RU2791365C1 - Способ повышения устойчивости парогенератора - Google Patents

Способ повышения устойчивости парогенератора Download PDF

Info

Publication number
RU2791365C1
RU2791365C1 RU2022115618A RU2022115618A RU2791365C1 RU 2791365 C1 RU2791365 C1 RU 2791365C1 RU 2022115618 A RU2022115618 A RU 2022115618A RU 2022115618 A RU2022115618 A RU 2022115618A RU 2791365 C1 RU2791365 C1 RU 2791365C1
Authority
RU
Russia
Prior art keywords
meas
steam generator
temperature
section
working product
Prior art date
Application number
RU2022115618A
Other languages
English (en)
Inventor
Владимир Александрович Шишков
Original Assignee
Владимир Александрович Шишков
Filing date
Publication date
Application filed by Владимир Александрович Шишков filed Critical Владимир Александрович Шишков
Application granted granted Critical
Publication of RU2791365C1 publication Critical patent/RU2791365C1/ru

Links

Images

Abstract

Изобретение относится к энергетическому машиностроению и криогенным системам и может быть использовано в парогенерирующих системах и устройствах. Задачей изобретения является повышение устойчивости работы парогенератора. Согласно предложенному способу повышения устойчивости парогенератора осуществляют измерение температуры рабочего продукта, а также осуществляют управление перепуском части рабочего продукта из парогенератора за его выходное гидравлическое сопротивление с учётом величины измеренной температуры рабочего продукта. При этом измеряют давление Ризм и температуру Тизм по оси переходного участка от жидкой к паровой фазе, сравнивают значение этой измеренной температуры Тизм с температурой насыщения Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе, если Тизмнас, то открывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а при достижении измеренной температуры Тизм по оси переходного участка от жидкой к паровой фазе температуры насыщения или ниже Тизм≤Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе закрывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление. 5 з.п. ф-лы., 2 ил.

Description

Изобретение относится к энергетическому машиностроению и криогенным системам и может быть использовано в парогенерирующих системах и устройствах.
Известен способ изменения соответствия тепловосприятий испарительных и пароперегревательных поверхностей нагрева парогенератора, заключающийся в изменении проходного сечения дроссельного клапана по изменению разности температур, при этом в испарительных поверхностях поддерживают критическое давление рабочей среды (SU, авторское свидетельство №857637, F22B 35/00, 1981).
Недостаток способа в том, что он осуществим только при одном фиксированном критическом давлении рабочей среды, что неприемлемо в парогенераторе с широким диапазоном изменения расходов рабочей среды и тепловых нагрузок, т.к. при увеличении тепловой нагрузки или снижения расхода рабочей среды на входе в парогенератор переходная зона из жидкой в газообразную смещается или на входное гидравлическое сопротивление, что приводит к апериодической неустойчивости работы парогенератора из-за возрастания входного гидравлического сопротивления, или к возникновению струйного течения, когда жидкая фаза рабочей среды достигает выходного гидравлического сопротивления, что также приводит к апериодической неустойчивости работы парогенератора.
Известен способ предупреждения явления неустойчивости потоков в теплообменнике, заключающийся в том, что при получении газообразного вещества из жидкости, проводят измерение температуры газообразного вещества, при этом регулировку температуры осуществляют так, чтобы измеренная температура была на 20-50°С выше, чем температура насыщения газообразного вещества (Япония, патент №6011281, F22B 1/06, 1985).
Недостаток способа в том, что при случайном увеличении тепловой нагрузки на теплообменник не соответствующе расходу жидкости на входе или случайное снижение расхода жидкости на входе не соответствующее тепловой нагрузке, зона перехода жидкой фазы в газообразную перемещается на входное гидравлическое сопротивление, что вызывает неустойчивую работу теплообменника из-за возрастания входного гидравлического сопротивления и падением расхода вещества на входе в теплообменник.
Известен способ (см. патент РФ №2663967, опубл. 13.08.2018, Бюл. 23) повышения эффективности работы и устойчивости течения теплоносителя, заключающийся в том, что рабочее тело, прокачивают по внутренней полости каналов теплообменника, а теплоту подводят на наружную стенку каналов, при этом по длине экономайзерного участка откачивают из пограничного слоя паровую и газовую фазы рабочего тела и направляют их в выходную магистраль, расположенную за выходным гидравлическим сопротивлением канала теплообменника, а также тем, что по длине экономайзерного участка теплообменника увеличивают производительность откачки из пограничного слоя паровой и газовой фаз рабочего тела от входа к выходу и тем, что производительность откачки паровой и газовой фаз рабочего тела из пограничного слоя на экономайзерном участке теплообменника изменяют в зависимости от тепловой нагрузки, при этом измеряют температуру стенки со стороны нагревающей среды на экономайзерном участке теплообменника, в зависимости от которой изменяют производительность откачки пограничного слоя, а так же то, что экономайзерный участок каналов теплообменника снабжен отверстиями для отвода из пограничного слоя паровой и газовой фаз рабочего тела, которые соединены с входом в насос, а его выход соединен с выходной магистралью за выходным гидравлическим сопротивлением канала теплообменника, а также тем, что размеры отверстий для отвода паровой и газовой фаз рабочего тела из экономайзерного участка увеличиваются по ее длине от входа к выходу, кроме этого по длине экономайзерного участка в направлении перпендикулярном движению рабочего тела по внутреннему контуру канала теплообменника расположены присоединенные объемы для сбора паровой и газовой фаз рабочего тела из пограничного слоя, при этом отверстия для отвода паровой и газовой фаз рабочего тела расположены в присоединенных объемах, тем, что размеры присоединенных объемов и отверстий для отвода паровой и газовой фаз рабочего тела из экономайзерного участка увеличиваются по ее длине от входа к выходу, тем, что на наружной стороне стенки экономайзерного участка канала теплообменника установлен датчик температуры, соединенный через контроллер с блоком управления насосом откачки паровой и газовой фаз рабочего тела из пограничного слоя экономайзерного участка теплообменника, тем, что между отверстиями отбора паровой и газовой фаз из пограничного слоя на экономайзерном участке и входом в насос установлен хотя бы один регулируемый дроссель, соединенный с блоком управления, и тем, что в качестве насоса применяют эжекторный насос.
Недостатки способа, во первых, в том, что при временном случайном снижении расхода рабочего продукта или увеличении тепловой нагрузки не соответствующие друг другу на данном режиме, зона перехода жидкой фазы в газообразную перемещается на входное гидравлическое сопротивление, что вызывает неустойчивую работу парогенератора, в связи с ростом входного гидравлического сопротивления и еще большим падением расхода рабочего продукта на его входе, во вторых, при временном случайном увеличении расхода рабочего продукта при высокой или слишком низкой тепловой нагрузке возникает струйное течение, когда жидкая фаза рабочего продукта достигает выходного гидравлического сопротивления, что также приводит к апериодической неустойчивости работы парогенератора.
Задачей изобретения является повышение устойчивости работы парогенератора.
Указанная задача в способе повышения устойчивости парогенератора заключающегося в измерении температуры рабочего продукта и управлению по ней перепуском части рабочего продукта из парогенератора за его выходное гидравлическое сопротивление, решаются тем, что измеряют давление Ризм и температуру Тизм по оси переходного участка от жидкой к паровой фазе, сравнивают значение этой измеренной температуры Тизм с температурой насыщения Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе, если Тизмнас, то открывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а при достижении измеренной температуры Тизм по оси переходного участка от жидкой к паровой фазе температуры насыщения или ниже Тизм≤Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе закрывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а также тем, что дополнительно измеряют давление Ризм_вых и температуру Тизм_вых в перегревательном участке парогенератора, сравнивают значение измеренной температуры Тизм_вых в перегревательном участке парогенератора с температурой Тнас+(5-50°С) при измеренном давлении Ризм_вых в перегревательном участке, если Тизм_вых≤Тнас+(5-50°С), то снижают расход рабочего продукта на входе в парогенератор, если Тизм_выхнас+(5-50°С), то увеличивают расход рабочего продукта на входе в парогенератор, и тем, что при увеличении разности температур ΔТ=Тизмнас увеличивают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а при снижении разности температур ΔТ=Тизмнас уменьшают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, и тем, что при увеличении разности температур ΔТ=Тизмнас снижают температуру греющего теплоносителя, а при снижении ΔТ=Тизмнас увеличивают температуру греющего теплоносителя, и тем, что при увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) увеличивают расход рабочего продукта на входе в парогенератор, а при снижении ΔТвых уменьшают расход рабочего продукта на входе в парогенератор, и тем, что при увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) снижают температуру греющего теплоносителя, а при снижении ΔТвых увеличивают температуру греющего теплоносителя.
В известных технических решениях признаков сходных с признаками, отличающими заявляемое решение от прототипа, не обнаружено, следовательно, это решение обладает существенными отличиями. Приведенная совокупность признаков в сравнении с известным уровнем техники позволяет сделать вывод о соответствии заявляемого технического решения условию «новизна». В то же время, заявляемое техническое решение применимо в промышленности, в частности в энергетическом машиностроении и криогенных системах и может быть использовано в парогенерирующих системах и устройствах, поэтому оно соответствует условию «промышленная применимость».
Изобретение поясняется следующим схемами.
На фиг. 1 представлена схема системы для повышения устойчивости течения рабочего продукта в парогенераторе.
На фиг. 2 представлена схема системы для повышения устойчивости течения рабочего продукта в парогенераторе с дополнительным блоком датчиков давления и температуры в перегревательном участке парогенератора и вторым управляемым дросселем на его входе.
Система (фиг. 1) содержит парогенератор 1, к которому подведена внешняя теплота Q от греющего теплоносителя. В парогенераторе 1, между входным гидравлическим сопротивлением, а именно входной дроссельной шайбой 2 и выходным гидравлическим сопротивлением, а именно выходной дроссельной шайбой 3 находятся три участка - экономайзерный участок 4 с жидкой фазой рабочего продукта, переходный участок 5 перехода жидкой фазы в парообразную и перегревательный участок 6 с газовой фазой рабочего продукта. По оси 7 в переходном участке 5 установлен первый блок 8 с датчиками температуры и давления, соединенные с электронным блоком управления 9, который через первый привод 10 соединен с первым управляемым дросселем 11 линии перепуска 12 из перегревательного участка 6 за выходную дроссельную шайбу 3 в зону 13.
Система (фиг. 2) дополнительно перед входной дроссельной шайбой 3 на входе в парогенератор 1 установлен второй управляемый дроссель 14, соединенный со вторым - приводом 15, который, в свою очередь, соединен с электронным блоком управления 9, а в перегревательном участке 6 перед входом в выходную дроссельную шайбу 3 на выходе парогенератора 1 содержит второй блок 16 с датчиками давления и температуры, соединенные с электронным блоком управления 9.
Способ по п. 1 (фиг. 1) осуществляют следующим образом. Рассмотрим первый вариант на стационарном режиме работы при условно постоянном расходе рабочего продукта на входе в парогенератор 1 и условно постоянной тепловой нагрузке Q. В процессе работы парогенератора 1 при случайном увеличении тепловой нагрузки Q или случайном снижении расхода рабочего продукта, не соответствующие друг другу на данном режиме работы, на входе парогенератора 1 переходный участок 5 перехода жидкой фазы в парообразную смещается к входной дроссельной шайбе 2, при этом температура Тизм в зоне первого блока 8 с датчиками давления и температуры Тизмнас становиться выше температуры насыщения Тнас при измеренном давлении Ризм датчиком давления. Первый блок 8 с датчиками давления и температуры измеряет давление Ризм и температуру Тизм в переходном участке 5 и по полученному сигналу, преобразованному в электронном блоке управления 9, с помощью первого привода 10 открывают первый управляемый дроссель 11 и перепускают через линию перепуска 12 часть газообразного рабочего продукта из перегревательного участка 6 за выходную дроссельную шайбу 3 в зону 13. Этот перепуск рабочего продукта вызывает уменьшение давления в перегревательном участке 6, что увеличивает перепад давления на входной дроссельной шайбе 2 и увеличивает расход рабочего продукта на входе в парогенератор 1, а это, в свою очередь, приводит к смещению переходного участка 5 вниз по потоку, т.е. дальше от входной дроссельной шайбы 2. После восстановления тепловой нагрузки Q до номинальных значений, температура Тизм, измеренная первым блоком 8 с датчиками температуры и давления, снижается Тизм≤Тнас до или ниже температуры насыщения Тнас при измеренном давлении Ризм, электронный блок управления 9 выдает команду на первый привод 10 на закрытие первого управляемого дросселя 11, т.е. выключению перепуска части газообразного рабочего продукта из перегревательного участка 6 через линию перепуска 12 за выходную дроссельную шайбу 3 в зону 13. При этом расход рабочего продукта на входе в парогенератор 1 восстанавливается до значения установленного стационарного режима. Второй вариант это переходный режим работы: увеличение или снижение расхода рабочего продукта на входе в парогенератор 1 производят с пропорциональным изменением тепловой нагрузки Qд. Поэтому переходный участок 5 перехода жидкой фазы в парообразную практически остается в центральной части канала парогенератора 1. На переходном режиме при случайном увеличении, не пропорционально увеличению расхода рабочего продукта, тепловой нагрузки Q выше Qд переходный участок 5 перехода жидкой фазы в парообразную смещается к входной дроссельной шайбе 2, при этом температура Тизм в зоне первого блока 8 датчиков давления и температуры становиться выше Тизмнас температуры насыщения Тнас при измеренном давлении Ризм. Первым блоком 8 с датчиками давления и температуры измеряют давление Ризм и температуру Тизм в зоне перехода 5 и по полученному сигналу, преобразованному в электронном блоке управления 9, с помощью первого привода 10 открывают первый управляемый дроссель 11 и перепускают часть газообразного рабочего продукта из перегревательного участка 6 через линию перепуска 12 за выходную дроссельную шайбу 3 в зону 13. Этот перепуск рабочего продукта вызывает уменьшение давления в перегревательном участке 6 и увеличивает перепад давления на входной дроссельной шайбе 2, что увеличивает расход рабочего продукта через парогенератор 1, а это, в свою очередь, приводит к смещению переходного участка 5 вниз по потоку, т.е. дальше от входной дроссельной шайбы 2. После восстановления тейловой нагрузки Q до номинального значения Qд, температура Тизм, измеренная первым блоком 8 с датчиками температуры и давления, становиться Тизм≤Тнас ниже или равной температуре насыщения при измеренном давлении Ризм, электронный блок управления 9 выдает команду в первый привод 10 для закрытия первого управляемого дросселя 11, т.е. выключению перепуска части газообразного рабочего продукта из перегревательного участка 6 через линию перепуска 12 за выходную дроссельную шайбу 3 в зону 13. За счет устранения вероятности смещения переходного участка 5 на входную дроссельную шайбу 2 и устранения возрастания гидравлического сопротивления на ней, приводящего к резкому снижению расхода рабочего продукта через парогенератор 1, повышена устойчивость его работы.
Способ по п. 2 (фиг. 2) осуществляют следующим образом. Дополнительно с помощью второго блока 16 с датчиками температуры и давления измеряют давление Ризм_вых и температуру Тизм_вых в перегревательном участке 6 парогенератора 1, в электронном блоке управления 9 сравнивают значение измеренной температуры Тизм_вых в перегревательном участке 6 парогенератора 1 с температурой Тнас+(5-50°С) при измеренном давлении Ризм_вых в перегревательном участке 6, если Тизм_вых≤Тнас+(5-50°С), то электронный блок управления 9 выдает команду на второй привод 15 для прикрытия второго управляемого дросселя 14, что снижает расход рабочего продукта на входе в парогенератор 1, если Тизм_выхнас+(5-50°С), то электронный блок управления 9 выдает команду на второй привод 15 для открытия второго управляемого дросселя 14, что увеличивает расход рабочего продукта на входе в парогенератор 1. За счет контроля температуры рабочего продукта в перегревательном участке 6 парогенератора 1 и управлением расходом рабочего продукта на входе в парогенератор 1 снижена вероятность струйного течения жидкой фазы рабочего продукта и достижения ей выходной дроссельной шайбы 3, при этом уменьшается вероятность появления апериодической неустойчивости работы парогенератора 1.
Способ по п. 3 (фиг. 1 и фиг. 2) осуществляют следующим образом. При увеличении разности температур ΔТ=Тизмнас с помощью первого управляемого дросселя 11 увеличивают перепуск части рабочего продукта из перегревательного участка 6 парогенератора 1 за выходное гидравлическое сопротивление выходную дроссельную шайбу 3 в зону 13, а при снижении разности температур ΔТ=Тизмнас с помощью первого управляемого дросселя 11 уменьшают перепуск части рабочего продукта из перегревательного участка 6 парогенератора 1 через линию перепуска 12 за выходное гидравлическое сопротивление выходную дроссельную шайбу 3 в зону 13. За счет управления расходом газовой фазы в перепуске на выходной дроссельной шайбе 3 повышена устойчивость работы парогенератора 1 в широком диапазоне рабочих параметров.
Способ по п. 4 (фиг. 1 и фиг. 2) осуществляют следующим образом. При увеличении разности температур ΔТ=Тизмнас снижают температуру греющего теплоносителя, т.е. снижают тепловой поток Q, подводимый с наружной стороны парогенератора 1, а при снижении ΔТ=Тизмнас увеличивают температуру греющего теплоносителя, т.е. увеличивают тепловой поток Q, подводимый с наружной стороны парогенератора 1. За счет управления температурой греющего теплоносителя, т.е. подводимой теплоты к рабочему продукту повышена устойчивость работы парогенератора 1 в широком диапазоне рабочих параметров.
Способ по п. 5 (фиг. 2) осуществляют следующим образом. При увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) электронный блок управления 10 выдает команду во второй привод 15 для управления вторым управляемым дросселем 14, при этом увеличивают расход рабочего продукта на входе в парогенератор 1, а при снижении разности температур ΔТвых электронный блок управления 10 выдает команду на второй привод 15 для управления вторым управляемым дросселем 14, при этом уменьшают расход рабочего продукта на входе в парогенератор 1. За счет управления расходом рабочего продукта на входе в парогенератор 1 повышена устойчивость его работы в широком диапазоне рабочих, параметров.
Способ по п. 6 (фиг. 2) осуществляют следующим образом. При увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) снижают температуру греющего теплоносителя, т.е. снижают-тепловой поток Q на наружной поверхности парогенератора 1, а при снижении ΔТвых увеличивают температуру греющего теплоносителя, т.е. увеличивают тепловой поток Q на наружной поверхности парогенератора 1. За счет управления температурой греющего теплоносителя, т.е. подводимой теплоты к рабочему продукту повышена устойчивость работы парогенератора 1 в широком диапазоне рабочих параметров.
За счет перепуска части газообразного рабочего продукта из перегревательного участка за выходное гидравлическое сопротивление снижено давление в перегревательном участке парогенерирующего канала, при этом переходный участок перемещен вниз по потоку, т.е. дальше от входного гидравлического сопротивления, что устраняет вероятность попадания переходного участка с паровой фазой рабочего продукта на входное гидравлическое сопротивление, что повышает устойчивость работы парогенератора.
За счет контроля температуры рабочего продукта в перегревательном участке парогенератора и управлением расходом рабочего продукта на входе в парогенератор снижена вероятность струйного течения жидкой фазы рабочего продукта и достижения ей выходной дроссельной шайбы, при этом уменьшается вероятность появления апериодической неустойчивости работы парогенератора.
За счет управления расходом рабочего продукта на входе в парогенератор повышена устойчивость работы парогенератора в широком диапазоне рабочих параметров.
За счет управления температурой греющего теплоносителя, т.е. подводимой теплоты к рабочему продукту повышена устойчивость работы парогенератора в широком диапазоне рабочих параметров.
Таким образом, изобретением усовершенствован способ для повышения устойчивости парогенератора, в котором положение переходного участка от жидкой к паровой фазе рабочего продукта удерживается в центральной части канала парогенератора.

Claims (6)

1. Способ повышения устойчивости парогенератора, заключающийся в измерении температуры рабочего продукта и управлении по ней перепуском части рабочего продукта из парогенератора за его выходное гидравлическое сопротивление, отличающийся тем, что измеряют давление Ризм и температуру Тизм по оси переходного участка от жидкой к паровой фазе, сравнивают значение этой измеренной температуры Тизм с температурой насыщения Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе, если Тизмнас, то открывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а при достижении измеренной температуры Тизм по оси переходного участка от жидкой к паровой фазе температуры насыщения или ниже Тизм≤Тнас при измеренном давлении Ризм по оси переходного участка от жидкой к паровой фазе закрывают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление.
2. Способ по п. 1, отличающийся тем, что дополнительно измеряют давление Ризм_вых и температуру Тизм_вых в перегревательном участке парогенератора, сравнивают значение измеренной температуры Тизм_вых в перегревательном участке парогенератора с температурой Тнас+(5-50°С) при измеренном давлении Ризм_вых в перегревательном участке, если Тизм_выхнас+(5-50°С), то снижают расход рабочего продукта на входе в парогенератор, если Тизм_выхнас+(5-50°С), то увеличивают расход рабочего продукта на входе в парогенератор.
3. Способ по п. 1 или 2, отличающийся тем, что при увеличении разности температур ΔТ=Тизмнас увеличивают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление, а при снижении разности температур ΔТ=Тизмнас уменьшают перепуск части рабочего продукта из перегревательного участка парогенератора за выходное гидравлическое сопротивление.
4. Способ по п. 1, или 2, или 3, отличающийся тем, что при увеличении разности температур ΔТ=Тизмнас снижают температуру греющего теплоносителя, а при снижении ΔТ=Тизмнас увеличивают температуру греющего теплоносителя.
5. Способ по п. 2, отличающийся тем, что при увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) увеличивают расход рабочего продукта на входе в парогенератор, а при снижении ΔТвых уменьшают расход рабочего продукта на входе в парогенератор.
6. Способ по п. 2, отличающийся тем, что при увеличении разности температур ΔТвыхизм_выхнас+(5-50°С) снижают температуру греющего теплоносителя, а при снижении ΔТвых увеличивают температуру греющего теплоносителя.
RU2022115618A 2022-06-08 Способ повышения устойчивости парогенератора RU2791365C1 (ru)

Publications (1)

Publication Number Publication Date
RU2791365C1 true RU2791365C1 (ru) 2023-03-07

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU300708A1 (ru) * А. Г. Колесниченко , В. П. Сигачев Способ работы экономайзера
RU94033553A (ru) * 1994-09-13 1997-03-10 Опытное Конструкторское Бюро "Гидропресс" Вертикальный парогенератор
RU2663967C1 (ru) * 2017-07-14 2018-08-13 Владимир Александрович Шишков Способ повышения эффективности работы парогенератора и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU300708A1 (ru) * А. Г. Колесниченко , В. П. Сигачев Способ работы экономайзера
RU94033553A (ru) * 1994-09-13 1997-03-10 Опытное Конструкторское Бюро "Гидропресс" Вертикальный парогенератор
RU2663967C1 (ru) * 2017-07-14 2018-08-13 Владимир Александрович Шишков Способ повышения эффективности работы парогенератора и устройство для его осуществления

Similar Documents

Publication Publication Date Title
KR100826889B1 (ko) 항온액 순환장치 및 상기 장치에 있어서의 온도제어방법
JP6806016B2 (ja) エンジン冷却装置
US20160298883A1 (en) System and method for controlling fluid flow and temperature within a pumped two-phase cooling distribution unit
KR20130115281A (ko) 가스 및 증기 터빈 복합 발전 설비의 작동 방법과, 이 방법을 실행하기 위해 제공된 가스 및 증기 터빈 복합 발전 설비와, 상응하는 조절 장치
KR20190103059A (ko) 폐열 회수 시스템 및 이를 위한 터빈 팽창기
RU2791365C1 (ru) Способ повышения устойчивости парогенератора
JP4711852B2 (ja) 温度調整装置および冷凍サイクル
WO2020035993A1 (ja) 制御装置、冷凍機、制御方法及び異常検出方法
JP6476702B2 (ja) 油圧ユニット又は油冷却ユニット
KR100343695B1 (ko) 흡수식냉동기의제어장치
JP4607680B2 (ja) 復水器の真空度制御装置およびその方法、並びに蒸気タービンプラント
US10450900B2 (en) Plant control apparatus, plant control method and power generating plant
CN115930495A (zh) 制冷设施的调节方法和调节装置及相应制冷设施
JPS60201008A (ja) プラント運転制御方法及びその装置
US11346255B2 (en) Method and controller for preventing formation of droplets in a heat exchanger
JP2653798B2 (ja) ボイラおよびタービンプラントの制御装置
US20150276283A1 (en) Method for operating a system for a thermodynamic cycle with a multi-flow evaporator, control unit for a system, system for a thermodynamic cycle with a multi-flow evaporator, and arrangement of an internal combustion engine and a system
RU2663967C1 (ru) Способ повышения эффективности работы парогенератора и устройство для его осуществления
JP4216693B2 (ja) 空冷式蒸気復水装置の真空度制御方法及び装置
JPH07334247A (ja) 油圧作動油の温度制御装置
KR100754490B1 (ko) 밀폐순환식 냉, 온수 공급 시스템
JP5306000B2 (ja) 給水制御装置および給水制御方法
JP2826084B2 (ja) Lng減圧加温装置
JPS5915608A (ja) 蒸気タ−ビンの制御装置
JPH01212803A (ja) 給水加熱器ドレン水位制御装置