RU2701187C1 - Приёмник терагерцевого излучения на основе плёнки VOx - Google Patents

Приёмник терагерцевого излучения на основе плёнки VOx Download PDF

Info

Publication number
RU2701187C1
RU2701187C1 RU2019107281A RU2019107281A RU2701187C1 RU 2701187 C1 RU2701187 C1 RU 2701187C1 RU 2019107281 A RU2019107281 A RU 2019107281A RU 2019107281 A RU2019107281 A RU 2019107281A RU 2701187 C1 RU2701187 C1 RU 2701187C1
Authority
RU
Russia
Prior art keywords
heat
layer
elements
pixels
absorbing layer
Prior art date
Application number
RU2019107281A
Other languages
English (en)
Inventor
Анатолий Семенович Олейник
Михаил Александрович Медведев
Валерий Петрович Мещанов
Наум Абрамович Коплевацкий
Original Assignee
Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ" filed Critical Общество с ограниченной ответственностью Научно-производственное предприятие "НИКА-СВЧ"
Priority to RU2019107281A priority Critical patent/RU2701187C1/ru
Application granted granted Critical
Publication of RU2701187C1 publication Critical patent/RU2701187C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Изобретение относится к технике радиоизмерений. Приёмник терагерцевого излучения содержит герметичный корпус, состоящий из основания и крышки с входным окном, прозрачным для регистрируемого излучения. На основании корпуса закреплена диэлектрическая подложка, на лицевой поверхности которой перед окном размещён приёмный поглощающий слой из ячеек, а на обратной стороне расположены компенсационный термочувствительный элемент из плёнки VOx и термочувствительный слой из плёнки VOx, выполненный из элементов в виде мозаики, которые размещены под ячейками поглощающего слоя. Каждый элемент термочувствительного слоя имеет сигнальный и общий электроды, соединенные с контактными площадками, расположенными по периметру подложки. Ячейки приёмного поглощающего слоя выполнены в виде пикселей, каждый из которых расположен над соответствующим элементом термочувствительного слоя и выполнен идентичным элементам по размеру и форме, расстояние между пикселями приёмного поглощающего слоя и элементами термочувствительного слоя соответствует размеру пикселей. Технический результат - повышение быстродействия и чувствительности при расширении спектрального диапазона длин волн. 4 з.п. ф-лы, 9 ил., 1 табл.

Description

Изобретение относится к технике радиоизмерений. Предлагаемый приемник предназначен для измерения пространственно-энергетических характеристик терагерцевого излучения. Приемник обеспечивает измерение параметров импульсно-модулированных сигналов терагерцевого (ТГц) диапазона. Наличие отечественных приемников позволит обеспечить производство и эксплуатацию радиоэлектронных систем военной и гражданской техники.
В настоящее время актуальной задачей является создание неохлаждаемых мозаичных микроболометров, обладающих высоким быстродействием и чувствительностью в ТГц-диапазоне.
Известны неохлаждаемые микроболометрические приемники на основе пленок VOx
В частности, известен неохлаждаемый микроболометрический приемник излучения (см. патент РФ на полезную модель № 120770 по кл. МПК G01J 5/20, опуб. 27.09.2012), содержащий матрицу с изолированными друг от друга пикселями, каждый из которых включает слой первого уровня из полупроводникового кристалла с интегральной схемой считывания и контактами, термоизолирующий слой второго уровня, выполненный в виде ломаных линий, расположенных вдоль двух противоположных сторон пикселя, состоящих из диэлектрического материала, снабженного отражающим покрытием, внутри которого размещен проводящий металл, при этом контактные выходы проводящего металла первой ломаной линии соединены с первым контактом первого уровня, второй - со вторым контактом первого уровня, а контактные входы проводящих металлов первой и второй ломаных линий - с соответствующими контактами абсорбирующего термочувствительного слоя третьего уровня.
Известен также матричный приемник терагерцового излучения, основанный на матричной структуре из ячеек Голея (см. патент РФ № 2414688, по кл. МПК G01J 5/420, опуб. 20.03.2011). Каждая из ячеек представляет собой заполненную газом камеру, один торец которой является входным окном для электромагнитного излучения, противоположный торец закрыт гибкой мембраной с зеркальным покрытием с внешней стороны, а внутри полости размещен поглощающий элемент, выполненный в виде ультратонкого (не менее чем в 50 раз меньше длины волны терагерцового излучения) резонансного поглощающего слоя, содержащего высокоимпедансную поверхность, обращенную к входному окну ячейки, при этом матрица содержит ячейки с заданными оптическими характеристиками поглощающих слоев, обусловленными различием топологий высокоимпедансных поверхностей.
Недостатком приемников при матричном исполнении является взаимное влияние элементов друг на друга, при этом указанные приемники трудоемки в изготовлении, технологический процесс изготовления отличается высокой сложностью.
Известен многоэлементный тепловой приемник на основе пленки VOx (см. патент РФ на полезную модель № 153286 по кл. МПК G01J 5/20, опуб. 10.07.2015), содержащий плоский металлостеклянный корпус с окном, внутри корпуса перед окном расположена подложка. На плоскости круговой приемной площадки установлено 37 термочувствительных элементов, расположенных на равном расстоянии друг от друга, при этом размещение элементов по вертикалям выполнено следующим образом: на центральной линии симметрии – 7 элементов, на ближайших к ним линиях слева и справа по 6 элементов, на следующих линиях слева и справа по 5 элементов и на краевых линиях по 4 элемента.
Недостатком данного решения является крайне низкая чувствительность к источникам ТГц-излучения.
Наиболее близким к предлагаемому изобретению является приемник ИК и ТГц излучений (см. патент РФ № 2650430 по кл. МПК G01J 5/20, опуб. опубл. 13.04.2018), содержащий плоский герметичный металлостеклянный корпус, состоящий из основания с выводами, которые электрически соединены с соответствующими контактными площадками подложки, и крышки с окном, прозрачным для регистрируемых излучений, перед окном установлена подложка, на которой размещены термочувствительные элементы из пленки VOx в виде мозаики, заполняющей круговую приемную площадку приемника, каждый элемент имеет сигнальный и общий электроды, соединенные с контактными площадками, расположенными по периметру подложки, на обратной стороне подложки расположен пленочный компенсационный элемент из VOx с электродами. При этом на лицевой поверхности слюдяной подложки расположена двумерная пленочная алюминиевая решетка с квадратными ячейками, заполняющая круговую приемную площадку приемника. В качестве поглощающего слоя используется тонкая слюдяная подложка, покрытая с лицевой стороны двумерной пленочной алюминиевой решеткой (частотно-избирательной поверхностью), а с обратной стороны мозаикой из термочувствительных элементов из пленки VOx со схемой токовой разводки. Поглощение в ТГц-диапазоне определяется геометрическими размерами ячеек и шага сетки. Приёмник может быть использован для измерения импульсного излучения на длинах волн 2.08 – 16.6 мкм и 0.33 – 0.37 мм.
Недостатком наиболее близкого аналога являются технологические сложности в выполнении алюминиевой 2D-решетки, невысокая чувствительность и быстродействие, а также ограниченный спектральный диапазон длин волн.
Техническая проблема настоящего изобретения заключается в создании простого и надёжного неохлаждаемого приемника ТГц-излучения, обеспечивающего измерение энергетических параметров непрерывного и импульсного терагерцевого излучения и возможность эксплуатации в условиях воздействия электромагнитных помех.
Технический результат предлагаемого приемника заключается в повышении его быстродействия и чувствительности при расширении спектрального диапазона длин волн.
Техническая проблема достигается тем, что приёмник терагерцевого излучения, содержащий герметичный корпус, состоящий из основания и крышки с входным окном, прозрачным для регистрируемого излучения, на основании корпуса закреплена диэлектрическая подложка, на лицевой поверхности которой перед окном размещён приёмный поглощающий слой из ячеек, а на обратной стороне расположены компенсационный термочувствительный элемент из плёнки VOx и термочувствительный слой из плёнки VOx, выполненный из элементов в виде мозаики, которые размещены под ячейками поглощающего слоя, каждый элемент термочувствительного слоя имеет сигнальный и общий электроды, соединенные с контактными площадками, расположенными по периметру подложки, согласно изобретению, ячейки приёмного поглощающего слоя выполнены в виде пикселей, каждый из которых расположен над соответствующим элементом термочувствительного слоя и выполнен идентичным элементам по размеру и форме, расстояние между пикселями приёмного поглощающего слоя и элементами термочувствительного слоя соответствуют размеру пикселей.
Толщину h диэлектрической подложки приёмника выбирают из условия h = λ/(25-75), где длина волны λ=1-3 мм.
Приёмный поглощающий слой может быть выполнен из сплава нихром толщиной 6-9 нм или плёнки хрома толщиной 8-10 нм.
Пиксели поглощающего слоя и элементы термочувствительного слоя могут быть выполнены квадратными с размерами сторон 0,03×0,03 мм2 – 0,18×0,18 мм2.
Повышение быстродействия и чувствительности приёмника достигается благодаря мозаичному исполнению приемника, когда поглощающий и термочувствительный слои выполнены в виде пикселей, и расположены друг под другом на противоположных сторонах подложки, термочувствительные пиксели соединены схемой токовой разводки. Чувствительность и быстродействие приемника линейно зависят от длительности импульса излучения, а также от размеров пикселей поглощающего и термочувствительного слоев.
Высокая чувствительность приемника также обусловлена низкой теплоемкостью подложки и скачкообразному изменению до двух порядков величины сопротивления термочувствительного слоя.
Расширение спектрального диапазона длин волн достигается за счет использования в качестве поглощающего слоя сплава нихром, содержащего металлы с частично заполненным пиком плотности электронных состояний на уровне Ферми. Поглотитель обеспечивает резонансное поглощение ТГц-излучения за счет плазмонного резонанса, и преобразует энергию ТГц-излучения в теплоту.
Предлагаемое изобретение поясняется иллюстрациями, где:
- на фиг. 1 показана лицевая сторона подложки в виде пикселей;
- на фиг. 2 – обратная сторона подложки с топологией термочувствительных элементов в виде мозаики, заполняющей приемную площадку приемника, электродами и контактными площадками, на свободной части подложки расположен компенсационный элемент из VOx с электродами;
- на фиг. 3 – топология массива поглощающих пикселей в увеличенном масштабе;
- на фиг. 4 – продольный разрез приемной площадки приемника;
- на фиг. 5 – топология термочувствительных элементов и элементы токовой разводки с обратной стороны подложки под массивом поглощающих пикселей в увеличенном масштабе;
- на фиг. 6 представлен общий вид мозаичного приемника ТГц-излучений (слева), его вид в разрезе (справа);
- на фиг. 7 приведен спектр поглощения слоя нихром в ТГц-диапазоне частот;
- на фиг. 8 приведена гистерезисная зависимость удельного поверхностного сопротивления термочувствительного слоя на основе пленки VO2 толщиной 60 нм от температуры;
- на фиг. 9 приведена пороговая экспозиция источников излучения на длинах волн 1 мм –2-3 мм, приводящая к нагреву термочувствительного слоя размером 0,1×0,1 мм2на 10С.
Позициями на чертежах обозначены:
1 – диэлектрическая (слюдяная) подложка; 2 – токовая разводка термочувствительных элементов; 3 – электроды с контактными площадками компенсационного термочувствительного элемента (VOx); 4 – компенсационный термочувствительный элемент (VOx); 5 – общий электрод с контактной площадкой термочувствительных элементов; 6 – поглощающие пиксели из нихрома; 7 – термочувствительные элементы (VOx); 8 – крышка корпуса приемника; 9 – входное окно корпуса приемника; 10 – позолоченные выводы; 11 – основание корпуса приемника; 12 – прозрачное для регистрируемого излучения стекло; 13 – диэлектрическая прокладка.
Облучаемая сторона подложки покрыта слоем нихром в виде пикселей 6 (фиг. 3), размером 0.18×0.18 мм, которые заполняют площадь приемной площадки. На противоположной стороне подложки 1 под поглощающими пикселями 6 расположена мозаика 7 (фиг. 2, фиг. 5), состоящая из 15-и квадратных термочувствительных элементов с сигнальными электродами и контактными площадками 2 и общим электродом с контактной площадкой 5. Термочувствительные элементы 7 равноудалены друг от друга на плоскости приемной площадки приемника.
На свободном участке подложки 1 расположен компенсационный термочувствительный элемент (VOx) 4 с контактными площадками 3 (фиг. 2). Конфигурация компенсационного термочувствительного элемента 4 подобна конфигурации термочувствительных элементов 7, при этом величины их удельных поверхностных сопротивлений равны. Компенсационный термочувствительный элемент 4 с помощью проводников соединен с контактными площадками 3. Контактные площадки 2, 3, 5 (фиг. 2) с помощью проводников соединены с выводами корпуса 10 (фиг. 6). Расстояние между элементами 7 друг относительно друга одинаковое, поэтому имеет место равномерное заполнение термочувствительными элементами приемной площадки приемника.
На фиг. 6 представлена конструкция приемника, которая содержит герметичный корпус, состоящий из основания 11 и крышки 8 с входным окном 9, выполненным из материала, прозрачного для регистрируемого излучения 12, например, из BaF. Основание корпуса 11 имеет позолоченные выводы 10. На основании корпуса 11 с помощью диэлектрической прокладки 13 закреплена диэлектрическая (слюдяная) подложка 1, лицевая поверхность которой покрыта поглощающими пикселями из нихрома 6, обратная сторона подложки заполнена мозаикой из 15 термочувствительных элементов 7 из пленки VOx с электродами и контактными площадками, на свободной поверхности подложки размещен компенсационный термочувствительный элемент 4.
Приёмник работает следующим образом.
Регистрируемое излучение поглощается пикселями из нихрома, нагревает слюдяную подложку и расположенный на ней термочувствительный слой на основе мозаики из термочувствительных элементов VOx. Характер нагрева термочувствительных элементов формирует двухмерную картину изменения их сопротивления.
На фиг. 7 приведен спектр поглощения слоя нихром, толщиной 8,3 нм в ТГц-диапазоне частот 75-260 ГГц. Измерение поглощения пленочной структуры нихром-мусковит в диапазоне частот 75-260 ГГц проводилось на установке для измерения параметров передачи, отражения и частотных характеристик КВЧ-изделий в диапазоне частот 75-260 ГГц. Установка предназначается для технологического и выходного контроля устройств, предназначаемых для применения в приёмных и передающих трактах радиоэлектронной аппаратуры миллиметрового диапазона различного функционального назначения. В ходе измерения структура нихром-мусковит помещалась между двумя волноводами. Далее проводилось измерение S-параметров, и проводился расчет коэффициента поглощения по формуле A=1-(T+R), где A–коэффициент поглощения; T – коэффициент пропускания; R – коэффициент отражения.
Эксперименты показали: поглощение слоя нихром на длинах волн 3 мм и 2 мм составляет 40%, а на длине 1 мм составляет 50%.
На фиг. 8 приведена зависимость удельного поверхностного сопротивления термочувствительного слоя на основе пленки VOx, толщиной 60 нм от температуры. В диапазонах температур 20–45°C и 45– 69 °C прямую ветвь термического гистерезиса пленки VOx можно представить с небольшой погрешностью в виде двух отрезков прямых (АВ и ВС).
На фиг. 9 приведена зависимость энергетической экспозиции излучения на длинах волн: 1 мм и 2-3 мм от длительности импульса, обеспечивающая нагрев термочувствительного слоя VOx размером 0,1×0,1 мм2 на 1 °С. Измерительный канал представляет собой поглощающий пиксель и расположенный под ним термочувствительный пиксель, размещенные на слюдяной подложке. Быстродействие измерительного канала зависит от размеров поглощающего и термочувствительных пикселей. Быстродействие приемника в ТГц диапазонах составляет соответственно ~10-8с. Чувствительность измерительного канала линейно изменяется от длительности импульса излучения в диапазоне 1-10-8с.
В таблице приведены экспериментальные результаты энергетической экспозиции излучения от длительности импульса, обеспечивающего нагрев термочувствительного слоя VOx на 1 °С, выполненного в виде пикселя, размером в диапазоне: 30×30 мкм2; 100×100 мкм2; 180×180 мкм2.
Таблица. Результаты экспериментов
Длина волны, мм Размеры пикселя, мкм2 Энергетическая экспозиция, Дж/пиксель
Время экспозиции 1 с Время экспозиции 10-8 с
1 30×30 10-6 4,7×10-10
100×100 1,2×10-5 5,6×10-9
180×180 3,6×10-5 1,7×10-8
2 30×30 0,83×10-6 2,9×10-10
100×100 9,3×10-6 4,3×10-9
180×180 2,8×10-5 1,3×10-8
3 30×30 6,6×10-6 3×10-9
100×100 7,4×10-6 3,5×10-9
180×180 2,2×10-5 1×10-8
Для изготовления мозаичного приемника ТГц-излучения использовали малогабаритный металлостеклянный корпус, выпускаемый ОАО «Завод «МАРС», г. Торжок, состоящий из основания 1409.26-1Н и крышки ПАЯ7.313.008-02 с прозрачным окном, с позолоченными выводами, размером 21.85×19.35×18 мм, с окном из материала ФБС-И, прозрачным для регистрируемых излучений. Корпус имеет 26 позолоченных выводов диаметром 0.9 мм и высотой 8 мм; это предельное число выводов для данного типа корпуса. Диэлектрическая подложка выполнена из слюды марки СТ-1 размером 13×15.5×0.04 мм. Слюдяная подложка, толщиной 0.04 мм, на лицевой поверхности которой размещен слой нихрома в виде пикселей размером 0.18×0.18 мм. На обратной стороне подложки размещены 15 термочувствительных элементов квадратной формы, размером 0.18×0.18 мм, которые заполняют приемную площадку, размером 1.66×0.9 мм. Компенсационный элемент выполнен из пленки VOx.
Нанесение пленочных слоев проводили способом термовакуумного напыления на установке вакуумного осаждения УРМ3.279.060. Изготовление топологии мозаики из поглощающего и термочувствительного слоев на диэлектрической подложке – способом динамического формирования изображения. Термочувствительные элементы на основе VOx, где x=1,5-2,02 наносятся на диэлектрическую подложку с помощью двухстадийного метода, приведенного в работе (Олейник А.С. Регистрация лазерного излучения пленочными реверсивными средами на основе диоксида ванадия / А.С. Олейник, А.В. Федоров // Российские нанотехнологии, 2011. Т. 6  № 5-6. С. 120-129).
Преимуществом предлагаемого мозаичного приемника ТГц-излучений является параллельная регистрация излучения всеми 15 измерительными каналами, при этом постоянная времени приемника определяется одним измерительным каналом. Схема управления приемником приведена в работе (Олейник, А. С. Тепловые приемники лазерного излучения на основе пленок VOx/ А. С. Олейник, Р. Н. Салихов // Датчики и системы. 2015. №7. С. 19 – 25). Разработана конструкция мозаичного ТГц-приемника с постоянной времени ~ 10-8с. Приведенные характеристики значительно превышают характеристики отечественных и зарубежных аналогов.

Claims (5)

1. Приёмник терагерцевого излучения, содержащий герметичный корпус, состоящий из основания и крышки с входным окном, прозрачным для регистрируемого излучения, на основании корпуса закреплена диэлектрическая подложка, на лицевой поверхности которой перед окном размещён приёмный поглощающий слой из ячеек, а на обратной стороне расположены компенсационный термочувствительный элемент из плёнки VOx и термочувствительный слой из плёнки VOx, выполненный из элементов в виде мозаики, которые размещены под ячейками поглощающего слоя, каждый элемент термочувствительного слоя имеет сигнальный и общий электроды, соединенные с контактными площадками, расположенными по периметру подложки, отличающийся тем, что ячейки приёмного поглощающего слоя выполнены в виде пикселей, каждый из которых расположен над соответствующим элементом термочувствительного слоя и выполнен идентичным элементам по размеру и форме, расстояние между пикселями приёмного поглощающего слоя и элементами термочувствительного слоя соответствует размеру пикселей.
2. Приёмник по п. 1, отличающийся тем, что толщину h диэлектрической подложки выбирают из условия h=
Figure 00000001
/(25-75), где длина волны
Figure 00000002
=1-3 мм.
3. Приёмник по п. 1, отличающийся тем, что приёмный поглощающий слой выполнен из сплава нихром толщиной 6-9 нм.
4. Приёмник по п. 1, отличающийся тем, что приёмный поглощающий слой выполнен из плёнки хрома толщиной 8-10 нм.
5. Приёмник по п. 1, отличающийся тем, что пиксели поглощающего слоя и элементы термочувствительного слоя выполнены квадратными с размерами сторон 0,03×0,03 мм2 – 0,18×0,18 мм2.
RU2019107281A 2019-03-14 2019-03-14 Приёмник терагерцевого излучения на основе плёнки VOx RU2701187C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019107281A RU2701187C1 (ru) 2019-03-14 2019-03-14 Приёмник терагерцевого излучения на основе плёнки VOx

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019107281A RU2701187C1 (ru) 2019-03-14 2019-03-14 Приёмник терагерцевого излучения на основе плёнки VOx

Publications (1)

Publication Number Publication Date
RU2701187C1 true RU2701187C1 (ru) 2019-09-25

Family

ID=68063550

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019107281A RU2701187C1 (ru) 2019-03-14 2019-03-14 Приёмник терагерцевого излучения на основе плёнки VOx

Country Status (1)

Country Link
RU (1) RU2701187C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757359C1 (ru) * 2020-07-24 2021-10-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Радиовизор на основе приемников миллиметрового излучения с пирамидальными рупорными антеннами
RU2778980C1 (ru) * 2021-11-08 2022-08-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Спинтронный детектор терагерцовых колебаний

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083326A1 (en) * 2012-11-27 2014-06-05 The University Court Of The University Of Glasgow Terahertz radiation detector, focal plane array incorporating terahertz detector, multispectral metamaterial absorber, and combined optical filter and terahertz absorber
CN103308181B (zh) * 2013-04-27 2016-08-17 北京理工大学 一种VOx太赫兹非制冷焦平面探测器组件
CN106129167A (zh) * 2016-07-20 2016-11-16 电子科技大学 一种石墨烯太赫兹探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083326A1 (en) * 2012-11-27 2014-06-05 The University Court Of The University Of Glasgow Terahertz radiation detector, focal plane array incorporating terahertz detector, multispectral metamaterial absorber, and combined optical filter and terahertz absorber
CN103308181B (zh) * 2013-04-27 2016-08-17 北京理工大学 一种VOx太赫兹非制冷焦平面探测器组件
CN106129167A (zh) * 2016-07-20 2016-11-16 电子科技大学 一种石墨烯太赫兹探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757359C1 (ru) * 2020-07-24 2021-10-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Радиовизор на основе приемников миллиметрового излучения с пирамидальными рупорными антеннами
RU2778980C1 (ru) * 2021-11-08 2022-08-29 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Спинтронный детектор терагерцовых колебаний

Similar Documents

Publication Publication Date Title
KR102040149B1 (ko) 적외선 검출기
Nguyen et al. Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements
KR0135119B1 (ko) 적외선 검출기
US4654622A (en) Monolithic integrated dual mode IR/mm-wave focal plane sensor
KR101840480B1 (ko) 적외선 센서
USRE36615E (en) Use of vanadium oxide in microbolometer sensors
EP1715315B1 (fr) Détecteur bolométrique, dispositif de détection d'ondes électromagnétiques submillimétriques et millimétriques mettant en oeuvre un tel détecteur
CN111947787B (zh) 红外探测器及其制备方法
CN100533078C (zh) 包括有源和无源微辐射热计的辐射热检测装置的制造方法
CN102998725B (zh) 用于吸收太赫兹辐射的粗糙黑化金属薄膜及其制备方法
US3781748A (en) Chalcogenide glass bolometer
JP2015152597A (ja) 温度測定要素を有するmim構造体を備えた放射検出器
JPWO2016129293A1 (ja) 電磁波検出器、及びガス分析装置
RU2701187C1 (ru) Приёмник терагерцевого излучения на основе плёнки VOx
Shurakov et al. Input bandwidth of hot electron bolometer with spiral antenna
Chen et al. Multiphysics simulation of hypersensitive microbolometer sensor using vanadium dioxide and air suspension for millimeter wave imaging
EP0645001B1 (en) Use of vanadium oxide in microbolometer sensors
CN103035983B (zh) 一种太赫兹辐射吸收层及其制备方法
Zia et al. Synthesis and electrical characterisation of vanadium oxide thin film thermometer for microbolometer applications
RU2650430C1 (ru) Приемник ИК- и ТГц-излучений
CN108508263B (zh) 功率传感器
CN111239479B (zh) 集成化自校准辐射功率传感芯片及辐射功率测量方法
CN114975755A (zh) 一种用于非分光红外气体传感器的红外探测器
US10254169B2 (en) Optical detector based on an antireflective structured dielectric surface and a metal absorber
RU2397458C1 (ru) Тепловой приемник оптического излучения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210315