RU2778980C1 - Спинтронный детектор терагерцовых колебаний - Google Patents

Спинтронный детектор терагерцовых колебаний Download PDF

Info

Publication number
RU2778980C1
RU2778980C1 RU2021132367A RU2021132367A RU2778980C1 RU 2778980 C1 RU2778980 C1 RU 2778980C1 RU 2021132367 A RU2021132367 A RU 2021132367A RU 2021132367 A RU2021132367 A RU 2021132367A RU 2778980 C1 RU2778980 C1 RU 2778980C1
Authority
RU
Russia
Prior art keywords
antiferromagnetic
substrate
heterostructure
terahertz
magnetic field
Prior art date
Application number
RU2021132367A
Other languages
English (en)
Inventor
Елизавета Евгеньевна Козлова
Ансар Ризаевич Сафин
Дмитрий Владимирович Калябин
Сергей Аполлонович Никитов
Андрей Иванович Кирилюк
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Application granted granted Critical
Publication of RU2778980C1 publication Critical patent/RU2778980C1/ru

Links

Images

Abstract

Использование: для детектирования колебаний в диапазоне частот 0,1-5 ТГц. Сущность изобретения заключается в том, что детектор терагерцовых колебаний содержит гетероструктуру на основе последовательно расположенных на подложке слоев антиферромагнетика и немагнитного металла и приемных электродов, связанных с регистратором, при этом гетероструктура выполнена на прозрачной для терагерцового излучения подложке, антиферромагнетик представляет собой одноосный антиферромагнитный изолятор с легкой осью анизотропии, который нанесен на подложку в виде штыревой гребенчатой структуры, при этом гетероструктура включает средство для перестройки рабочей частоты, выполненное в виде источника постоянного магнитного поля, вектор напряженности которого направлен параллельно легкой оси антиферромагнитного материала. Технический результат: расширение функциональных возможностей регулирования параметров детектора посредством перестройки частоты постоянным магнитным полем, увеличение значения выпрямленного напряжения при резонансе. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для детектирования колебаний в диапазоне частот 0,1-5 ТГц.
Известен детектор терагерцового диапазона (CN 110044476А, SHANGHAI INST TECH PHYSICS CAS, 23.07.2019) на основе гетероструктуры, содержащей слой антиферромагнитного материала, слой немагнитного металла и электродный слой. При воздействии внешнего терагерцового излучения на слой антиферромагнитного материала, в нем возникают колебания вектора Нееля. На границе раздела антиферромагнетик - немагнитный металл происходит преобразование спиновых волн в электрический ток вследствие обратного спинового эффекта Холла. Сигнал детектируется с помощью электродов, расположенных на слое немагнитного металла.
Описан терагерцовый детектор (CN 209927303U, SHANGHAI INST TECH PHYSICS CAS, 10.01.2020), основанный на вращающем моменте антиферромагнитной спиновой орбиты. Он выполнен в виде гетероструктуры, содержащей слои антиферромагнитного и ферромагнитного материалов, выращенные на монокристаллической подложке. Детектор реализует инжекцию спина из слоя ферромагнитного материала в слой антиферромагнитного материала, в котором возникают самовозбуждающиеся колебания вектора Нееля. Внешнее терагерцовое излучение возбуждает прецессию намагниченности подрешеток антиферромагнетика. Обнаружение терагерцового сигнала реализуется путем измерения интенсивности намагничивания слоя антиферромагнитного материала. Недостаток указанных устройств состоит в невозможности перестройки диапазона рабочих частот таких детекторов.
Наиболее близким к патентуемому устройству является детектор терагерцового и субтерагерцового диапазонов (US 2021109172А1, UNIV CALIFORNIA, 15.04.2021 - прототип), включающий гетероструктуру, источник магнитного поля и электрическую цепь. Гетероструктура состоит из последовательно расположенных на подложке антиферромагнитного слоя и слоя тяжелого металла. Источник магнитного поля создает магнитное поле, ориентированное параллельно легкой оси антиферромагнитного слоя и параллельно направлению распространения электромагнитного излучения. Облучение антиферромагнитного слоя внешним электромагнитным излучением, имеющим терагерцовую или субтерагерцовую частоту, приводит к возникновению спинового тока в слое антиферромагнетика. На границе слоя антиферромагнетика и тяжелого металла происходит конвертация спинового тока в электрический. Электрический ток регистрируется с выходных электродов, расположенных на слое тяжелого металла. Недостаток устройства заключается в низкой чувствительности такого детектора.
Настоящее изобретение направлено на решение проблемы создания детектора терагерцового излучения, рабочую частоту которого можно перестраивать посредством управления постоянным магнитным полем, с обеспечением высокой чувствительности.
Детектор терагерцовых колебаний содержит гетероструктуру на основе последовательно расположенных слоя антиферромагнитного материала, слоя немагнитного металла и приемных электродов.
Гетероструктура выращена на прозрачной для терагерцового излучения подложке. Слой антиферрромагнетика выполнен в виде гребенчатой структуры, антиферромагнитный материал представляет собой одноосный антиферромагнитный изолятор с легкой осью анизотропии. Вектор намагниченности источника постоянного магнитного поля направлен параллельно легкой оси слоя антиферромагнитного материала.
Антиферромагнитный материал может быть выполнен из MnF2, FeF2 или Сr2O3, а немагнитный металл представляет собой Pt, Та или W.
Технический результат - возможность перестройки рабочей частоты детектора при повышении чувствительности к детектируемому терагерцовому сигналу.
Существо изобретения представлено на чертежах, где:
Фиг. 1 - структура детектора.
Фиг. 2 - зависимость частоты со антиферромагнитного (АФМ) резонанса от напряженности Н постоянного магнитного поля.
Фиг. 3 - зависимость выходного постоянного напряжения от частоты входного воздействия для трех значений напряженности магнитного поля.
Фиг. 4 - зависимость чувствительности детектора от напряженности постоянного магнитного поля.
Фиг. 5 - зависимость выходного постоянного напряжения от количества штырей из антиферромагнетика в гребенчатой структуре.
На фиг. 1 представлена структура устройства детектирования терагерцовых колебаний, которое содержит многослойную гетероструктуру, содержащую размещенные на подложке 1 последовательно расположенные слой антиферромагнитного материала 2 в виде гребенчатой структуры со штырями 21, слоя немагнитного металла 3 и электроды 4 и 5. Токопровод 6 соединяет слой 3 и электроды 4 и 5 с регистратором 7 (вольтметром).
Патентуемое устройство может быть реализовано на основе известных материалов и технологий нано- и микроэлектроники.
Слой антиферромагнетика 2 в виде гребенчатой структуры может быть выполнен из одноосного антиферромагнетика с легкой осью анизотропии, например, MnF2, FeF2 или Сr2О3. Толщина слоя варьируется от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцовой частоты порядка 100 мкм.
Отношение периода Т штырей гребенчатой структуры к их ширине W составляет от 2,0 до 5,0, причем чем больше это отношение, тем меньше выходное постоянное напряжение. Примерные размеры: ширина W штырей 21 составляет 10 мкм, период Т штырей 21 составляет 20 мкм.
Подложка 1 может быть выполнена из немагнитного диэлектрика, например: SiO2, MgO, Аl2О3, SrTiO3, LiNbO3 или других материалов, используемых в технологии микроэлектроники. Латеральные размеры неограниченны, но площадь подложки 1 должна быть больше размеров слоя антиферромагнетика 2 и слоя немагнитного металла 3.
Слой немагнитного металла 3 может быть выполнен из Pt, Та или W и может иметь толщину от 5 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцовой частоты порядка 100 мкм. Электроды 4 и 5 могут быть выполнены из металла высокой проводимости, например, золота. Толщина электродов варьируется от 1 нм до 1 мкм. Токопровод 6 может быть выполнен из металла высокой проводимости, например, меди или платины.
Принцип функционирования детектора состоит в следующем.
Гетероструктура ориентирована параллельно как постоянному магнитному полю 9, так и направлению распространения регистрируемой ТГц волны 8. Переменное электромагнитное поле ТГц волны 8 индуцирует крутящий момент, который действует на магнитные подрешетки антиферромагнитного материала и вызывает колебания вектора Нееля вблизи легкой оси анизотропии. Благодаря механизму спиновой накачки в антиферромагнитном слое 2 возникает спиновый ток. Данный ток конвертируется в электрический ток в слое немагнитного металла 3. Посредством обратного спинового эффекта Холла возникает электрическое поле между электродами 4 и 5, что приводит к возникновению постоянного электрического напряжения, которое можно детектировать с помощью вольтметра 7.
Перестройка частоты антиферромагнитного резонанса осуществляется постоянным магнитным полем 9. Изменение напряженности постоянного магнитного поля 9 приводит к изменению частоты антиферромагнитного резонанса. Зависимость частоты антиферромагнитного резонанса от напряженности постоянного магнитного поля представлена на фиг. 2.
Увеличение частоты электромагнитного поля ТГц волны 8 приводит к резонансной зависимости выходного постоянного напряжения, как видно на фиг. 3, причем величина выходного постоянного напряжения при резонансе увеличивается при увеличении напряженности постоянного магнитного поля 9. Кроме того, увеличение напряженности постоянного магнитного поля 9 приводит к повышению чувствительности детектора, как показано на фиг. 4.
Изменяя количество штырей 21 из антиферромагнетика в гребенчатой структуре, можно изменять величину выходного постоянного напряжения. Зависимость выходного постоянного напряжения от количества штырей из антиферромагнетика в гребенчатой структуре представлена на фиг. 5. Зависимость имеет линейный характер.
Таким образом, из приведенных данных следует, что параметры детектора терагерцовых колебаний могут регулироваться посредством постоянного магнитного поля 9, и, тем самым, расширяются функциональные возможности детектора. Кроме того, использование гребенчатой структуры позволяет увеличить значение выходного постоянного напряжения, величина которого линейно зависит от количества штырей из антиферромагнетика в гребенчатой структуре.

Claims (7)

1. Детектор терагерцовых колебаний, содержащий гетероструктуру на основе последовательно расположенных на подложке слоев антиферромагнетика и немагнитного металла и приемных электродов, связанных с регистратором,
отличающийся тем, что
гетероструктура выполнена на прозрачной для терагерцового излучения подложке, антиферромагнетик представляет собой одноосный антиферромагнитный изолятор с легкой осью анизотропии, который нанесен на подложку в виде штыревой гребенчатой структуры, при этом гетероструктура включает средство для перестройки рабочей частоты, выполненное в виде источника постоянного магнитного поля, вектор напряженности которого направлен параллельно легкой оси антиферромагнитного материала.
2. Детектор по п. 1, отличающийся тем, что отношение периода Т штырей гребенчатой структуры к их ширине W составляет от 2,0 до 5,0.
3. Детектор по п. 1, отличающийся тем, что антиферромагнитный материал представляет собой MnF2.
4. Детектор по п. 1, отличающийся тем, что немагнитный металл представляет собой платину.
5. Детектор по п. 1, отличающийся тем, что подложка выполнена из MgO.
RU2021132367A 2021-11-08 Спинтронный детектор терагерцовых колебаний RU2778980C1 (ru)

Publications (1)

Publication Number Publication Date
RU2778980C1 true RU2778980C1 (ru) 2022-08-29

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308181A (zh) * 2013-04-27 2013-09-18 北京理工大学 一种VOx太赫兹非制冷焦平面探测器组件
RU186169U1 (ru) * 2018-06-22 2019-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский педагогический государственный университет" Детектор терагерцового излучения на основе углеродных нанотрубок
RU2701187C1 (ru) * 2019-03-14 2019-09-25 Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ" Приёмник терагерцевого излучения на основе плёнки VOx

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308181A (zh) * 2013-04-27 2013-09-18 北京理工大学 一种VOx太赫兹非制冷焦平面探测器组件
RU186169U1 (ru) * 2018-06-22 2019-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский педагогический государственный университет" Детектор терагерцового излучения на основе углеродных нанотрубок
RU2701187C1 (ru) * 2019-03-14 2019-09-25 Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ" Приёмник терагерцевого излучения на основе плёнки VOx

Similar Documents

Publication Publication Date Title
Yang et al. Acoustic control of magnetism toward energy-efficient applications
Demokritov et al. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures
Iguchi et al. Nonreciprocal magnon propagation in a noncentrosymmetric ferromagnet LiFe 5 O 8
US7859349B2 (en) Fully integrated tuneable spin torque device for generating an oscillating signal and method for tuning such apparatus
US9461586B2 (en) Spintronic oscillator, and use thereof in radiofrequency devices
Panina et al. Mechanism of asymmetrical magnetoimpedance in amorphous wires
Bai et al. Control of the magnon–photon coupling
Budoyo et al. Electron spin resonance with up to 20 spin sensitivity measured using a superconducting flux qubit
US8669762B2 (en) Electromagnetic wave detection methods and apparatus
Cansever et al. Investigating spin-transfer torques induced by thermal gradients in magnetic tunnel junctions by using micro-cavity ferromagnetic resonance
RU2778980C1 (ru) Спинтронный детектор терагерцовых колебаний
Lyfar et al. Microwave absorption in a thin La 0.7 Sr 0.3 MnO 3 film: Manifestation of colossal magnetoresistance
US7986140B2 (en) Systems and methods for RF magnetic-field vector detection based on spin rectification effects
Nazarov et al. Tunable ferromagnetic resonance peak in tunneling magnetoresistive sensor structures
Belyaev et al. Microstrip resonator for nonlinearity investigation of thin magnetic films and magnetic frequency doubler
RU2793891C1 (ru) Спинтронный детектор микроволновых колебаний
Wosik et al. Composite transducer for longitudinal strain modulation (for ESR and optical spectroscopy)
RU2781081C1 (ru) Спинтронный детектор терагерцовых колебаний на основе наногетероструктуры антиферромагнетик - тяжелый металл
Gómez et al. High performance electronic device for the measurement of the inverse spin Hall effect
Yelon et al. High-frequency behavior of magnetically soft wires
US4833392A (en) Apparatus and method for measuring electrostatic polarization
Nogaret et al. Ballistic Hall photovoltammetry of magnetic resonance in individual nanomagnets
RU2118834C1 (ru) Устройство для измерения слабых магнитных полей (варианты)
Rouabhi et al. Anisotropy and magnetization processes in Co-rich amorphous wires
Braude Microwave response and spin waves in superconducting ferromagnets