷却设备
CN218238450U (zh) 一种改进的紧凑型板式蒸发空冷器
CN108827034B (zh) 一种城市原生污水旁通渠换热系统

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20100313