RU2786468C1 - Способ получения стеклощелочного вяжущего - Google Patents
Способ получения стеклощелочного вяжущего Download PDFInfo
- Publication number
- RU2786468C1 RU2786468C1 RU2022116572A RU2022116572A RU2786468C1 RU 2786468 C1 RU2786468 C1 RU 2786468C1 RU 2022116572 A RU2022116572 A RU 2022116572A RU 2022116572 A RU2022116572 A RU 2022116572A RU 2786468 C1 RU2786468 C1 RU 2786468C1
- Authority
- RU
- Russia
- Prior art keywords
- binder
- alkali
- hyperplasticizer
- melflux
- glass
- Prior art date
Links
- 239000011230 binding agent Substances 0.000 title claims abstract description 24
- 239000003513 alkali Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000003518 caustics Substances 0.000 claims abstract description 10
- 239000005356 container glass Substances 0.000 claims abstract description 6
- 239000005357 flat glass Substances 0.000 claims abstract description 6
- 238000000227 grinding Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 238000000465 moulding Methods 0.000 claims abstract description 3
- 239000004566 building material Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000006063 cullet Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 210000001847 Jaw Anatomy 0.000 description 3
- 210000004544 DC2 Anatomy 0.000 description 2
- 229940057306 Hemihydrate Calcium Sulfate Drugs 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium monoxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 2
- 210000004027 cells Anatomy 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005337 ground glass Substances 0.000 description 2
- 230000002530 ischemic preconditioning Effects 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000015450 Tilia cordata Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 240000006802 Vicia sativa Species 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052904 quartz Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Abstract
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении безобжигового, безавтоклавного и бесцементного вяжущего. Технический результат заключается в повышении механической прочности и водостойкости вяжущего. Способ получения стеклощелочного вяжущего включает измельчение компонентов, формование массы, естественное твердение в форме до достижения распалубочной прочности, тепловую обработку, при этом бой оконного и/или тарного стекла фракции не более 5 мм в количестве 80,5-84,6 мас.% измельчают совместно с водным раствором едкой щелочи и гиперпластификатором Melflux 2651 F, приготовленным в соотношении 100:15:1,2 – вода:едкая щелочь:гиперпластификатор Melflux 2651 F, в шаровой мельнице в течение 6 часов до удельной поверхности 500-550 м2/кг. 2 табл.
Description
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении безобжигового, безавтоклавного и бесцементного вяжущего.
Известно вяжущее, полученное по следующей технологии. Молотое стекло, молотый керамзит или его пылевидную фракцию, полуводный сульфат кальция измельчают до удельной поверхности 3500–4000 см2/г, взвешивают и загружают в смеситель, затем в работающий смеситель вводят раствор едкого натра до получения теста с влажностью 15–20% и в последнюю очередь добавляют отмеренное количество кремнийорганической жидкости и осуществляют перемешивание до получения однородной смеси. Полученную смесь укладывают в форму (кубики с размером ребра 4 см) и уплотняют вибрацией. Отформованные изделия твердеют одни сутки в форме и 10 часов вне форм в условиях термовлажностной обработки при температуре 90oC по режиму 2+6+2 ч (соответственно время подъема температуры до максимальной, время выдержки при максимальной температуре и время сброса температуры от максимальной величины до нормальной) (патент RU 2168480, МПК С04В 28/24, опубл. 10.06.2001). Главными недостатками такого изобретения являются низкая прочность и большая длительность технологического процесса, наличие тепловлажностной обработки с общей продолжительностью 10 часов.
Наиболее близким к предлагаемому изобретению техническим решением, принятым за прототип, является способ получения вяжущего, описанный в патенте [ RU 2317959, МПК С04В 7/345, С04В 7/51, опубл. 27.02.2008].
Бой ламп накаливания пропускают через электромагнитный сепаратор, стеклянную фазу измельчают до размера частиц 0,14 мм. Керамзитовый порошок измельчают до размера частиц 0,14мм.
Отдозированное количество предварительно подготовленных молотого стекла, алюмосиликатного компонента и полуводного сульфата кальция подвергаются дополнительному совместному помолу до величины удельной поверхности 3500–4000 см2/г. Затворение вяжущего осуществляют предварительно активированной водой с показателем рН 11÷11,5 с растворенным в ней едким натром. Полученную смесь укладывают в формы и уплотняют вибрацией или прессованием. Отформованные образцы отверждают одни сутки в нормальных условиях, а затем в пропарочной камере при температуре 90°С.
Главными недостатками такого технического решения является невысокая механическая прочность (не выше 16–17 МПа), и длительное время способа получения вяжущего. Подобная технология громоздка и энергоемка.
Задача, на решение которой направлено данное изобретение, заключается в разработке способа получения бесцементного, безобжигового и безавтоклавного вяжущего, с высокой прочностью, способного отверждаться при температуре не выше 90ºС в течение короткого времени затвердевания и с высоким коэффициентом водостойкости.
Это достигается тем, что способ получения стеклощелочного вяжущего включает измельчение компонентов, формование массы, естественное твердение в форме до достижения распалубочной прочности, тепловую обработку, отличается тем, что бой оконного и/или тарного стекла фракции не более 5 мм в количестве 80,5–84,6 масс.% измельчается совместно с водным раствором едкой щелочи и гиперпластификатором Melflux 2651 F, приготовленным в соотношении 100:15:1.2 – вода: едкая щелочь: гиперпластификатор Melflux 2651 F, в шаровой мельнице в течение 6 часов до удельной поверхности 500–550 м2/кг.
Характеристика компонентов стеклощелочного вяжущего:
Бой оконного и/или тарного стекла, фракция не более 5 мм – главный компонент вяжущего, усредненный химический состав приведен в табл. 1.
Таблица 1
Среднестатистический химический состав стеклобоя
Оксиды | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O+K2O |
Оконное | 69,0–72,5 | 1,5–4,2 | 0,1–0,8 | 7,5–8,7 | 2,5–3,5 | 13,2–14,0 |
Тарное | 71,5–73,7 | 0,2–3,3 | 0,8–1,7 | 5,2–9,1 | 0,1–0,6 | 14,0–14,8 |
Щелочь едкая (например, NaOH или KOH), – щелочной активизатор, ГОСТ – Р 55064–2012 Натр едкий технический; ГОСТ 24363–80 Калия гидроокись. Технические условия.
Гиперпластификатор Melflux 2651 F (Производитель: BASF Construction Additives, Германия) – порошковый продукт, полученный методом распылительной сушки на основе модифицированного полиэфиркарбоксилата – оказывает разжижающий эффект на связующую массу, снижает количество воды затворения и одновременно повышает концентрацию щелочи в растворе.
Вода, ГОСТ 23732–2011 Вода для бетонов и растворов. Технические условия.
Бой оконного и/или тарного стекла пропускали через щековую дробилку с размером выходного отверстия щеки 2,5–5 мм. Отвешивали навеску дробленого стеклобоя и погружали в фарфоровую шаровую мельницу. Туда же помещали раствор, содержащий воду, едкую щелочь и гиперпластификатор в соотношении 100:15:1,2. Компоненты подвергались мокрому помолу в указанном помольном агрегате в течение 6 ч до удельной поверхности вяжущего 500–550 м2/кг при среднем размере частиц 4,4-4,6 мкм.
Затем полученное вяжущее подвергалось физико-механическим испытаниям. Для этого полученная масса загружалась в кубические ячейки металлических форм и уплотнялась посредством ударов на встряхивающем столике, при этом наблюдалось увеличение текучести массы. После уплотнения в форме, масса выдерживалась 16–18 часов (до набора распалубочной прочности) и получившиеся после распалубки образцы-кубы направлялись в сушильную камеру, где подвергались тепловой обработке при температуре 85–90ºС в течение 5–6 часов. Результаты испытаний представлены в табл. 2.
Таблица 2
Составы вяжущего и результаты физико-механических испытаний
№ | Состав вяжущего, мас. % | Результаты физико-механических испытаний | ||||||
Стеклобой | Щелочь едкая | Пластификатор Melflux 2651 F | Вода | Плотность, кг/м3 | Предел прочности при сжатии, МПа |
Коэффициент водостойкости | ||
в сухом состоянии | в водонасыщенном | |||||||
1 | 84,6 | 1,7 | 0,2 | 13,5 | 1802 | 17,48 | 14,74 | 0,84 |
2 | 82,9 | 2,0 | 0,2 | 14,9 | 1816 | 21,57 | 18,62 | 0,86 |
3 | 82,0 | 2,3 | 0,2 | 15,5 | 1828 | 23,14 | 20,31 | 0,88 |
4 | 81,2 | 2,4 | 0,2 | 16,2 | 1835 | 25,83 | 22,93 | 0,89 |
5 | 80,5 | 2,6 | 0,2 | 16,7 | 1823 | 22,45 | 20,08 | 0,89 |
прототип | 70-76 | 4-6 | - | рН 11-11,5 | - | 7,5-17 | - | - |
Согласно полученных результатов, все пять составов показали лучшие результаты по сравнению с результатами прототипа. Из результатов, приведенных в табл. 2, следует, что оптимальным, показавшим наивысшую прочность и водостойкость, является состав № 4.
Применение заявляемого способа позволит получать вяжущее вещество без использования цемента, извести и других обжиговых вяжущих материалов, без применения обжиговой и гидротермальной (автоклавной) технологий, с минимальными затратами энергоресурсов. Общее время твердения (набора максимальной прочности) – 24 ч. Предлагаемое стеклощелочное вяжущее может быть использовано в качестве вяжущего при изготовлении строительных материалов и изделий.
Пример. Бой оконного и/или тарного стекла пропускали через лабораторную щековую дробилку с размером выходного отверстия 2,5–5 мм. Из дробленого стеклобоя отбирали навеску 500 г и загружали в шаровую фарфоровую мельницу. Туда же подавали заранее приготовленный щелочной раствор, содержащий 15 г едкой щелочи и 1,2 г гиперпластификатора Melflux 2651 F, растворенные в 100 мл воды. Стеклобой измельчался в присутствии указанного щелочного раствора в течение 6 ч. За это время происходило одновременное измельчение и модификация стеклобоя по всему объему частиц. В результате получалась вязко-текучая клеящая масса с удельной поверхностью частиц стеклобоя 500–550 м2/кг при среднем размере 4,4-4,6 мкм. Масса загружалась в кубические ячейки металлических форм и уплотнялась посредством ударов на встряхивающем столике, при этом наблюдалось увеличение текучести массы. После уплотнения в форме масса выдерживалась 16–18 часов (до набора распалубочной прочности) и получившиеся после распалубки образцы-кубы направлялись в сушильную камеру, где подвергались тепловой обработке при температуре 85–90ºС в течение 5–6 ч. По окончании тепловой обработки вяжущее имело величину предела прочности при сжатии в сухом состоянии 25,83 МПа, в водонасыщенном – 22,93 МПа при плотности 1835 кг/м3, коэффициент водостойкости 0,89.
Claims (1)
- Способ получения стеклощелочного вяжущего включает измельчение компонентов, формование массы, естественное твердение в форме до достижения распалубочной прочности, тепловую обработку, отличающийся тем, что бой оконного и/или тарного стекла фракции не более 5 мм в количестве 80,5-84,6 мас.% измельчается совместно с водным раствором едкой щелочи и гиперпластификатором Melflux 2651 F, приготовленным в соотношении 100:15:1,2 – вода:едкая щелочь:гиперпластификатор Melflux 2651 F, в шаровой мельнице в течение 6 часов до удельной поверхности 500-550 м2/кг.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2786468C1 true RU2786468C1 (ru) | 2022-12-21 |
Family
ID=
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2051031A (en) * | 1979-05-31 | 1981-01-14 | Flowcon Oy | Process for producing a binder for slurry mortar and concrete |
RU2317959C2 (ru) * | 2003-10-30 | 2008-02-27 | Мордовский государственный университет им. Н.П. Огарева | Вяжущее и способ его получения |
RU2375303C2 (ru) * | 2007-10-12 | 2009-12-10 | Александр Витальевич Ковалев | Способ приготовления ультрадисперсного вяжущего материала |
RU2634605C2 (ru) * | 2016-02-03 | 2017-11-01 | Шангин Андрей Петрович | Стеклобетонная смесь |
RU2715061C2 (ru) * | 2017-03-15 | 2020-02-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Череповецкий государственный университет" | Бетонная смесь |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2051031A (en) * | 1979-05-31 | 1981-01-14 | Flowcon Oy | Process for producing a binder for slurry mortar and concrete |
RU2317959C2 (ru) * | 2003-10-30 | 2008-02-27 | Мордовский государственный университет им. Н.П. Огарева | Вяжущее и способ его получения |
RU2375303C2 (ru) * | 2007-10-12 | 2009-12-10 | Александр Витальевич Ковалев | Способ приготовления ультрадисперсного вяжущего материала |
RU2634605C2 (ru) * | 2016-02-03 | 2017-11-01 | Шангин Андрей Петрович | Стеклобетонная смесь |
RU2715061C2 (ru) * | 2017-03-15 | 2020-02-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Череповецкий государственный университет" | Бетонная смесь |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Robayo et al. | Natural pozzolan-and granulated blast furnace slag-based binary geopolymers | |
CN110981259B (zh) | 一种提高水热合成水化硅酸钙结晶度的外加剂 | |
Kishar et al. | Geopolymer cement based on alkali activated slag | |
RU2786468C1 (ru) | Способ получения стеклощелочного вяжущего | |
AU2007311917A1 (en) | The manufacturing method of construction materials using waterworks sludge | |
RU2536693C2 (ru) | Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона | |
RU2778880C1 (ru) | Стеклощелочное вяжущее | |
Janowska-Renkas et al. | Properties of geopolymers from conventional fly ash activated at increased temperature with sodium hydroxide containing glass powder obtained from the recycling of waste glass | |
Nazari et al. | Boroaluminosilicate geopolymers: role of NaOH concentration and curing temperature | |
RU2397968C1 (ru) | Состав и способ изготовления корундового жаростойкого бетона | |
RU2197446C2 (ru) | Керамическая масса для изготовления керамического кирпича | |
JP7041918B2 (ja) | 曲げ性能が高いジオポリマー硬化体及びその製造方法 | |
RU2376258C1 (ru) | Известково-кремнеземистое вяжущее, способ получения известково-кремнеземистого вяжущего и способ получения формовочной смеси для прессованных силикатных изделий | |
RU2733833C1 (ru) | Бесклинкерное вяжущее щелочной активации | |
ABDULLAH et al. | Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry. | |
CN101386512A (zh) | 蒸压灰砂砖及其生产方法 | |
RU2804940C1 (ru) | Геополимерный композит | |
RU2749005C1 (ru) | Способ получения минерально-щелочного вяжущего на основе техногенного сырья | |
RU2409531C1 (ru) | Способ приготовления смеси для силикатного кирпича и силикатный кирпич | |
RU2743159C1 (ru) | Шлакощелочный материал для строительных изделий и способ его получения | |
RU2811516C1 (ru) | Способ получения вяжущего | |
RU2732904C1 (ru) | Способ получения бесклинкерного вяжущего щелочной активации | |
RU2758829C1 (ru) | Способ получения пеностекла | |
RU2791333C1 (ru) | Сырьевая смесь для прессованных гипсовых изделий и способ их изготовления | |
RU2308428C1 (ru) | Бесклинкерное вяжущее |