RU2791714C1 - Способ сорбционной очистки технологических сернокислых вод кислотонакопителя от железа (iii) и титана (iv) - Google Patents

Способ сорбционной очистки технологических сернокислых вод кислотонакопителя от железа (iii) и титана (iv) Download PDF

Info

Publication number
RU2791714C1
RU2791714C1 RU2022132394A RU2022132394A RU2791714C1 RU 2791714 C1 RU2791714 C1 RU 2791714C1 RU 2022132394 A RU2022132394 A RU 2022132394A RU 2022132394 A RU2022132394 A RU 2022132394A RU 2791714 C1 RU2791714 C1 RU 2791714C1
Authority
RU
Russia
Prior art keywords
titanium
sulfuric acid
cation exchanger
iron
solution
Prior art date
Application number
RU2022132394A
Other languages
English (en)
Inventor
Ольга Владимировна Черемисина
Мария Александровна Пономарева
Максим Александрович Соловьев
Юлия Андреевна Машукова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Application granted granted Critical
Publication of RU2791714C1 publication Critical patent/RU2791714C1/ru

Links

Images

Abstract

Изобретение относится к способам очистки сернокислых технологических вод кислотонакопителя титанового производства от железа (III) и титана (IV). Способ включает пропускание раствора через слой катионита в водородной форме с переводом металлов в фазу катионита и обработку серной кислотой. В качестве катионита применяют макропористый полистирольный сшитый с дивинилбензолом катионит Puromet MTS9560 с фосфоновой кислотной функциональной группой. Очистку проводят при температуре 12-44 °С, времени контакта раствора с катионитом 30-180 минут при скорости подачи в реакционную ячейку 0,4- 6 мл/мин. Получают жидкую фазу очищенного сернокислого раствора и твердую фазу титана (IV) и железа (III). Твердую фазу направляют на десорбцию катионита раствором серной кислоты концентрацией 0,5-2 н., с получением твердой фазы очищенного катионита и раствора серной кислоты, содержащего железо (III) и титан (IV), который направляют на получение индивидуальных металлов. Обеспечивается повышение очистки сернокислых растворов от железа и титана. 2 ил., 3 табл., 4 пр.

Description

Изобретение относится к способам очистки сернокислых технологических вод кислотонакопителя титанового производства от железа(III) и титана(IV) с применение макропористого полистирольного сшитого с дивинилбензолом катионита Puromet MTS9560 с фосфоновой кислотной функциональной группой в водородной форме. Изобретение может быть использовано для удаления железа(III) и титана(IV) из технологических сернокислых растворов производства диоксида титана.
Известен способ очистки сточных вод от ионов меди (патент РФ №2477708, опубл. 20.03.2013) путем фильтрации через слой гидратированного цемента с толщиной слоя 0,055-0,065 м массой 10-15 г со скоростью фильтрации 5 м/час.
Основным недостатком данного способа является применение не регенерируемого сорбционного материала и необходимостью его утилизации после проведения очистки сточных вод.
Известен способ очистки сточных вод от тяжелых металлов (патент РФ №2125972, опубл. 10.02.1999) с применением органоминерального сорбента на основе гальваношлама, гранулированного связующим. Очистку вод ведут в интервале рН 6,5-7,5.
Недостатками данного способа являются необходимость синтеза и дополнительной обработки гальваношлама перед использованием. Также нейтральные значения рН могут привести к гидролизу металлов.
Известен способ удаления переходных металлов и радионуклидов из растворов (патент РФ №2458418, опубл. 10.08.2012), включающий в себя циркуляцию очищаемого раствора через сильноосновный анионит АВ-17-8 чС в OH--форме с одновременной регенерацией. Значение полной емкости составило 17,5 г на литр набухшего анионита. Время достижения равновесия при 20°С составило 200 часов, при температуре 70°С - 10 часов.
Недостатком данного способа является низкая емкость анионита по отношению к исследуемым ионам, многостадийность процесса, а также продолжительность достижения равновесного состояния.
Известен способ извлечения ионов меди (II) из кислых растворов, который может быть использован для очистки кислых промышленных и бытовых стоков от ионов меди (II) (Патент РФ №2393245, опубл. 27.06.2010) с применение органических полимерных анионитов АМП и АМ-26 при температуре 70-80°С. Сущность способа заключается в образовании анионных хлоридных комплексов меди (II), что позволяет провести выделение их с применением анионитов. Сорбцию проводили из насыщенных хлоридами аммония, щелочных и щелочноземельных металлов растворов, подкисленных раствором соляной кислоты. Объем раствора 50-100 см3 и масса сухого сорбента 1 г.
Недостатком данного способа является проведение процесса при высоких температурах и необходимости нагрева, подготовки исходных промышленных и бытовых стоков.
Известен Способ переработки растворов, содержащих катионы металлов (авторское свидетельство SU №1731847, опубл. 07.05.1992) принятый за прототип. Реализация способа осуществлялась на установке, включающую в себя ионообменную колонну с сульфокатионитом КУ-2 в водородной форме. Через слой катионита фильтровали раствор отработанного медного электролита со скоростью 2,3-2,36 м/ч. Емкость катионита составила в г/л в расчете на объем набухшего в воде ионита: медь 18,82, никель 9,263, железо 0,261, кальция 0,344, серебро 0,03. Десорбцию проводили раствором сульфата натрия с последующей обработкой серной кислотой. Далее элюат подвергается термообработке, осадок сульфатов обрабатывают водой и отделяют твердый сульфат кальция, а маточный раствор осаждения используют повторно.
Основными недостатками являются низкое значение емкости ионита по отношению к исследуемым металлам, многостадийность процесса, что увеличивается время проведение очистки, а также приводит к необходимости обеспечения сложным аппаратурным оформлением и дополнительными экономическими затратами.
Техническим результатом является очистка технологических вод кислотонакопителя от макропримесей железа (III) и микропримесей титана(IV).
Технический результат достигается тем, что очистку проводят при температуре от 12 до 44°С, времени контакта раствора с катионитом, в качестве которого используют макропористый полистирольный сшитый с дивинилбензолом катионит Puromet MTS9560 с фосфоновой кислотной функциональной группой составляет от 30 до 180 минут при скорости подачи в реакционную ячейку от 0,4 до 6 мл/мин., с получением жидкой фазы очищенного сернокислого раствора, который направляют в технологический цикл производства диоксида титана, и твердой фазы титана (IV) и железа(III), которые направляют на десорбцию катионита раствором серной кислоты концентрацией от 0,5 до 2 н., с получением твердой фазы очищенного катионита, который отправляют обратно на стадию очистки сернокислых технологических вод, и растворы серной кислоты, содержащие железо (III) и титан (IV) направляют на получение индивидуальных металлов.
Способ поясняется следующими фигурами:
фиг. 1 - график выходных кривых сорбции титана и железа на макропористом полистирольном катионите при температуре 25°С и расходе исходной смеси 2 мл/мин;
фиг. 2 - график зависимости концентрации железа и титана в сернокислых растворах от времени контакта с катионитом при температуре 25°С.
Способ реализуется следующим образом. Сернокислые растворы с рН 0,3 с содержанием титана (IV) 0,48 г/л и железа(III) 2,8 г/л, отход производства диоксида титана, хранящийся в кислотонакопителях при производственных площадках, подается при помощи перистальтического насоса в сорбционный аппарат. Раствор пропускается через слой макропористого полистирольного сшитого с дивинилбензолом катионита Puromet MTS9560 с фосфоновой кислотной функциональной группой с размером гранул от 300 до 850 мкм в сорбционном аппарате при температуре от 12 до 44°С. Время контакта раствора с катионитом составляет от 30 до 180 минут при скорости подачи в реакционную ячейку от 0,4 до 6 мл/мин. С получением жидкой фазы -очищенного сернокислого раствора, которые направляются в технологический цикл производства диоксида титана и твердой фазы титана(IV) и железа(III). Далее проводят десорбцию катионита раствором серной кислоты концентрацией от 0,5 до 2 н., с получением твердой фазы очищенного катионита, который отправляют обратно на стадию очистки и растворы серной кислоты, содержащие железо (III) и титан (IV), который направляются на получение индивидуальных металлов.
Способ поясняется следующими примерами.
Пример 1. Сернокислый раствор, содержащий железо и титан направляют в сорбционную колонку диаметром 12 мм и высотой 100 мм, в которую помещен 1,45-1,5±0,05 г катионита. Сорбционный эксперимент проводили при температуре 25°С и скоростью подачи от 0,4 до 6 мл/мин. Концентрация железа и титана составляли 2,8 г/л и 0,48 г/л соответственно. Емкость макропористого полистирольного сшитого с дивинилбензолом катионита Puromet MTS9560 с фосфоновой кислотной функциональной группой при разной скорости подачи раствора представлена в таблице 1.
Таблица 1 - Емкостные характеристики процесса сорбции катионов железа и титана из сернокислых растворов на ионообменной смоле при температуре 25°С.
Скорость подачи, мл/мин ПДОЕ (Fe), г/кг ПДОЕ (Ti), г/кг Вывод
0,1 63,4 25,5 Не целесообразно
0,4 63,4 25,5
2 93,6 30,4
4 88,1 21,8
6 44,2 23,1
8 Сорбции не происходит Не целесообразно
На графике 1 представлены выходные кривые сорбции железа и титана на катионите при температуре 25°С и подаче исходной смеси 2 мл/мин.
Наибольшее значение емкости катионита по железу и титану определено при подаче исходной смеси 2 мл/мин. При понижении или повышении скорости подачи наблюдается уменьшение емкостных характеристик. При снижении скорости подачи раствора с 0,4 до 0,1 мл/мин повышения значений емкости по катионам металлов не наблюдается, таким образом, снижение скорости подачи не целесообразно. При скорости 8 мл/мин на выходе из сорбционного аппарата концентрация металлов равна исходной, что говорит о невозможности очистки при этом режиме.
Пример 2. Сернокислый раствор, содержащий железо и титан направляют в сорбционную колонку диаметром 12 мм и высотой 100 мм, в которую помещен 1,45-1,5±0,05 г катионита. Сорбционный эксперимент проводили при температурах от 14 до 25°С и скоростью подачи 2 мл/мин. Концентрация железа и титана составляли 2,8 г/л и 0,48 г/л соответственно. Емкость катионита при разных значениях температуры представлена в таблице 2.
Таблица 2 - Емкостные характеристики процесса сорбции катионов железа и титана из сернокислых растворов на ионообменной смоле при расходе по исходной смеси 2 мл/мин
Температура, °С Емкость по Fe, г/кг Емкость по Ti, г/кг Вывод
5 4,1 0,8 Не целесообразно
12 42,6 14,1
25 93,6 21,8
44 47,5 15,4
Выше 44 Происходит испарение легколетучих токсичных соединений титана и железа с серной кислотой Не целесообразно
При температурах 12 и 44°С наблюдается понижение емкостных характеристик катионита. При повышении температуры до 44°С наблюдается испарение легколетучих токсичных соединений титана и железа с серной кислотой. При температуре 5°С значительно снижается емкость катионита.
Пример 3. Отбирают аликвоты сернокислого раствора железа и титана объемом 10 мл и помещают в стеклянные термостатированные химические сосуды объемом 50 мл с навесками катионита. Производят измерение концентрации железа и титана в каждом сосуде через различные интервалы времени от 30 секунд до 5 часов.
На графике 2 представлены кинетические зависимости сорбции железа и титана на катионите при температуре 25°С
Полное достижение равновесия достигается через 3 часа контакта катионита и раствора. До 30 минут степень извлечения катионов металлов составляет менее 3%. При проведении эксперимента более 180 минут изменения концентрации не наблюдается.
Пример 4. Раствор серной кислоты концентрацией от 0,5 до 2 н. направляют в сорбционную колонку диаметром 12 мм и высотой 100 мм, в котором находится насыщенный железом и титаном после примера 1 и 2 катионит. Массы десорбированных железа и титана из катионита представлены в таблице 3.
Таблица 3 - Характеристики процесса десорбции катионов железа и титана
Концентрация H2SO4, н. Масса поглощенного металла, г Масса металла в растворе после десорбции, г Степень десорбции, % Вывод
Железо
0,138 0,004 2,9 Не целесообразно
0,5 0,035 25,3
1 0,104 75,3
2 0,137 99,3
4 Разрушение матрицы катионообменной смолы Не целесообразно
Титан
0,036 0,0001 0,3 Не целесообразно
0,5 0,004 11,1
1 0,017 47,2
2 0,034 94,4
4 Разрушение матрицы катионообменной смолы Не целесообразно
Максимальная степень регенерации достигается при использовании серной кислоты концентрацией 2 н.
Способ позволяет повысить очистку сернокислых растворов от железа и титана за счет оптимального подобранного температурного режима, времени контакта раствора с катионитом и скорости подачи в реакционную ячейку, а так же использование макропористого катионита.

Claims (1)

  1. Способ сорбционной очистки сернокислых технологических вод кислотонакопителя от железа(III) и титана(IV), включающий пропускание раствора через слой катионита в водородной форме с переводом металлов в фазу катионита и обработку серной кислотой, отличающийся тем, что очистку проводят при температуре от 12 до 44°С, времени контакта раствора с катионитом, в качестве которого используют макропористый полистирольный сшитый с дивинилбензолом катионит Puromet MTS9560 с фосфоновой кислотной функциональной группой, составляет от 30 до 180 минут при скорости подачи в реакционную ячейку от 0,4 до 6 мл/мин, с получением жидкой фазы очищенного сернокислого раствора, который направляют в технологический цикл производства диоксида титана, и твердой фазы титана(IV) и железа(III), которые направляют на десорбцию катионита раствором серной кислоты концентрацией от 0,5 до 2 н., с получением твердой фазы очищенного катионита, который отправляют обратно на стадию очистки сернокислых технологических вод, и растворы серной кислоты, содержащие железо(III) и титан(IV), направляют на получение индивидуальных металлов.
RU2022132394A 2022-12-12 Способ сорбционной очистки технологических сернокислых вод кислотонакопителя от железа (iii) и титана (iv) RU2791714C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791714C1 true RU2791714C1 (ru) 2023-03-13

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1731847A1 (ru) * 1989-11-09 1992-05-07 Производственное объединение "Балхашмедь" Способ переработки растворов, содержащих катионы металлов
RU2111173C1 (ru) * 1997-02-14 1998-05-20 Открытое акционерное общество "Ачинский нефтеперерабатывающий завод "ВНК" Способ сорбционной очистки воды от железа
WO2017084643A2 (en) * 2017-03-09 2017-05-26 Heraeus Deutschland GmbH & Co. KG Process for the treatment of wastewater
RU2686930C1 (ru) * 2018-02-12 2019-05-06 Валентина Исаевна Сафарова Способ очистки подотвальных вод и технологических растворов от меди
RU2738105C1 (ru) * 2020-06-16 2020-12-08 АКЦИОНЕРНОЕ ОБЩЕСТВО "АКЦИОНЕРНАЯ КОМПАНИЯ "ТУЛАМАШЗАВОД" (АО "АК "Туламашзавод") Способ замкнутого водооборота гальванического производства

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1731847A1 (ru) * 1989-11-09 1992-05-07 Производственное объединение "Балхашмедь" Способ переработки растворов, содержащих катионы металлов
RU2111173C1 (ru) * 1997-02-14 1998-05-20 Открытое акционерное общество "Ачинский нефтеперерабатывающий завод "ВНК" Способ сорбционной очистки воды от железа
WO2017084643A2 (en) * 2017-03-09 2017-05-26 Heraeus Deutschland GmbH & Co. KG Process for the treatment of wastewater
RU2686930C1 (ru) * 2018-02-12 2019-05-06 Валентина Исаевна Сафарова Способ очистки подотвальных вод и технологических растворов от меди
RU2738105C1 (ru) * 2020-06-16 2020-12-08 АКЦИОНЕРНОЕ ОБЩЕСТВО "АКЦИОНЕРНАЯ КОМПАНИЯ "ТУЛАМАШЗАВОД" (АО "АК "Туламашзавод") Способ замкнутого водооборота гальванического производства

Similar Documents

Publication Publication Date Title
US5378366A (en) Hot lime precipitation of arsenic from wastewater or groundwater
US4341636A (en) Treatment of wastewater
US3977968A (en) Ion exchange regeneration
WO2018035573A1 (en) Desalination process
Wirthensohn et al. Ammonium removal from anaerobic digester effluent by ion exchange
US5304309A (en) Cyclic process for selective coagulant recovery from clarifier sludge
RU2791714C1 (ru) Способ сорбционной очистки технологических сернокислых вод кислотонакопителя от железа (iii) и титана (iv)
Trokhymenko et al. Development of low waste technology of water purification from copper ions
CN109422400B (zh) 催化剂生产废水的处理方法
US11505847B2 (en) Method and apparatus for Ga-recovery
JPH073485A (ja) アルカリ金属塩化物の電解方法
JP3045378B2 (ja) 海水の複合処理用の方法
CN108726612B (zh) 含铵盐废水的处理方法
RU2824159C1 (ru) Способ очистки природных вод от соединений бора
Bolto et al. An ion-exchange process with thermal regeneration XII. Desalting of sewage effluents
US20150251928A1 (en) Ion exchange methods for treating water hardness
JPH11169864A (ja) ホウ素含有水の処理方法
WO2022141423A1 (en) Method for treating organic compounds from industrial wastewaters with resins
CN118724322A (zh) 一种氯化铵废水高效净化方法
WO2004103545A2 (en) Regenerant reuse
CN108726762B (zh) 一种催化剂生产废水的处理方法
CN108726764B (zh) 一种催化剂生产废水的处理方法
JP3248602B2 (ja) 超純水の製造方法
SU1186578A1 (ru) Способ обессоливани воды
EP0609839A2 (en) Method for electrolyzing an alkali metal chloride