RU2787830C1 - Способ сокращения периода замедленного горения в дизеле - Google Patents

Способ сокращения периода замедленного горения в дизеле Download PDF

Info

Publication number
RU2787830C1
RU2787830C1 RU2021139033A RU2021139033A RU2787830C1 RU 2787830 C1 RU2787830 C1 RU 2787830C1 RU 2021139033 A RU2021139033 A RU 2021139033A RU 2021139033 A RU2021139033 A RU 2021139033A RU 2787830 C1 RU2787830 C1 RU 2787830C1
Authority
RU
Russia
Prior art keywords
fuel
diesel
period
supply system
diesel engine
Prior art date
Application number
RU2021139033A
Other languages
English (en)
Inventor
Сергей Александрович Плотников
Шамиль Викторович Бузиков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет"
Application granted granted Critical
Publication of RU2787830C1 publication Critical patent/RU2787830C1/ru

Links

Abstract

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ сокращения периода замедленного горения осуществляется в дизеле с системой питания, включающей топливный бак, топливопроводы, топливные фильтры, основную систему топливоподачи, впускной коллектор и камеры сгорания. Способ заключается в том, что в топливный бак совместно с топливом подают низшие спирты с получением единой смеси. Либо низшие спирты подают в камеры сгорания дизеля при помощи двойной системы топливоподачи, работающей параллельно основной системе топливоподачи. Либо низшие спирты подают во впускной трубопровод путём распыливания. Технический результат заключается в сокращении периода замедленного горения в дизеле. 3 табл.

Description

Изобретение относиться к области машиностроения, в частности, к двигателестроению.
Известен способ работы дизельного двигателя с воспламенением топлива от нагретого свежего воздушного заряда в результате адиабатного сжатия [Р.З. Кавтарадзе. Теория поршневых двигателей. Специальные главы, 2-е издание, Изд-во МГТУ им. Н.Э. Баумана, Москва, 2016, с. 41].
Недостатком известного способа является наличие значительного периода замедленного горения [Файнлейб Б.Н. Топливная аппаратура автотракторных дизелей. Справочник. - 2-е изд., перераб. и доп. - Л.: Машиностроение. Ленингр. отд-ние, 1990, с. 19]. Это приводит к ухудшению топливной экономичности дизеля.
Известно, что поступающее в цилиндры дизеля основное топливо в виде струй посредством форсунок, первоначально деструктурирует до образования каплей, далее идёт процесс фракционирования в результате тепло- и массобмена со свежим воздушным зарядом. После чего впрыснутое основное топливо подвергается нагреву от адиабатного сжатия свежего воздушного заряда, затем испаряется, далее диффундирует в свежий заряд и лишь через некоторое время самовоспламеняется [Р.З. Кавтарадзе. Теория поршневых двигателей. Специальные главы, 2-е издание, Изд-во МГТУ им. Н.Э. Баумана, Москва, 2016, с. 307]. На самовоспламеняемость основного топлива также оказывают влияние его химические свойства, определяющие скорость предпламенных цепных реакций [Варнатц Ю., Маас У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ / Пер. с англ. Г.Л. Агафонова. Под ред. П.А. Власова. - М.: ФИЗМАТЛИТ, 2003, с. 252]. Химический состав основного топлива определяет скорость сгорания топливовоздушной смеси и характер протекания процесса тепловыделения, оказывающего влияние на продолжительность периода замедленного горения в дизеле [2, 3].
Период замедленного горения в дизеле определяется как период или угол поворота коленчатого вала дизеля от момента достижения максимальной температуры цикла в цилиндрах до практического окончания горения (тепловыделения) [Файнлейб Б.Н. Топливная аппаратура автотракторных дизелей. Справочник. - 2-е изд., перераб. и доп. - Л.: Машиностроение. Ленингр. отд-ние, 1990, с. 19]. Этот период наблюдается после окончания основной фазы горения топлива и распространяется на значительную часть такта расширения. Наличие данного периода в значительной степени ухудшает экономические показатели дизеля, так как, теплота, выделяющаяся в этот период, превращается в механическую работу не во время нахождения поршня в верхней мёртвой точке (ВМТ), а во время такта расширения.
Технический результат заявляемого изобретения заключается в сокращении периода замедленного горения в дизеле.
Данный технический результат достигается путём подачи в топливный бак дизеля с системой питания, включающей топливный бак, топливопроводы, топливные фильтры, основную систему топливоподачи, впускной коллектор, камеры сгорания, низших спиртов совместно с топливом с получением в итоге единой смеси, подачи низших спиртов в камеры сгорания дизеля при помощи двойной системы топливоподачи, работающей параллельно основной системе топливоподачи, и подачи низших спиртов во впускной трубопровод путём распыливания.
Процесс замедленного горения носит диффузионный характер, и для завершения догорания необходимо обеспечить ускорение тепловыделения в зоне нахождения поршня в ВМТ, а также сохранить в цилиндрах дизеля процессы переноса и смешивания продуктов неполного окисления топлива с кислородом воздуха [Файнлейб Б.Н. Топливная аппаратура автотракторных дизелей. Справочник. - 2-е изд., перераб. и доп. - Л.: Машиностроение. Ленингр. отд-ние, 1990, с. 27]. Выполнение этого условия возможно при совместной подаче с основным топливом низших спиртов, добавлением их в топливный бак к основному топливу с получением единой смеси, в камеры сгорания дизеля при помощи двойной системы топливоподачи, работающей параллельно с основной и во впускной трубопровод путём распыливания.
Низшие спирты характеризуются более высокой активностью при горении по сравнению с основным нефтяным топливом. Связано это с тем, что в условиях высоких температур происходит диссоциация низших спиртов с образованием двух активных радикалов - гидроксильной группы и углеводородов, ускоряющих начало цепных реакций и активирующих весь процесс горения топливовоздушной смеси, а также ускоряющий тепловыделение. Благодаря этому горение протекает более устойчиво и быстро, а предел воспламенения топливовоздушной смеси смещается в сторону обеднённой области. Кроме того, вследствие более простой структуры молекул низших спиртов и наличия в них атомарного кислорода препятствует возникновению условий для крекинга и способствует сохранению в цилиндрах дизеля процессов переноса и смешивания продуктов неполного окисления топлива с кислородом, что в свою очередь приводит к повышению топливной экономичности дизеля [Варнатц Ю., Маас У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ / Пер. с англ. Г.Л. Агафонова. Под ред. П.А. Власова. - М.: ФИЗМАТЛИТ, 2003, с. 268].
При проведении комплекса экспериментальных исследований по определению периода замедленного горения четырехтактного дизельного двигателя с турбонаддувом и охладителем наддувочного воздуха с непосредственным впрыском топлива и камерой сгорания типа ЦНИДИ, размерностью 4ЧН 11,0/12,5 с добавками низшего спирта (этанола) C2H5OH (Э) в количестве 20% и 40% по массе производили путём его предварительного смешивания с дизельным топливом (ДТ) до получения единой смеси и последующей заправки в топливный бак.
Результаты экспериментальных исследований по определению периода замедленного горения на смеси дизельного топлива и этанола представлены в таблице 1.
Анализ таблицы 1 показал, что при добавлении низшего спирта в данном случае этанола от 20% до 40% привело к сокращению продолжительности периода замедленного горения с 26 до 20 градусов.
В проведенных исследованиях по определению периода замедленного горения на дизеле размерностью 2Ч 10,5/12,0 (Д-21А1) воздушного охлаждения, с полусферической КС в поршне опыт производился с подачей метанола при помощи двойной системы топливоподачи (ДСТ), работающей параллельно основной системе топливоподачи.
Результаты экспериментальных исследований по определению периода замедленного горения при работе дизеля с ДСТ с добавкой метанола до 93% представлены в таблице 2.
Анализ таблицы 2 показал, что при добавлении метанола до 93 % при помощи ДСТ, работающей параллельно основной системе топливоподачи, привело к сокращению продолжительности периода замедленного горения с 16 до 13 градусов.
Исследования, проведенные по определению периода замедленного горения на дизеле размерностью 6ЧН 13/11,5 (СМД-62) жидкостного охлаждения, с тороидальной камерой сгорания в поршне при работе на дизельном топливе с дополнительной подачей низшего спирта метанола CH3OH во впускной трубопровод путём распыливания в количестве 20% по массе.
Результаты экспериментальных исследований по определению периода замедленного горения при работе дизеля с добавкой 20% метанола во впускной трубопровод путём распыливания представлены в таблице 3.
Из таблицы 3 видно, что при добавлении метанола до 20 % во впускной трубопровод путем распыливания привело к сокращению продолжительности периода замедленного горения с 40 до 35 градусов.
Способ осуществляется следующим образом. Предварительно взятые по массе количества дизельного топлива и низшего спирта смешиваются в специальной таре до получения единой смеси и после этого производится заправка топливного бака дизеля. Также низшие спирты можно подавать в камеры сгорания дизеля при помощи двойной системы топливоподачи, состоящей из двух систем топливоподачи основной для подачи дизельного топлива и вспомогательной для подачи низших спиртов. Обе эти системы работают параллельно друг другу, т.е. основная система топливоподачи осуществляет подачу запальной порции дизельного топлива, а вспомогательная подачу низших спиртов. Также можно подавать низшие спирты во впускной трубопровод путём распыливания или карбюрации, параллельно с основной подачей дизельного топлива при помощи штатной системы топливоподачи.
Низшие спирты попадая в камеры сгорания дизеля при помощи единой смеси с дизельным топливом или в виде отдельно впрыснутой порции при помощи ДСТ или в виде пара, предварительно полученного во впускном трубопроводе при помощи распыливания или карбюрации в условиях высоких температур проходят диссоциацию с образованием двух активных радикалов - гид-роксильной группы и углеводородов, ускоряющих начало цепных реакций и активирующих весь процесс горения топливовоздушной смеси, а также ускоряющий её тепловыделение. В результате нахождения низших спиртов в камерах сгорания дизеля вместе с дизельным топливом приводит к более устойчивому и быстрому сгоранию, а также наличия в них атомарного кислорода приводит к возникновению условий для крекинга и сохранения в цилиндрах дизеля процессов переноса и смешивания продуктов неполного окисления топлива с кислородом что ускоряет начало практического окончания горения (тепловыделения). Выше перечисленные обстоятельства приводят к сокращению периода замедленного горения в дизеле и как следствие возможности улучшения топливной экономичности дизеля.
Технико-экономическое обоснование предлагаемого изобретения заключается в возможности улучшения топливной экономичности дизеля. В результате снижается удельный эффективный расход топлива и увеличивается эффективный КПД.
Дизель, в котором применён данный способ сокращения периода замедленного горения конструктивно не отличается от серийных дизелей, поэтому при конструктивных доработках, связанных с совместной подачей с основным топливом низших спиртов, может быть промышленно применен во всех конструкциях дизельных двигателей с использованием любых углеводородных топлив.
Таблица 1. Результаты экспериментальных исследований по определению периода замедленного горения на смеси дизельного топлива и этанола
Параметр Значение
Дизельное
топливо
100%
Дизельное
топливо 80%
и 20% этанола
Дизельное
топливо 60%
и 40% этанола
Максимальная температура цикла Tmax, К 2200 2180 2110
Угол поворота коленчатого вала дизеля после верхней мертвой точки (ВМТ) при которой достигается максимальная температура цикла, ϕTmax, градусов 34 33 32
Угол поворота коленчатого вала дизеля после ВМТ, соответствующий концу тепловыделения, ϕχ, градусов 60 56 52
Период замедленного горения, ϕпзг 26 23 20
Таблица 2. Результаты экспериментальных исследований по определению периода замедленного горения при работе дизеля с ДСТ с добавкой метанола до 93% представлены в таблице 2.
Параметр Значение
Дизельное
топливо 100%
93% метанола
Максимальная температура цикла Tmax, К 2000 1800
Угол поворота коленчатого вала дизеля после верхней мертвой точки (ВМТ) при которой достигается максимальная температура цикла, ϕTmax, градусов 24 22
Угол поворота коленчатого вала дизеля после ВМТ, соответствующий концу тепловыделения, ϕχ, градусов 40 35
Период замедленного горения, ϕпзг 16 13
Таблица 3. Результаты экспериментальных исследований по определению периода замедленного горения при работе дизеля с добавкой 20% метанола во впускной трубопровод путём распыливания
Параметр Значение
Дизельное
топливо 100%
20% метанола
Максимальная температура цикла Tmax, К 2280 2100
Угол поворота коленчатого вала дизеля после верхней мертвой точки (ВМТ) при которой достигается максимальная температура цикла, ϕTmax, градусов 18 16
Угол поворота коленчатого вала дизеля после ВМТ, соответствующий концу тепловыделения, ϕχ, градусов 40 35
Период замедленного горения, ϕпзг 22 19

Claims (1)

  1. Способ сокращения периода замедленного горения в дизеле с системой питания, включающей топливный бак, топливопроводы, топливные фильтры, основную систему топливоподачи, впускной коллектор, камеры сгорания, отличающийся тем, что в топливный бак совместно с топливом подают низшие спирты с получением единой смеси, либо низшие спирты подают в камеры сгорания дизеля при помощи двойной системы топливоподачи, работающей параллельно основной системе топливоподачи, либо низшие спирты подают во впускной трубопровод путём распыливания.
RU2021139033A 2021-12-27 Способ сокращения периода замедленного горения в дизеле RU2787830C1 (ru)

Publications (1)

Publication Number Publication Date
RU2787830C1 true RU2787830C1 (ru) 2023-01-12

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1146825A (en) * 1980-10-03 1983-05-24 Eric W. Simmons Diesel/alcohol fuel proportioning system for diesel engine
US4499861A (en) * 1982-11-23 1985-02-19 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Method and apparatus for the injection of alcohol fuels, more particularly for direct injection diesel engines
SU1413259A1 (ru) * 1984-04-21 1988-07-30 Университет дружбы народов им.Патриса Лумумбы Система впрыска спиртового и запального дизельного топлива
US20090277432A1 (en) * 2008-05-07 2009-11-12 David Ling-Shun Hung Multi-fuel multi-injection system for an internal combustion engine
RU2575675C2 (ru) * 2011-06-30 2016-02-20 Форд Глобал Технолоджис, ЛЛК Способ управления впрыском топлива для двухтопливного двигателя

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1146825A (en) * 1980-10-03 1983-05-24 Eric W. Simmons Diesel/alcohol fuel proportioning system for diesel engine
US4499861A (en) * 1982-11-23 1985-02-19 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Method and apparatus for the injection of alcohol fuels, more particularly for direct injection diesel engines
SU1413259A1 (ru) * 1984-04-21 1988-07-30 Университет дружбы народов им.Патриса Лумумбы Система впрыска спиртового и запального дизельного топлива
US20090277432A1 (en) * 2008-05-07 2009-11-12 David Ling-Shun Hung Multi-fuel multi-injection system for an internal combustion engine
RU2575675C2 (ru) * 2011-06-30 2016-02-20 Форд Глобал Технолоджис, ЛЛК Способ управления впрыском топлива для двухтопливного двигателя

Similar Documents

Publication Publication Date Title
Toulson et al. A review of pre-chamber initiated jet ignition combustion systems
US9863372B2 (en) Control apparatus of premixed charge compression ignition engine
Pucher et al. Alternative combustion systems for piston engines involving homogeneous charge compression ignition concepts-a review of studies using methanol, gasoline and diesel fuel
US8893687B2 (en) Fuel injection strategy for internal combustion engine having dedicated EGR cylinders
US10641190B2 (en) Method for operating a spark ignited engine
CN104712445B (zh) 单燃料压燃与点燃混合的燃烧控制方法及内燃机
CN103748334A (zh) 内燃式两冲程发动机、运转内燃式两冲程发动机的方法以及转换两冲程发动机的方法
KR19990064146A (ko) 다단식 연소엔진
US20120174881A1 (en) Full expansion internal combustion engine
US20170022923A1 (en) Control apparatus of premixed charge compression ignition engine
DK180798B1 (en) Internal combustion engine
JP2013053625A (ja) 往復動ピストン内燃機関及び往復動ピストン内燃機関を運転する方法
Elkelawy et al. Challenging and future of homogeneous charge compression ignition engines; an advanced and novel concepts review
US6668790B2 (en) Method of operating an internal combustion engine operated on gasoline type fuels
RU2787830C1 (ru) Способ сокращения периода замедленного горения в дизеле
JP2010532441A (ja) 往復ピストン式内燃機関用の燃焼方法
US4126106A (en) Mixed cycle internal combustion engine
WO2020062738A1 (zh) 发动机及燃料缸内分层压燃方法
JP2017155735A (ja) クロスヘッド式内燃機関
Ogawa et al. Smokeless and low NOx combustion in a dual-fuel diesel engine with induced natural gas as the main fuel
CN211343162U (zh) 低速运行大型发动机
Wang et al. New gasoline homogeneous charge compression ignition combustion system using two-state direct injection and assisted spark ignition
Liu et al. Engine Performance and Emissions for a Heavy-Duty Diesel Engine Converted to Stoichiometric Natural Gas Operation
Peng et al. Effects of EGR on combustion process of DI diesel engine during cold start
RU2800197C1 (ru) Свободнопоршневой генератор газа и способ его работы в режиме термодинамического цикла сгорания гомогенной топливно-воздушной смеси с воспламенением от сжатия