RU2790851C1 - Способ нанесения антикоррозионного покрытия - Google Patents

Способ нанесения антикоррозионного покрытия Download PDF

Info

Publication number
RU2790851C1
RU2790851C1 RU2022132355A RU2022132355A RU2790851C1 RU 2790851 C1 RU2790851 C1 RU 2790851C1 RU 2022132355 A RU2022132355 A RU 2022132355A RU 2022132355 A RU2022132355 A RU 2022132355A RU 2790851 C1 RU2790851 C1 RU 2790851C1
Authority
RU
Russia
Prior art keywords
electrolyte
coating
alternating current
steel
corrosion
Prior art date
Application number
RU2022132355A
Other languages
English (en)
Inventor
Александр Алексеевич Тихонов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого"
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого"
Application granted granted Critical
Publication of RU2790851C1 publication Critical patent/RU2790851C1/ru

Links

Abstract

Изобретение относится к способу нанесения антикоррозионного покрытия на стальные изделия. Для проведения электролиза используют электролит с концентрацией компонентов, г/л: гидрофосфат натрия 100-150, гексацианоферрат (II) калия 2-4, гексацианоферрат (III) калия 8-10 и танин 6-8. Электролиз проводят в течение 1-2 мин при плотности переменного тока промышленной частоты 0,5-2,0 А/см2 и температуре 18-40 °С. Затем отключают переменный ток промышленной частоты и осуществляют выдержку в указанном электролите в течение 5 мин. Обеспечивается повышение защитной антикоррозионной способности покрытия на стальных изделиях, в том числе сложной конфигурации. 2 пр.

Description

Изобретение относится к области нанесения защитно-декоративных покрытий и может быть использовано для декорирования и защиты от коррозии стальных деталей и изделий. Покрытие может быть использовано для декоративной отделки и защиты от коррозии художественных изделий, а также для нанесения на инструменты и крепежные изделия (шайбы, гайки, болты, саморезы и т.д.) вместо цинкового покрытия или щелочного оксидирования.
Известен способ получения конверсионного покрытия электрохимическим фосфатированием в электролите (г/л): оксид цинка 9 г/л, ортофосфорная кислота 22 г/л, тринатрийфосфат 25 г/л. Фосфатирование выполняют в электролите нагретом до температуры 65-75°С плотностью тока 2-3 А/дм2 в течение 15-20 минут (см. Дасоян М.А.,Пальмская И.Я., Сахарова Е.В. Технология электрохимических покрытий. Л: Машиностроение, 1989г, таблица 27.5, электролит 3, с 319). В аналоге, также как и в предлагаемом способе, в состав электролита входят фосфаты. Однако, в аналоге предлагается использовать горячий электролит. Также недостатками аналога являются более низкая скорость процесса и невозможность качественно фосфатировать изделия сложной конфигурации.
Известен способ получения антикоррозионного покрытия электролитическим оксидированием стали в электролите, содержащем натрий хлористый концентрацией 250-300г/л с помощью переменного тока плотностью 1,0-1,4 А/см2. Этот способ, также как и предлагаемое изобретение, позволят за 120-150 секунд получать чёрные покрытия на стали, при этом можно наносить покрытия на изделия сложной конфигурации (Патент RU №2639756 С1 Способ электролитического оксидирования стали. Автор Бабынин И. В. Опубликовано: 22.12.2017 Бюл. № 36) Однако, получаемое покрытие обладает недостаточной защитной способностью от коррозии.
Наиболее близким аналогом (прототипом) является способ получения антикоррозионного покрытия электрохимическим чернением стали в электролите, содержащем (г/л): натрий хлористый 250-300, сахар 100-200 и синтанол ДС-10 концентрацией 1-3. Электролиз проводят с помощью переменного тока плотностью 0,6-1,0 А/см2 в течение 0,5-1,5 мин. (см. Патент RU 2559610, C25D 5/04, C25D 9/10, C25D 11/34. Способ электрохимического чернения стали. Авторы: Бабынин И.В., Тихонов А.А. Опубликован 10.08.2015). Прототип, также как предлагаемое изобретение, позволяет очень быстро покрывать изделия, в том числе, сложной конфигурации, используя переменный ток. Однако, получаемое по технологии прототипа, покрытие, в отличие от предлагаемого покрытия, не обладает достаточной защитной способностью от коррозии.
Задачей изобретения является повысить защитную антикоррозионную способность конверсионного покрытия на стальных изделиях, в том числе и сложной конфигурации, высокоскоростным электролитическим способом.
Предлагаемое изобретение позволяет получить следующий технический результат: повысить защитную антикоррозионную способность покрытия на стальных изделиях, в том числе и сложной конфигурации, высокоскоростным электролитическим способом.
Технический результат достигается тем, что в способе нанесения антикоррозионного покрытия на стальные изделия, включающем электролиз в ванне с электролитом, в качестве электролита используют электролит с компонентами, г/л: гидрофосфат натрия 100-150, гексацианоферрат (II) калия 2-4, гексацианоферрат (III) калия 8-10 и танин 6-8, а электролиз проводят в течение 1-2 мин при плотности переменного тока промышленной частоты 0,5-2,0 А/см2 и температуре 18-40°С, затем отключают переменный ток промышленной частоты и осуществляют выдержку в указанном электролите в течение 5 мин.
Предложен способ нанесения антикоррозионного покрытия на стальные изделия в гальванической ванне с электролитом с помощью переменного тока промышленной частоты. Применяют электролит, состоящий (в г/л) из: гидрофосфата натрия 100-150, гексацианоферрат (II) калия (жёлтая кровяная соль) 8-10, гексацианоферрат (III) калия (красная кровяная соль) 2-4 и танина 6-8. Гидрофосфат натрия повышает электропроводность электролита и способствует повышению концентрации фосфатов на поверхности стали, что приводит к формированию покрытия, содержащего нерастворимые фосфаты железа. Гексацианоферрат (II) калия (жёлтая кровяная соль), гексацианоферрат (III) калия (красная кровяная соль) и танин могут образовывать с ионами железа нерастворимые соединения, способные заполнять поры формируемого конверсионного покрытия и соответственно повышать защитную способность создаваемых покрытий. Так ионы трёхвалентного железа взаимодействуют с жёлтой кровяной солью, образуя нерастворимое в воде соединение - берлинскую лазурь. При взаимодействии красной кровяной соли с ионами двухвалентного железа получается турнбулевая синь, также не растворимая в воде. Танин является ингибитором коррозии и также способен создавать с ионами железа нерастворимые в воде соединения - танаты железа (Кнунянц И.Л. Краткая химическая энциклопедия, М., Советская энциклопедия, 1967, т.5, c.20).
Электролиз выполняют при плотности переменного тока промышленной частоты 1,0-2,0 А/см2 при температуре 18-40°С и времени обработки 1-2 мин. Электролит специально не нагревают, он может нагреваться при соотношении: сила тока/объём электролита более 3 А/л. После электролиза, покрываемые изделия выдерживают в электролите в течение 5 минут для уменьшения пористости за счёт образования нерастворимых соединений с ионами железа. Предлагаемый способ позволяет получать на поверхности стали покрытие чёрного цвета, обладающее защитной способностью от коррозии.
Пример 1
Наносили предлагаемое покрытие на образцы из стали 10кп размерами 50х10х0,2 мм изогнутые посередине под углом 45°. Образцы перед нанесением покрытия обезжирили венской известью, промывали в воде. Предлагаемое покрытие наносили в лабораторной ванне, при этом, на параллельно расположенные в ванне штанги завешивали сразу два образца, один напротив другого. В примере 1 использовали электролит с минимальной концентрацией компонентов, г/л: гидрофосфат натрия 100, гексацианоферрат (II) калия 2, гексацианоферрат (III) калия 8, танин 6. При этом использовали плотность переменного тока 1А/см2. Температура электролита 18°С Время обработки 1 минута. После отключения тока образец выдержали в электролите ещё 5 минут. Покрытие чёрного цвета, ровное и гладкое сформировалось по всей поверхности образца. Пластину из стали 10кп. размером 50х10х0,2 мм покрыли по технологии, представленной в прототипе. Провели сравнительные коррозионные испытания. Время появления первых очагов коррозии в 12% водном растворе морской соли увеличилось в 1,6 раза по сравнению со стальными образцами, покрытыми по технологии прототипа.
Пример 2
Образцы были такими же, как в примере 1, и готовили их также, как и в примере 1. Предлагаемое покрытие наносили в лабораторной ванне, используя электролит с максимальной концентрацией компонентов следующего состава, г/л: гидрофосфат натрия 150, гексацианоферрат (II) калия 4, гексацианоферрат (III) калия 10, танин 8. При этом использовали плотность переменного тока 2,0 А/см2. Температура электролита 40°С. Время обработки (электролиза) 2 минуты. После отключения тока образец выдержали в электролите ещё 5 минут. Покрытие ровное, матовое, чёрного цвета сформировалось на всей поверхности образца. Пластину из стали 10кп. размером 50х10х0,2 мм покрывали по технологии, представленной в прототипе. Провели сравнительные коррозионные испытания. Время появления первых очагов коррозии в 12% водном растворе морской соли увеличилось в 1,9 раз по сравнению со стальными образцами, покрытыми по технологии прототипа.

Claims (3)

  1. Способ нанесения антикоррозионного покрытия на стальные изделия, включающий электролиз в ванне с электролитом, отличающийся тем, что в качестве электролита используют электролит с концентрацией компонентов, г/л:
  2. гидрофосфат натрия 100-150 гексацианоферрат (II) калия 2-4 гексацианоферрат (III) калия 8-10 танин 6-8,
  3. а электролиз проводят в течение 1-2 мин при плотности переменного тока промышленной частоты 0,5-2,0 А/см2 и температуре 18-40 °С, затем отключают переменный ток промышленной частоты и осуществляют выдержку в указанном электролите в течение 5 мин.
RU2022132355A 2022-12-11 Способ нанесения антикоррозионного покрытия RU2790851C1 (ru)

Publications (1)

Publication Number Publication Date
RU2790851C1 true RU2790851C1 (ru) 2023-02-28

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU54827A1 (ru) * 1937-11-28 1938-11-30 Н.Т. Кудрявцев Способ получени цинковых покрытий гальваническим путем
RU2287613C2 (ru) * 2005-02-10 2006-11-20 Федеральное государственное образовательное учреждение высшего профессионального образования Астраханский государственный технический университет (ФГОУ ВПО АГТУ) Электролит для черного оксидирования стали
JP4856802B2 (ja) * 1999-03-31 2012-01-18 日本表面化学株式会社 金属表面処理方法
JP5418478B2 (ja) * 2010-11-30 2014-02-19 新日鐵住金株式会社 塗装亜鉛系めっき鋼板
RU2543659C1 (ru) * 2013-09-02 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения композиционного металлокерамического покрытия на вентильных металлах и их сплавах
RU2559610C1 (ru) * 2014-07-03 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Способ электрохимического чернения стали

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU54827A1 (ru) * 1937-11-28 1938-11-30 Н.Т. Кудрявцев Способ получени цинковых покрытий гальваническим путем
JP4856802B2 (ja) * 1999-03-31 2012-01-18 日本表面化学株式会社 金属表面処理方法
RU2287613C2 (ru) * 2005-02-10 2006-11-20 Федеральное государственное образовательное учреждение высшего профессионального образования Астраханский государственный технический университет (ФГОУ ВПО АГТУ) Электролит для черного оксидирования стали
JP5418478B2 (ja) * 2010-11-30 2014-02-19 新日鐵住金株式会社 塗装亜鉛系めっき鋼板
RU2543659C1 (ru) * 2013-09-02 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения композиционного металлокерамического покрытия на вентильных металлах и их сплавах
RU2559610C1 (ru) * 2014-07-03 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новгородский государственный университет имени Ярослава Мудрого" Способ электрохимического чернения стали

Similar Documents

Publication Publication Date Title
US4021315A (en) Process for electrolytic coloring of the anodic oxide film on aluminum or aluminum base alloys
JP2604387B2 (ja) 金属表面にリン酸塩皮膜を形成する方法
US3032487A (en) Electrolytic treatment of ferrous metal surfaces
Smirnova et al. Study of anode processes during development of the new complex thiocarbamide-citrate copper plating electrolyte
CN103866372A (zh) 不锈钢电化学着色液及着色方法
RU2790851C1 (ru) Способ нанесения антикоррозионного покрытия
NO833388L (no) Fremgangsmaate til overflatebehandling av aluminium og aluminiumlegeringer
US4427499A (en) Process for surface treatment of stainless steel sheet
US3449222A (en) Metal coating process
GB1590597A (en) Treating a1 or a1 alloy surfaces
JPS6148597A (ja) リン酸亜鉛化成処理法
JPS6256959B2 (ru)
CA1130236A (en) Process for electrolytically forming glossy film on articles of aluminum or alloy thereof
US3118824A (en) Electrolytic treatment of metal surfaces
RU2559610C1 (ru) Способ электрохимического чернения стали
US3257295A (en) Method of chemically treating metals
JPS5938399A (ja) アルミニウム又はその合金の電解着色浴
US3288691A (en) Method of electrolytically chemically treating metals
KR20020061542A (ko) 금속 표면-처리 방법
JP3903381B2 (ja) アルミニウム合金の塗装方法
SU540946A1 (ru) Электролит дл гальванического меднени стали
US3531380A (en) Method of pretreating ferrous metal substrates prior to electroplating with an aluminum-containing coating
US3830713A (en) Electrolytic treatment of metal surfaces to electrodeposit alumina
JPH0445599B2 (ru)
US2414090A (en) Bath for and electrolytic treatment of magnesium and magnesium alloys