RU2793891C1 - Спинтронный детектор микроволновых колебаний - Google Patents

Спинтронный детектор микроволновых колебаний Download PDF

Info

Publication number
RU2793891C1
RU2793891C1 RU2022110289A RU2022110289A RU2793891C1 RU 2793891 C1 RU2793891 C1 RU 2793891C1 RU 2022110289 A RU2022110289 A RU 2022110289A RU 2022110289 A RU2022110289 A RU 2022110289A RU 2793891 C1 RU2793891 C1 RU 2793891C1
Authority
RU
Russia
Prior art keywords
detector
microwave
antiferromagnet
layer
magnetic
Prior art date
Application number
RU2022110289A
Other languages
English (en)
Inventor
Елизавета Евгеньевна Козлова
Original Assignee
Общество с ограниченной ответственностью "Новые спинтронные технологии" (ООО "НСТ")
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Новые спинтронные технологии" (ООО "НСТ") filed Critical Общество с ограниченной ответственностью "Новые спинтронные технологии" (ООО "НСТ")
Application granted granted Critical
Publication of RU2793891C1 publication Critical patent/RU2793891C1/ru

Links

Images

Abstract

Изобретение относится к области измерительной техники и касается детектора микроволновых колебаний. Детектор содержит гетероструктуру на основе последовательно расположенных на подложке слоев антиферромагнетика и немагнитного металла, средство для перестройки рабочей частоты, выполненное в виде источника постоянного магнитного поля, и приемные электроды, связанные с регистратором. Гетероструктура выполнена на прозрачной для микроволнового излучения подложке, антиферромагнетик представляет собой антиферромагнетик со слабым ферромагнетизмом. В схему детектора включены перекрестные волноводы и два источника линейно поляризованного микроволнового излучения. Технический результат - возможность перестройки рабочей частоты детектора при повышении чувствительности к детектируемому микроволновому сигналу, возможность управления поляризацией внешнего излучения с целью возбуждения верхней моды магнитного материала. 3 з.п. ф-лы, 5 ил.

Description

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для детектирования колебаний в диапазоне частот 3-100 ГГц.
Известно нано-электронное устройство, объединяющее магнитную оперативную память, микроволновый генератор и детектор (CN 111613722A, UNIV NANJING; ZHEJIANG HIKSTOR TECH CO LTD, 01.09.2020). Базовым узлом спинового электронного устройства является магнитный туннельный переход с эффектом высокого магнитосопротивления, а нано-спиновое электронное устройство представляет собой цилиндрический или эллиптический блок многослойной структуры, содержащий последовательно расположенные верхний электродный слой магнитного туннельного перехода, ферромагнитный слой без намагничивания, немагнитный барьерный слой, ферромагнитный поляризационный слой, антиферромагнитный слой и нижний электродный слой. В ферромагнитном поляризационном слое поглощается высокочастотный микроволновый сигнал, и возникает явление ферромагнитного резонанса. Спин-передаточный момент, создаваемый приложенным постоянным током, усиливает ферромагнитный резонанс. С электродных слоев детектируется выпрямленный микроволновый сигнал. Перестройка частоты детектора осуществляется с помощью внешнего магнитного поля и варьируется в диапазоне от 0,1 до 50 ГГц.
Описан спиновый микроволновый генератор и спиновой микроволновый детектор (CN 101685901A, SHANGHAI CHINESE ACAD PHYSICS INST, 31.03.2010), включающий многослойную структуру, состоящую из подложки, нижнего буферного проводящего слоя на ней, магнитотвердого слоя, промежуточного слоя, магнитомягкого слоя, промежуточного слоя и проводящего слоя, последовательно нанесенных на нижний буферный проводящий слой. Входной микроволновый сигнал подается на магнитную многослойную структуру. Через структуру пропускается радиочастотный ток, перпендикулярный поверхности структуры. При совпадении частот тока и частоты прецессии магнитного момента свободного магнитного слоя возникает резонанс. С буферных проводящих слоев детектируется постоянное напряжение входного микроволнового сигнала. Перестройку частоты детектора можно осуществлять с помощью внешнего магнитного поля. Недостатком описанных детекторов является невозможность контроля поляризации внешнего излучения.
Наиболее близким к патентуемому устройству является детектор микроволновой мощности, основанный на эффекте спиновой накачки (CN 106990284A, UNIV ELECTRONIC SCI & TECH CHINA, 28.07.2017 - прототип), включающий в себя гетероструктуру, состоящую из магнитного тонкопленочного слоя и немагнитного тонкопленочного слоя тяжелого металла, выращенных на слое тонкой магнитной пленки. При падении микроволнового излучения на структуру в магнитном тонкопленочном слое возникает прецессия, которая действует на магнитные подрешетки магнитного материала. Данная прецессия приводит к спиновой накачке на границе слоя магнитный материал - немагнитный материал. Благодаря механизму спиновой накачки, в тонкопленочном слое немагнитного материала возникает спиновый ток. За счет обратного спинового эффекта Холла возникновение спинового тока в тонкопленочном слое немагнитного материала приводит к возникновению постоянного напряжения на выходных электродах. С помощью постоянного магнитного поля можно перестраивать рабочую частоту детектора в широких пределах. Недостатком устройства является невозможность контроля поляризации входного микроволнового сигнала.
Настоящее изобретение направлено на решение проблемы создания детектора микроволнового излучения, рабочую частоту которого можно перестраивать посредством управления постоянным магнитным полем, и способ контроля поляризации внешнего микроволнового излучения для возможности возбуждения верхней моды магнитного материала.
Детектор микроволновых колебаний содержит гетероструктуру на основе последовательно расположенных перекрестных полосковых волноводов, слоя антиферромагнитного материала, слоя немагнитного металла и приемных электродов. В структуру введены источник постоянного магнитного поля и два источника линейно поляризованного микроволнового излучения.
Гетероструктура выращена на прозрачной для микроволнового излучения подложке. Слой антиферромагнитного материала представляет собой антиферромагнетик со слабым ферромагнетизмом. Вектор намагниченности источника постоянного магнитного поля направлен параллельно легкой оси слоя антиферромагнитного материала.
Антиферромагнитный материал может быть выполнен из α-Fe2O3 или FeBO3, а немагнитный металл представляет собой Pt, Ta или W.
Технический результат - возможность перестройки рабочей частоты детектора при повышении чувствительности к детектируемому микроволновому сигналу, возможность управления поляризацией внешнего излучения с целью возбуждения верхней моды магнитного материала.
Существо изобретения представлено на чертежах, где:
Фиг. 1 - структура детектора.
Фиг. 2 - зависимость резонансных частот от напряженности постоянного магнитного поля.
Фиг. 3 - зависимость выходного постоянного напряжения от частоты входного воздействия для трех значений напряженности магнитного поля.
Фиг. 4 - зависимость выходного постоянного напряжения от входной мощности микроволнового сигнала.
Фиг. 5 - зависимость выходного постоянного напряжения от напряженности постоянного магнитного поля при резонансе.
На фиг. 1 представлена структура устройства детектирования микроволновых колебаний, которое содержит многослойную гетероструктуру, содержащую размещенные на подложке 1 последовательно расположенные полосковые волноводы 2 (земля), 3 (сигнальная шина), слой антиферромагнитного материала 4 и слой немагнитного металла 5. Токопровод 6 соединяет слой 5 с регистратором 7 (вольтметром).
Патентуемое устройство может быть реализовано на основе известных материалов и технологий нано- и микроэлектроники.
Слой антиферромагнетика 4 может быть выполнен из антиферромагнетика со слабым ферромагнетизмом, например, δ-Fe2O3 или FeBO3. Толщина слоя варьируется от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны микроволновой частоты порядка 1 мм.
Величина параметров G, H и L подбирается так, чтобы возбуждалась верхняя мода выбранного антиферромагнитного материала. Примерные размеры: ширина G сигнальной шины составляет 10 мкм, высота H полоскового волновода составляет 50 нм, длина L полоскового волновода составляет 120 мкм.
Подложка 1 может быть выполнена из немагнитного диэлектрика, например: SiO2, MgO, Al2O3, SrTiO3, LiNbO3 или других материалов, используемых в технологии микроэлектроники. Латеральные размеры неограниченны, но площадь подложки 1 должна быть больше размеров слоя антиферромагнетика 4 и слоя немагнитного металла 5.
Слой немагнитного металла 5 может быть выполнен из Pt, Ta или W, и может иметь толщину от 5 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны микроволновой частоты порядка 1 мм. Токопровод 6 может быть выполнен из металла высокой проводимости, например, меди или платины.
Принцип функционирования детектора состоит в следующем.
Гетероструктура ориентирована параллельно как постоянному магнитному полю 8, так и направлению распространения регистрируемых линейно поляризованных микроволновых сигналов 9, 10. Переменное электромагнитное поле линейно поляризованных микроволновых сигналов 9 и 10 индуцирует крутящий момент, который действует на магнитные подрешетки антиферромагнитного материала и вызывает колебания вектора Нееля вблизи легкой оси анизотропии. Благодаря механизму спиновой накачки в антиферромагнитном слое 4 возникает спиновый ток. Данный ток конвертируется в электрический ток в слое немагнитного металла 5. Посредством обратного спинового эффекта Холла на концах немагнитного металла возникает электрическое поле, что приводит к возникновению постоянного электрического напряжения, которое можно детектировать с помощью вольтметра 7.
Для расчетов выходных параметров детектора использовала гетероструктура α-Fe2O3 (50 нм)/Pt (3 нм). Перестройка частот антиферромагнитного резонанса осуществляется постоянным магнитным полем 8. Изменение напряженности постоянного магнитного поля 8 приводит к изменению резонансных частот антиферромагнитного резонанса. Зависимость резонансных частот антиферромагнитного резонанса от напряженности постоянного магнитного поля представлена на фиг. 2. При малых значениях напряженности постоянного магнитного поля резонансные частоты нижней и верхней мод антиферромагнитного материала имеют существенное различие. По мере увеличения напряженности постоянного магнитного поля величины резонансных частот становятся близки друг к другу, что создает трудности для отличия нижней и верхней мод антиферромагнитного материала. Чтобы нижнюю и верхнюю моды антиферромагнитного материала можно было с легкостью отличить друг от друга, следует производить детектирование при напряженности постоянного магнитного поля не более 2 Т.
Увеличение частот линейно поляризованных микроволновых сигналов 9 и 10 с равной амплитудой и разностью фаз 90 градусов приводит к резонансной зависимости выходного постоянного напряжения, как видно на фиг. 3. Резонансная зависимость имеет две резонансных пика, соответствующих резонансным частотам антиферромагнитного материала 4, причем величина выходного постоянного напряжения при резонансе увеличивается при увеличении напряженности постоянного магнитного поля 8. Кроме того, величина выходного выпрямленного напряжения увеличивается при увеличении мощности микроволновых сигналов 9 и 10, причем для верхней моды величина выходного выпрямленного напряжения больше, чем для нижней моды, при равной входной мощности, как видно на фиг. 4.
Увеличение напряженности постоянного магнитного поля 8 ведет к росту выходного выпрямленного напряжения при резонансе, причем величина выходного выпрямленного напряжения для верхней моды выше, чем для нижней моды, и имеет два резонансных пика, как показано на фиг. 5.
Изменяя разность фаз микроволновых линейно поляризованных сигналов 9 и 10, можно контролировать поляризацию излучения. В центре перекрестных полосковых волноводов можно создать излучение с линейной, круговой или эллиптической поляризацией. При равенстве фаз или разности фаз в 180 градусов в центре перекрестных полосковых волноводов будет формироваться линейно поляризованный сигнал, при разности фаз от 0 до 90 градусов микроволновых сигналов 9 и 10 в центре будет формироваться эллиптическая поляризация излучения, если разность фаз микроволновых сигналов 9 и 10 варьируется в диапазоне от 0 до 90 градусов и амплитуды сигналов равны, то в центре перекрестных полосковых волноводов будет формироваться круговая поляризация излучения. При линейной поляризации излучения возможно детектирование нижней моды антиферромагнитного материала, при круговой или эллиптической поляризации излучения возможно детектирование как нижней, так и верхней моды антиферромагнитного материала.
Таким образом, из приведенных данных следует, что параметры детектора микроволновых колебаний могут регулироваться посредством постоянного магнитного поля 8, и, тем самым, расширяются функциональные возможности детектора. Кроме того, использование перекрестных полосковых волноводов позволяет контролировать поляризацию внешнего микроволнового излучения и возбуждать верхнюю моду выбранного антиферромагнитного материала.

Claims (6)

1. Детектор микроволновых колебаний, содержащий гетероструктуру на основе последовательно расположенных на подложке слоев антиферромагнетика и немагнитного металла, средство для перестройки рабочей частоты, выполненное в виде источника постоянного магнитного поля и приемных электродов, связанных с регистратором,
отличающийся тем, что
гетероструктура выполнена на прозрачной для микроволнового излучения подложке, антиферромагнетик представляет собой антиферромагнетик со слабым ферромагнетизмом, при этом в схему включены перекрестные волноводы и два источника линейно поляризованного микроволнового излучения.
2. Детектор по п.1, отличающийся тем, что антиферромагнитный материал представляет собой α-Fe2O3.
3. Детектор по п.1, отличающийся тем, что немагнитный металл представляет собой платину.
4. Детектор по п.1, отличающийся тем, что подложка выполнена из MgO.
RU2022110289A 2022-04-18 Спинтронный детектор микроволновых колебаний RU2793891C1 (ru)

Publications (1)

Publication Number Publication Date
RU2793891C1 true RU2793891C1 (ru) 2023-04-07

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102577A1 (en) * 2008-02-13 2009-08-20 University Of Delaware Electromagnetic wave detection methods and apparatus
CN110044476A (zh) * 2019-04-04 2019-07-23 中国科学院上海技术物理研究所 一种基于反铁磁非磁金属异质结的太赫兹探测器
RU2742569C1 (ru) * 2020-05-29 2021-02-08 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Осциллятор для генератора терагерцового излучения

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102577A1 (en) * 2008-02-13 2009-08-20 University Of Delaware Electromagnetic wave detection methods and apparatus
CN110044476A (zh) * 2019-04-04 2019-07-23 中国科学院上海技术物理研究所 一种基于反铁磁非磁金属异质结的太赫兹探测器
RU2742569C1 (ru) * 2020-05-29 2021-02-08 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Осциллятор для генератора терагерцового излучения

Similar Documents

Publication Publication Date Title
Hyde et al. Electrical detection of direct and alternating spin current injected from a ferromagnetic insulator into a ferromagnetic metal
US20080150643A1 (en) Microwave Transmission Line Integrated Microwave Generating Element and Microwave Transmission Line Integrated Microwave Detecting Element
Gui et al. Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements
Rezende et al. Magnon excitation by spin injection in thin Fe/Cr/Fe films
US8432164B2 (en) Ferromagnetic resonance and memory effect in magnetic composite materials
Zollitsch et al. Tuning high-Q superconducting resonators by magnetic field reorientation
Fan et al. Magnetic tunnel junction based microwave detector
Suto et al. Microwave-assisted switching of a single perpendicular magnetic tunnel junction nanodot
US8669762B2 (en) Electromagnetic wave detection methods and apparatus
CN108075034B (zh) 一种微波探测元件以及微波探测器
Babitskii et al. A magnetometer of weak quasi-stationary and high-frequency fields on resonator microstrip transducers with thin magnetic fields
Aoki et al. In-plane spin-orbit torque magnetization switching and its detection using the spin rectification effect at subgigahertz frequencies
JP2007235119A (ja) 強磁性細線
Cansever et al. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance
Rousseau et al. Interaction between ferromagnetic resonance and spin currents in nanostructures
RU2793891C1 (ru) Спинтронный детектор микроволновых колебаний
Moraitakis et al. Permeability measurements of permalloy films with a broad band stripline technique
Lyfar et al. Microwave absorption in a thin La 0.7 Sr 0.3 MnO 3 film: Manifestation of colossal magnetoresistance
US7986140B2 (en) Systems and methods for RF magnetic-field vector detection based on spin rectification effects
Tabrea et al. Microwave response of interacting oxide two-dimensional electron systems
Belyaev et al. Microstrip resonator for nonlinearity investigation of thin magnetic films and magnetic frequency doubler
RU2778980C1 (ru) Спинтронный детектор терагерцовых колебаний
US3490034A (en) Magnetometer utilizing the delaying effect of a magnetic transmission line
RU2781081C1 (ru) Спинтронный детектор терагерцовых колебаний на основе наногетероструктуры антиферромагнетик - тяжелый металл
Kikuchi et al. Quantized spin waves in single Co/Pt dots detected by anomalous Hall effect based ferromagnetic resonance