CN110044476A - 一种基于反铁磁非磁金属异质结的太赫兹探测器 - Google Patents

一种基于反铁磁非磁金属异质结的太赫兹探测器 Download PDF

Info

Publication number
CN110044476A
CN110044476A CN201910271495.4A CN201910271495A CN110044476A CN 110044476 A CN110044476 A CN 110044476A CN 201910271495 A CN201910271495 A CN 201910271495A CN 110044476 A CN110044476 A CN 110044476A
Authority
CN
China
Prior art keywords
nonmagnetic metal
terahertz
layer
antiferromagnet
antiferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910271495.4A
Other languages
English (en)
Other versions
CN110044476B (zh
Inventor
吴敬
黄志明
李敬波
江林
周炜
姚娘娟
黄敬国
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910271495.4A priority Critical patent/CN110044476B/zh
Publication of CN110044476A publication Critical patent/CN110044476A/zh
Application granted granted Critical
Publication of CN110044476B publication Critical patent/CN110044476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于反铁磁非磁金属异质结的太赫兹探测器,属于光电探测技术领域,该方法利用反铁磁材料在太赫兹波段的反铁磁耦合共振吸收特性,将太赫兹辐射能量转化为自旋波,利用具有强自旋‑轨道耦合的非磁金属中逆自旋霍尔效应将自旋波在界面处转化为电荷流,在非磁金属表面两侧电极读出电压信号,从而实现对太赫兹辐射探测。该发明利用了电子自旋属性来实现太赫兹探测,是一种自旋太赫兹探测器,具有零功耗、响应快、易集成、可室温工作等优点。

Description

一种基于反铁磁非磁金属异质结的太赫兹探测器
技术领域
本发明属于光电探测技术领域,具体涉及到利用反铁磁材料在太赫兹波段的反铁磁耦合共振吸收特性,将太赫兹辐射能量转化为自旋波,再利用具有强自旋-轨道耦合的非磁金属中逆自旋霍尔效应将自旋波在界面处转化为电荷流,最后在非磁金属表面两侧电极读出电压信号,从而实现对太赫兹辐射探测。该发明利用电子自旋来实现太赫兹探测,是一种自旋太赫兹探测器,具有零功耗、响应快、易集成、可室温工作等优点。
背景技术
太赫兹电磁波在物体成像、环境监测、医疗诊断、射电天文和宽带移动通讯等方面具有重大的科学价值和广阔的应用前景,因此世界发达国家争相将太赫兹波科学技术列为战略性科技方向。然而,太赫兹技术距离广泛的实际应用还面临诸多挑战。其中制约太赫兹技术发展的主要因素之一是可室温下工作的高灵敏度、低成本、低功耗、响应速度快的太赫兹探测技术的缺乏。本发明提出一种太赫兹探测器。该探测器利用反铁磁材料在太赫兹波段的反铁磁耦合共振吸收特性,将太赫兹辐射能量转化为自旋波,再利用具有强自旋-轨道耦合的非磁金属中逆自旋霍尔效应将自旋波在界面处转化为电荷流,最后在非磁金属表面两侧电极读出电压信号,从而实现对太赫兹辐射探测。因为所用反铁磁材料的反铁磁转变温度都在室温以上,自旋流-电荷流的转换速度非常之快(亚皮秒级),无需外接电源,所以依据此方法制作的太赫兹探测器具有可室温下工作、响应速度快、低功耗、制作成本低等优点。
发明内容
本发明包括利用反铁磁材料在太赫兹波段的反铁磁耦合共振吸收特性和具有强自旋-轨道耦合的非磁金属中的逆自旋霍尔效应来实现太赫兹探测器;
太赫兹探测器在衬底层1上依次有反铁磁材料层2、非磁金属材料层3、电极层4;
所述的衬底层1的材料为需要在工作的太赫兹波段有较高透过率的高阻硅Si或本征锗Ge;
所述的反铁磁材料层2的反铁磁材料为:氧化镍NiO,氧化钴CoO,三氧化二铬Cr2O3,铁酸铋BiFeO3或XFeO3,X代表稀土元素;
所述的非磁金属材料层3的非磁金属材料为铂Pt,钨W,钯Pd或钽Ta;
所述的电极层4的材料为金Au或铝Al;
所述的探测器结构以在太赫兹波段具有较高透过率的材料作衬底,在其上沉积厚度为3-300nm反铁磁薄膜,而后沉积厚度为3-300nm非磁金属层,最后在非磁金属层两侧沉积电极。
其具体实现方法如下:
在衬底上沉积制备反铁磁(NiO(氧化镍)或CoO(氧化钴)或Cr2O3(三氧化二铬)或BiFeO3(铁酸铋)或XFeO3(铁酸X,X代表稀土元素))薄膜,其厚度范围为3-300nm,然后在其上沉积非磁金属(Pt(铂)或W(钨)或Pd(钯)或Ta(钽))薄膜层,其厚度范围为3-300nm,最后在非磁金属层两侧上制备电极(金或铝)用于引出电压信号。
该发明利用了电子自旋属性来实现太赫兹探测,是一种自旋太赫兹探测器,具有零功耗、响应快、易集成、可室温工作等优点。
附图说明
图1为器件结构示意图。
具体实施方式
下面提供通过实验研究得到的实施实例,并对本发明作进一步的详细说明。
实施例1:
在4英寸高阻硅衬底上旋涂光刻胶,光刻出许多块1x2mm2大小的空白长方形区域,然后放入磁控溅射沉积腔内在其上制备NiO反铁磁材料,在溅射沉积反铁磁材料时外加一强度为1000Oe的平行于衬底面的磁场,磁场方向垂直于小长方块的长边。反铁磁层厚度为3nm。然后继续沉积非磁金属Pt层,其厚度为3nm。取出样品进行脱胶,再次旋涂光刻胶,在小长方形两边分别光刻出1x0.5mm2大小的电极区域,然后再次将样品放入磁控溅射沉积腔内沉积厚度为200nm的金电极。取出样品进行脱胶、清洗、切割、点焊引线、封装,完成探测器制作。
实施例2:
在4英寸高阻硅衬底上旋涂光刻胶,光刻出许多块1x2mm2大小的空白长方形区域,然后放入磁控溅射沉积腔内在其上制备Cr2O3反铁磁材料,在溅射沉积反铁磁材料时外加一强度为1000Oe的平行于衬底面的磁场,磁场方向垂直于小长方块的长边。反铁磁层厚度为30nm。然后继续沉积非磁金属W层,其厚度为30nm。取出样品进行脱胶,再次旋涂光刻胶,在小长方形两边分别光刻出1x0.5mm2大小的电极区域,然后再次将样品放入磁控溅射沉积腔内沉积厚度为200nm的金电极。取出样品进行脱胶、清洗、切割、点焊引线、封装,完成探测器制作。
实施例3:
在4英寸高阻硅衬底上旋涂光刻胶,光刻出许多块1x2mm2大小的空白长方形区域,然后放入磁控溅射沉积腔内在其上制备BiFeO3反铁磁材料,在溅射沉积反铁磁材料时外加一强度为1000Oe的平行于衬底面的磁场,磁场方向垂直于小长方块的长边。反铁磁层厚度为300nm。然后继续沉积非磁金属Pd层,其厚度为300nm。取出样品进行脱胶,再次旋涂光刻胶,在小长方形两边分别光刻出1x0.5mm2大小的电极区域,然后再次将样品放入磁控溅射沉积腔内沉积厚度为200nm的金电极。取出样品进行脱胶、清洗、切割、点焊引线、封装,完成探测器制作。

Claims (1)

1.一种基于反铁磁非磁金属异质结的太赫兹探测器,包括衬底层(1)、反铁磁材料层(2)、非磁金属材料层(3)、电极层(4),其特征在于:
所述的太赫兹探测器在衬底层(1)上依次有反铁磁材料层(2)、非磁金属材料层(3)、电极层(4);
所述的衬底层(1)的材料为在太赫兹波段有较高透过率的高阻硅或本征锗;
所述的反铁磁材料层(2)的反铁磁材料为:氧化镍NiO,氧化钴CoO,三氧化二铬Cr2O3,铁酸铋BiFeO3或XFeO3,X代表稀土元素,沉积厚度为3-300nm;
所述的非磁金属材料层(3)的非磁金属材料为铂Pt,钨W,钯Pd或钽Ta,沉积厚度为3-300nm;
所述的电极层(4)的材料为金Au或铝Al。
CN201910271495.4A 2019-04-04 2019-04-04 一种基于反铁磁非磁金属异质结的太赫兹探测器 Active CN110044476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910271495.4A CN110044476B (zh) 2019-04-04 2019-04-04 一种基于反铁磁非磁金属异质结的太赫兹探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910271495.4A CN110044476B (zh) 2019-04-04 2019-04-04 一种基于反铁磁非磁金属异质结的太赫兹探测器

Publications (2)

Publication Number Publication Date
CN110044476A true CN110044476A (zh) 2019-07-23
CN110044476B CN110044476B (zh) 2021-02-12

Family

ID=67276272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910271495.4A Active CN110044476B (zh) 2019-04-04 2019-04-04 一种基于反铁磁非磁金属异质结的太赫兹探测器

Country Status (1)

Country Link
CN (1) CN110044476B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487475A (zh) * 2020-03-26 2020-08-04 南京大学 一种无源低功耗的微波检测方法
CN113437211A (zh) * 2021-06-25 2021-09-24 上海理工大学 一种基于磁性隧道结的太赫兹波调制器及其制备方法
RU2781081C1 (ru) * 2022-01-25 2022-10-05 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Спинтронный детектор терагерцовых колебаний на основе наногетероструктуры антиферромагнетик - тяжелый металл
US20230148297A1 (en) * 2021-11-10 2023-05-11 Shan Dong University Magnetic heterojunction structure and method for controlling and achieving logic and multiple-state storage functions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100767A1 (en) * 2015-03-06 2018-04-12 Brandt Christopher Pein Systems, methods, and apparatus for radiation detection
CN109411993A (zh) * 2018-12-28 2019-03-01 中国工程物理研究院电子工程研究所 一种基于交换偏置磁场的太赫兹波发生器
CN109405860A (zh) * 2018-09-19 2019-03-01 天津大学 基于天线直接匹配的锗硅异质结双极晶体管探测器
CN109494293A (zh) * 2018-12-28 2019-03-19 同方威视技术股份有限公司 太赫兹探测器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180100767A1 (en) * 2015-03-06 2018-04-12 Brandt Christopher Pein Systems, methods, and apparatus for radiation detection
CN109405860A (zh) * 2018-09-19 2019-03-01 天津大学 基于天线直接匹配的锗硅异质结双极晶体管探测器
CN109411993A (zh) * 2018-12-28 2019-03-01 中国工程物理研究院电子工程研究所 一种基于交换偏置磁场的太赫兹波发生器
CN109494293A (zh) * 2018-12-28 2019-03-19 同方威视技术股份有限公司 太赫兹探测器及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487475A (zh) * 2020-03-26 2020-08-04 南京大学 一种无源低功耗的微波检测方法
CN113437211A (zh) * 2021-06-25 2021-09-24 上海理工大学 一种基于磁性隧道结的太赫兹波调制器及其制备方法
US20230148297A1 (en) * 2021-11-10 2023-05-11 Shan Dong University Magnetic heterojunction structure and method for controlling and achieving logic and multiple-state storage functions
US11922986B2 (en) * 2021-11-10 2024-03-05 Shan Dong University Magnetic heterojunction structure and method for controlling and achieving logic and multiple-state storage functions
RU2781081C1 (ru) * 2022-01-25 2022-10-05 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Спинтронный детектор терагерцовых колебаний на основе наногетероструктуры антиферромагнетик - тяжелый металл
RU2793891C1 (ru) * 2022-04-18 2023-04-07 Общество с ограниченной ответственностью "Новые спинтронные технологии" (ООО "НСТ") Спинтронный детектор микроволновых колебаний

Also Published As

Publication number Publication date
CN110044476B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN110044476A (zh) 一种基于反铁磁非磁金属异质结的太赫兹探测器
Makushko et al. Flexible magnetoreceptor with tunable intrinsic logic for on‐skin touchless human‐machine interfaces
Wu et al. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism
CN109411993A (zh) 一种基于交换偏置磁场的太赫兹波发生器
Peng et al. Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer
Choudhury et al. Voltage controlled on-demand magnonic nanochannels
US8432164B2 (en) Ferromagnetic resonance and memory effect in magnetic composite materials
Bhatti et al. On the room-temperature ferromagnetism in (ZnO) 0.98 (MnO2) 0.02
De La Torre Medina et al. Tunable zero field ferromagnetic resonance in arrays of bistable magnetic nanowires
CN104777197A (zh) 一种氧化钼纳米带/石墨烯复合材料及其在制备氢气敏感元件方面的应用
CN108075034B (zh) 一种微波探测元件以及微波探测器
Mahmood et al. Study of magnetic and optical properties of Zn1− x TMx Te (TM= Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
CN110993719B (zh) 一种光频响应电子隧穿结构、其制备方法和用途
Xie et al. Light control of ferromagnetism in ZnO films on Pt substrate at room temperature
Wang et al. Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial
CN102707247B (zh) 一种自偏置巨磁阻抗传感器探头及其制备方法
CN100349308C (zh) 霍尔元件、其制造方法及其应用
CN110190182A (zh) 一种超薄自旋阀器件的设计方法
Garg et al. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films
Shishido et al. Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector
CN102376812A (zh) 一种天线耦合碲镉汞太赫兹探测器
Alves et al. New 1D–2D magnetic sensors for applied electromagnetic engineering
CN113270542A (zh) 一种基于iii-v族窄禁带半导体异质结构的自旋信号探测器
Zhang et al. Extremely large magnetization and gilbert damping modulation in NiFe/GeBi bilayers
CN209927303U (zh) 基于反铁磁自旋轨道扭矩的太赫兹探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant