RU2197691C2 - Система оборотного водоснабжения - Google Patents

Система оборотного водоснабжения Download PDF

Info

Publication number
RU2197691C2
RU2197691C2 RU2001109593A RU2001109593A RU2197691C2 RU 2197691 C2 RU2197691 C2 RU 2197691C2 RU 2001109593 A RU2001109593 A RU 2001109593A RU 2001109593 A RU2001109593 A RU 2001109593A RU 2197691 C2 RU2197691 C2 RU 2197691C2
Authority
RU
Russia
Prior art keywords
cooler
water
ejector
water supply
return water
Prior art date
Application number
RU2001109593A
Other languages
English (en)
Other versions
RU2001109593A (ru
Inventor
Н.С. Кобелев
Original Assignee
Курский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Курский государственный технический университет filed Critical Курский государственный технический университет
Priority to RU2001109593A priority Critical patent/RU2197691C2/ru
Application granted granted Critical
Publication of RU2197691C2 publication Critical patent/RU2197691C2/ru
Publication of RU2001109593A publication Critical patent/RU2001109593A/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке. Изобретение позволяет повысить эффективность системы оборотного водоснабжения в изменяющихся погодно-климатических условиях эксплуатации промышленных предприятий. 2 ил.

Description

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжении промышленных предприятий.
Известна система оборотного водоснабжения (см. а.с. 958827, МКИ F 28 С 1/08, 1982, Бюл. 34), содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды.
Недостатком такой системы оборотного водоснабжения является необходимость использования завышенной мощности насосной установки, покрывающей затраты энергии по преодолению гидравлического сопротивления, обусловлено перемещением всегда присутствующих в воде загрязнений в виде ржавчины, окалины.
Известна система оборотного водоснабжения (см. патент. 92128316, МКИ F 28 С 1/08, 1999, Бюл. 9), содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к образной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений.
Недостатком данной системы оборотного водоснабжения является неэффективная работа охладителя, особенно при высоких температурах атмосферного воздуха, когда температурная разность между охлаждаемой водой и атмосферным воздухом незначительна и передача тепла в окружающую среду от корпуса охладителя имеет минимальное значение.
В основу изобретения поставлена задача повышения эффективности системы оборотного водоснабжения в изменяющихся погодно-климатических условиях эксплуатации промышленных предприятий путем улучшения работы охладителя, особенно при высоких температурах атмосферного воздуха, что достигается интенсификацией теплопередачи от охлаждаемой воды к корпусу охладителя и далее к контактирующему с ним атмосферному воздуху.
Поставленная задача решается тем, что система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений. При этом охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке.
На фиг. 1 схематически изображена система оборотного водоснабжения и на фиг.2 - общий вид корпуса охладителя.
Система оборотного водоснабжения (фиг.1) состоит из теплообменников 1, подключенных прямой напорной 2 и обратной 3 магистралями к водосборному бассейну-смесителю 4 с охладителем 5, над которым установлен ороситель 6. Прямая магистраль 2 с термореле 7 через задвижку 8, регулятор расхода 9 соединительным трубопроводом 10 с установленным эжектором 11 соединена с оросителем 6. Камера смешивания 12 эжектора 11 всасывающим трубопроводом 13 через регулятор 14 соединена с образной магистралью воды 3, на которой перед бассейном-смесителем 4 установлен регулятор давления 15. На прямой магистрали 2 установлен насос 16 с регулятором давления 17, при этом на пропуск максимального расхода воды на охладитель 5 при максимальной его подаче на теплообменники 1 обеспечивается оптимальной всасывающей способностью эжектора 11, которая регулируется регулятором давления 15. Вдоль сопловой части 18 от меньшего сечения к большему выполнены канавки 19, соединенные в большем сечении сопловой части 18 эжектора 11 с кольцевой канавкой 20, которая подключена к сборнику загрязнений 21 в нижней своей части.
Охладитель 5 (фиг.1 и 2) включает корпус, боковые стенки 22 которого и установленные в нем секционные перегородки 23 выполнены зигзагообразными и образуют в каждой секции 24 диффузоры 25 и конфузоры 26, расположенные относительно соседних секций в шахматном порядке.
Система оборотного водоснабжения работает следующим образом.
Оборотная вода после теплообменников 1 поступает по обратной магистрали в водосборный бассейн-смеситель 4, в котором находится ранее охлажденная в охладителе 5 вода. Если температура атмосферного воздуха ниже расчетной, то в водозаборном бассейне-смесителе 4 вода, подаваемая в теплообменники 1, имеет температуру ниже, чем это необходимо. В это время задвижка 12 закрыта и вода на ороситель 6 не подается. Горячая вода из обратной магистрали 3 смешивается с холодной водой в водосборном бассейне-смесителе 4 и повышает ее температуру.
При температуре атмосферного воздуха, не обеспечивающей охлаждение оборотной воды в бассейне-оросителе 4 до максимально заданной температуры охлажденной воды, регистрируемой термореле 7 и подаваемой в теплообменники 1, осуществляется подача команды термореле 7 на открытие задвижки 8 и охлажденную воду, смешенную в эжекторе 11 с горячей водой, из обратной магистрали 3 подают по соединительному трубопроводу 10 на ороситель 6 и далее на охладитель 5 для более глубокого охлаждения.
Форсунки оросителя 6 в охладителе 5 расположены таким образом, что каждая форсунка подает воду только в определенную секцию 24. В результате обеспечивается равномерная эпюра скоростей водяного потока в поперечном сечении корпуса охладителя 5, поддерживаемая за счет "живого" сечения выходных отверстий форсунок оросителя 6. Распыляемый поток воды с оптимальной эпюрой скоростей, обеспечивающей рациональный контакт воды с зигзагообразными боковыми 22 и секционными перегородками 23, поступает в секции 24 и, проходя последовательно участки диффузоров 25 и конфузоров 26, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению теплообмена (см. , например, Бакластов A.M. и др. Промышленные тепломассообменные процессы и установки. М.: Энергоиздат, 1986. - 328 с.), а также к перераспределению в секциях 4 давления движущегося потока воды. Это выравнивает гидравлическое сопротивление воды в секциях 24 и приводит к равномерному смыванию водой всего объема охладителя 5, что в конечном итоге и обеспечивает эффективную работу охладителя 5 даже при незначительном перепаде температур между атмосферным воздухом и охлаждаемой водой.
Известно, что вода, имеющая повышенную температуру, интенсифицирует процесс образования окалины и ржавчины, то есть сопутствующих систем оборотного водоснабжения загрязнений. В результате наблюдается увеличение гидравлического сопротивления трубопроводов, возрастает частота закупорки (засорения) насадок оросителя 6 и как следствие этого эффективность работы системы оборотного водоснабжения и возрастают энергозатраты на насосную установку. Поэтому горячая вода с загрязнениями (окалины, ржавчины и т.д.), перемешанная в камере смешивания 12, поступает в сопловую часть 18 эжектора 11 и, перемещаясь по винтообразным канавкам 19, закручивается. Твердые частицы сталкиваются в канавках 19, перемешаются в кольцевую канавку 20 и далее в сборник загрязнений 21, откуда удаляются вручную или автоматически (не показано). Очищенный от загрязнений поток воды поступает в ороситель 6 и далее на охладитель 5 для более глубокого охлаждения. Оптимальная всасывающая способность эжектора 11 поддерживается регулятором давления 15. Очищенная в эжекторе 11 и охлажденная на оросителе 5 вода смешивается в водосборном бассейне-смесителе 4 с горячей водой, поступающей из теплообменников 1. В процессе смешивания постепенно понижается температура воды до расчетного минимального значения, после чего термореле 7 дает сигнал на закрытие задвижки 8.
Оригинальность конструктивного решения заключается в том, что повышение эффективности системы оборотного водоснабжения обеспечивается усовершенствованием конструкции охладителя, путем выполнения боковых стенок его корпуса и секционных перегородок зигзагообразными, а также размещением форсунок распылителя в секциях с обеспечением равномерной эпюры скоростей движения охлаждаемой воды.

Claims (1)

  1. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором, камера смешивания которого подключена к обратной магистрали воды с регулятором давления, а сопловая часть эжектора на внутренней поверхности имеет винтообразные канавки, связанные с кольцевой канавкой, подключенной к сборнику загрязнений, отличающаяся тем, что охладитель включает вертикальный корпус, боковые стенки которого и установленные в нем секционные перегородки выполнены зигзагообразными и образуют в каждой секции диффузоры и конфузоры, расположенные относительно соседних секций в шахматном порядке.
RU2001109593A 2001-04-09 2001-04-09 Система оборотного водоснабжения RU2197691C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001109593A RU2197691C2 (ru) 2001-04-09 2001-04-09 Система оборотного водоснабжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001109593A RU2197691C2 (ru) 2001-04-09 2001-04-09 Система оборотного водоснабжения

Publications (2)

Publication Number Publication Date
RU2197691C2 true RU2197691C2 (ru) 2003-01-27
RU2001109593A RU2001109593A (ru) 2003-02-27

Family

ID=20248252

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001109593A RU2197691C2 (ru) 2001-04-09 2001-04-09 Система оборотного водоснабжения

Country Status (1)

Country Link
RU (1) RU2197691C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442940C1 (ru) * 2010-09-29 2012-02-20 Государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" ЮЗГУ Система оборотного водоснабжения
RU2482409C1 (ru) * 2011-09-30 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения
RU2643407C2 (ru) * 2016-07-28 2018-02-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2442940C1 (ru) * 2010-09-29 2012-02-20 Государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" ЮЗГУ Система оборотного водоснабжения
RU2482409C1 (ru) * 2011-09-30 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения
RU2643407C2 (ru) * 2016-07-28 2018-02-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Система оборотного водоснабжения

Similar Documents

Publication Publication Date Title
CN2844803Y (zh) 制冰机
RU2197691C2 (ru) Система оборотного водоснабжения
RU92159U1 (ru) Система оборотного водоснабжения
CN201321471Y (zh) 防喷溅淬火炉
RU2128318C1 (ru) Система оборотного водоснабжения
RU201598U1 (ru) Безреагентная испарительная градирня
RU2425314C1 (ru) Система оборотного водоснабжения
CN212673415U (zh) 一种水洗喷淋装置
RU2433366C1 (ru) Система оборотного водоснабжения
RU2388519C1 (ru) Гидрозолоуловитель-теплоутилизатор
RU2442940C1 (ru) Система оборотного водоснабжения
CN203144423U (zh) 钢渣余热利用高效无堵塞智能化换热装置
RU135097U1 (ru) Система оборотного водоснабжения
CN201786602U (zh) 水喷射真空机组的冰盐水冷却装置
RU121913U1 (ru) Система оборотного водоснабжения
RU2128317C1 (ru) Брызгальный бассейн
CN202089856U (zh) 一种粗银中频熔铸炉水冷却净化装置
CN213631095U (zh) 一种环保设备用循环降温装置
RU2168132C2 (ru) Градирня
RU2335722C2 (ru) Градирня
RU158507U1 (ru) Аппарат для осушки сернистого газа или абсорбции серного ангидрида
SU1158845A1 (ru) Градирн
RU2168689C1 (ru) Система оборотного водоснабжения
RU193374U1 (ru) Башенная градирня
CN218764688U (zh) 一种工业用冷却组件及冷却塔