RU2409531C1 - Способ приготовления смеси для силикатного кирпича и силикатный кирпич - Google Patents

Способ приготовления смеси для силикатного кирпича и силикатный кирпич Download PDF

Info

Publication number
RU2409531C1
RU2409531C1 RU2009129836/03A RU2009129836A RU2409531C1 RU 2409531 C1 RU2409531 C1 RU 2409531C1 RU 2009129836/03 A RU2009129836/03 A RU 2009129836/03A RU 2009129836 A RU2009129836 A RU 2009129836A RU 2409531 C1 RU2409531 C1 RU 2409531C1
Authority
RU
Russia
Prior art keywords
lime
sand
brick
mixture
lime brick
Prior art date
Application number
RU2009129836/03A
Other languages
English (en)
Inventor
Анатолий Митрофанович Гридчин (RU)
Анатолий Митрофанович Гридчин
Валерия Валерьевна Строкова (RU)
Валерия Валерьевна Строкова
Александр Викторович Мосьпан (RU)
Александр Викторович Мосьпан
Руслан Валерьевич Лесовик (RU)
Руслан Валерьевич Лесовик
Виктор Михайлович Воронцов (RU)
Виктор Михайлович Воронцов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (БГТУ им. В.Г. Шухова)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (БГТУ им. В.Г. Шухова) filed Critical Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (БГТУ им. В.Г. Шухова)
Priority to RU2009129836/03A priority Critical patent/RU2409531C1/ru
Application granted granted Critical
Publication of RU2409531C1 publication Critical patent/RU2409531C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к промышленности строительных материалов, а именно к производству силикатного кирпича. Технический результат - расширение арсенала технических средств для производства упрочненного силикатного кирпича с пониженной тепло- и звукопроводностью. Способ приготовления смеси для силикатного кирпича включает дробление ячеистого стекла до размера зерен 3,0-10,0 мм, пропитку его до насыщения известковой суспензией, содержащей 10 мас.% твердого вещества Са(ОН)2 и 0,5-7,0 мас.% гидроксида одновалентного щелочного металла, смешивание полученного материала с гашеной известью, доувлажнение до формовочной влажности. Силикатный кирпич характеризуется тем, что получен из сырьевой смеси, приготовленной указанным выше способом, сформован в виде изделия при давлении и прошел гидротермальную обработку в автоклаве. 2 н.п. ф-лы, 1 табл.

Description

Изобретение относится к промышленности строительных материалов, а именно к производству силикатного кирпича.
Известен способ приготовления смеси для силикатного кирпича, включающий дробление кремнесодержащего компонента в виде обожженных вспучиваемых и невспучиваемых глинистых пород, дробление их до фракции 0,4-1,2 мм, пропитывание известковой суспензией, содержащей до 10 мас.% твердого вещества Ca(OH)2, последующее смешивание полученного материала с гашеной известью, доувлажненной до формовочной влажности (патент РФ №2225378, кл. 7 C04B 28/18, 2000).
Недостатками данного способа и получаемого силикатного кирпича является то, что используемый дробленый заполнитель из обожженных вспучиваемых и невспучиваемых глинистых пород содержит активный кремнезем в фиксированных положениях на поверхности керамических дробленых частиц, что приводит к формированию упрочняющих гидросиликатов кальция только в пределах контактной зоны глинистого материала с гидроксидом кальция, что не способствует увеличению прочностных и звукоизолирующих характеристик получаемого силикатного кирпича. Наличие невспученных и слабовспученных зерен кремнесодержащего компонента в силикатном кирпиче приводит к увеличению его плотности и теплопроводности.
Наиболее близким к предлагаемому решению является способ приготовления смеси для силикатного кирпича, включающий дробление кремнесодержащего компонента в виде обожженных вспучиваемых глинистых пород до фракции 0,4-1,2 мм, пропитывание их до насыщения известковой суспензией, содержащей твердого вещества Ca(OH)2 до 10 мас.%, смешивание компонентов. Получение силикатного кирпича по прототипу включает в себя формование изделий из полученной смеси и гидротермальную обработку их в автоклаве при давлении 1 МПа и температуре 178°C в течение 12 часов (патент РФ №2142440, кл. 6 C04B 28/18, 1998).
Недостатками указанного способа и силикатного кирпича является то, что используемый кремнесодержащий компонент в виде глинистых вспученных пород не позволяет создавать достаточно объемные упрочненные контактные зоны между компонентами силикатной смеси, что не приводит к существенному увеличению прочности, звуко- и теплоизолирующих характеристик получаемого силикатного кирпича.
Предлагаемое изобретение решает задачу расширения арсенала технических средств для производства упрочненного силикатного кирпича с пониженной тепло- и звукопроводностью.
Указанный результат достигается тем, что в способе приготовления смеси для силикатного кирпича, включающем дробление вспученного кремнесодержащего компонента, пропитку его до насыщения известковой суспензией, содержащей 10 мас.% твердого вещества Ca(OH)2, смешивание полученного материала с гашеной известью, доувлажнение до формовочной влажности, согласно предлагаемому решению в качестве дробленого кремнесодержащего компонента используют ячеистое стекло с размером зерен 3,0-10,0 мм, а известковая суспензия для его пропитки дополнительно содержит 0,5-7,0 мас.% гидроксида одновалентного щелочного металла.
Результат достигается с помощью силикатного кирпича, полученного из сырьевой смеси, приготовленной указанным способом, сформованного в виде изделия при давлении и прошедшего гидротермальную обработку в автоклаве.
Сравнение способа получения сырьевой смеси с прототипом показывает, что предлагаемое решение отличается использованием при приготовлении силикатной сырьевой смеси взамен глинистых вспученных пород дробленого ячеистого стекла с размером зерен 3,0-10,0 мм, пропитанных известковой суспензией, которая дополнительно содержит 0,5-7,0 мас.% гидроксида одновалентного щелочного металла. Использование предлагаемого дробленого ячеистого стекла при приготовлении сырьевой смеси позволяет решить задачу расширения арсенала технических средств для производства упрочненного силикатного кирпича с пониженной тепло- и звукопроводностью. Таким образом, предлагаемое решение обладает критерием «новизна».
При изучении других технических решений использование предложенного способа введения в состав сырьевой смеси для изготовления силикатного кирпича дробленого ячеистого стекла, пропитанного до насыщения известковой суспензией с гидроксидами одновалентных щелочных металлов, не выявлено. Процессы, происходящие в зонах контакта частиц дробленого ячеистого стекла, имеющих пористую структуру и состоящих из однородной обожженной смеси гипса, портландцемента, стекла, и известковой суспензии в присутствии гидроксидов одновалентных щелочных металлов при формовании кирпича и его автоклавной обработке, в технической литературе не описаны.
Силикатный кирпич, полученный из сырьевой смеси по заявляемому способу, имеет характеристики, которые не являются аддитивной суммой свойств исходных компонентов и известных силикатных стеновых материалов автоклавного твердения, а существенно превосходят их по основным физико-механическим характеристикам, что свидетельствует о дополнительных процессах минералообразования в зонах контакта дробленого ячеистого стекла с известковым компонентом в присутствии гидроксидов одновалентных щелочных металлов. Таким образом, заявляемое решение не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии заявляемого решения критерию «изобретательский уровень».
Характеристика компонентов смеси.
1. Известь негашеная кальциевая по ГОСТ 9179.
2. В качестве гидроксида щелочного металла использовали:
- гидроксид натрия по ГОСТ 2263-79;
- гидроксид калия по ГОСТ 24363-80;
- гидроксид лития по ГОСТ 8595-83.
3. Дробленое ячеистое стекло - фракция с размером зерен от 3,0 до 10,0 мм, полученная путем дробления и отсева ячеистого стекла, произведенного в БГТУ им.В.Г.Шухова, г.Белгород. Ячеистое стекло используется как легкий строительный акустический и декоративный материал, который вырабатывается из шихты, включающей, мас.%: пенообразователь 0,1…1,0, стабилизатор ячеистой структуры (полуводный гипс 1,0…8,0 и портландцемент 0,5…10,0) и молотое стекло - остальное. Приготовление шихты и получение ячеистого стекла выполняют согласно патенту РФ №2242437, кл.7 C03C 11/00, 2002. При плотности 400 кг/м3 прочность на сжатие ячеистого стекла составляет 10,1…15,5 МПа, при плотности 460 кг/м3 - до 21,0 МПа. Насыпная плотность дробленого ячеистого стекла фракции 10,0-3,0 мм составляет 450…475 кг/м3 в зависимости от пористости. Для приготовления дробленого продукта можно использовать обрезки и бой блоков обожженного ячеистого стекла. Анализируя результаты физико-механических испытаний серии экспериментальных образцов, можно сделать вывод, что по способности формировать пористую упрочненную структуру силикатного кирпича размеры зерен дробленого ячеистого стекла должны составлять 3…10 мм, содержание твердого вещества Ca(OH)2 в пропитывающей известковой суспензии - 10 мас.% и 0,5-7,0 мас.% гидроксида одновалентного щелочного металла.
Подготовку и пропитку кремнесодержащего дробленого компонента (ячеистого стекла) известковой суспензией до насыщения, подготовку сырьевой смеси, формование и автоклавную обработку образцов силикатного кирпича производили аналогично прототипу (патент РФ №2142440, кл. 6 C04B 28/18, 1998). Навески полученного дробленого ячеистого стекла, пропитанного известковой суспензией, содержащей 10 мас.% твердого вещества Ca(OH)2 и 0,5-7,0 мас.% гидроксида одновалентного щелочного металла, с гашеной известью смешивали до однородного состояния, увлажняли водой до формовочной влажности (подбирается экспериментально для конкретной смеси в зависимости от дисперсности и активности компонентов). Из подготовленной таким образом смеси методом полусухого прессования при давлении 20 МПа изготавливали образцы силикатного кирпича. Автоклавную обработку полученного прессованного кирпича производили при давлении пара 1 МПа и температуре 175°C в течение 12 часов. После охлаждения силикатный кирпич подвергали физико-механическим испытаниям.
Пример. Приготовление суспензии для пропитки. В сосуд с мешалкой поместили 87 кг воды, 10 кг гашеной извести Ca(OH)2 и 3 кг гидроксида натрия, перемешивали в течение 2 часов. Полученной суспензией насыщали предварительно дробленое ячеистое стекло с размером зерен 3,0-10,0 мм и насыпной плотностью 465 кг/м3.
Приготовление образцов силикатного кирпича. Взвесили 90 кг (90 мас.%, табл., смесь 1) ячеистого стекла, насыщенного полученной суспензией, и 10 кг (10 мас.%) гашеной извести. Эти два компонента смешивали в шнековом смесителе до однородно-распределенного состояния, увлажняли при перемешивании водой до формовочной влажности (в нашем случае - до 12,0 мас.%). Из подготовленной таким образом смеси изготавливали полнотелые кирпичи способом полусухого прессования при давлении 20 МПа. Прессованные сырцовые кирпичи подвергали автоклавированию. Полученные кирпичи испытывали на прочность при изгибе, определяли теплопроводность и акустические характеристики. Результаты испытаний приведены в таблице (смесь 1).
Таким же способом были приготовлены сырьевые смеси и испытаны изделия составов 2-10, результаты испытаний приведены в таблице.
Состав 10 приготовлен из дробленого ячеистого стекла, пропитанного известковой суспензией без гидроксида одновалентного щелочного металла.
Известный состав массы 11 изготавливали согласно способу по прототипу (патент РФ №2142440, кл. 6 C04B 28/18, 1998).
Анализ полученных физико-механических характеристик силикатного кирпича, показывает следующее.
Figure 00000001
1. Все смеси 1-10 отвечают требованиям ТУ 379-95 «Кирпич и камни силикатные».
2. Реализация заявляемого способа приготовления смеси для силикатного кирпича позволяет получать силикатный кирпич с улучшенными тепло- и звукоизолирующими характеристиками при повышенной прочности при изгибе по сравнению с прототипом:
- теплопроводность силикатного кирпича снижена на 30-37%, коэффициент звукопоглощения при этом увеличен с 0,42 до 0,72, прочность при изгибе увеличивается в 1,5…1,65 раза;
- полученный в результате автоклавной обработки силикатный кирпич имеет равномерно-поризованную структуру с минимальными объемными дефектами; включает в свой состав экологически чистый неорганический компонент.
Физико-химическая сущность технического решения достижения задачи заключается в следующем: дробленное ячеистое стекло с размером частиц 3,0…10,0 мм благодаря своей низкой насыпной плотности от 450…475 кг/м3 и, занимая определенный объем сырьевой массы, формирует пористую структуру готового изделия. Эта структура определяет свойства получаемого силикатного стенового материала и позволяет решить задачу расширения арсенала технических средств для производства силикатного кирпича с пониженными тепло- и звукопроводностью. Установлено, что в результате автоклавной обработки изделий, изготовленных путем прессования их из сырьевых смесей, полученных по заявляемому способу и содержащих дробленое ячеистое стекло пористой структуры, состоящее из однородной смеси гипса, портландцемента и дисперсного стекла, подвергшихся термообработке при 740…750°С в течение 20 минут, на границах контакта с известью в присутствии гидроксидов одновалентных щелочных металлов фиксируются зоны с аномально высоким содержанием хорошо сформированных кристаллов гидросиликатов кальция различной степени насыщения и аморфно-кристаллических образований (доказано микроскопическими, петрографическими и рентгенофазовыми исследованиями). Гидроксиды одновалентных щелочных металлов имеют высокую подвижность и, вступая во взаимодействия с кремнесодержащим компонентом смеси, существенно активизируют процессы взаимодействия его с гидроксидом кальция при автоклавной обработке кирпича по сравнению с другими смесями (смеси 10 и 11). Указанные новообразования чрезвычайно сильно увеличивают эффекты тепло- и звукопоглощения в заявляемых материалах до величин, существенно превосходящих прототип, а также расчетные и прогнозируемые, полученные из анализа свойств исходных материалов. Обеспечение равномерной частично-замкнутой пористости с упрочненной внутренней структурой в силикатных материалах также обусловливает существенное улучшение их физико-механических (прочностных, звуко- и теплоизоляционных) характеристик по сравнению с прототипом.
Увеличивать содержание гидроксида одновалентного щелочного металла в пропитывающей известковой суспензии более 7 мас.% нецелесообразно, т.к. это приводит к чрезмерной активации кремнесодержащего компонента смеси (ячеистого стекла) и более полному взаимодействию его с гидроксидом кальция при автоклавной обработке силикатного кирпича. При этом уменьшается количество закрытых пор, частично растворяется ячеистое стекло, повышается дефектность структуры и ухудшаются физико-механические характеристики силикатного кирпича (смеси 3, 6 и 9).
Размер дробленых частиц ячеистого стекла выбран исходя из анализа результатов экспериментальных данных: частицы именно такого размера имеют развитую поверхность, позволяющую обеспечивать прочное сцепление с известью, и ядро с неразрушенными порами, которые являются носителями основных свойств ячеистого стекла (тепло- и звукоизоляционными). Использование отходов механической обработки ячеистых стекол для получения дробленого компонента сырьевой смеси взамен обожженных вспученных глинистых пород и техногенных щелочных отходов производства позволяет существенно снизить себестоимость силикатного кирпича.

Claims (2)

1. Способ приготовления смеси для силикатного кирпича, включающий дробление вспученного кремнесодержащего компонента, пропитку его до насыщения известковой суспензией, содержащей 10 мас.% твердого вещества Са(ОН)2, смешивание полученного материала с гашеной известью, доувлажнение до формовочной влажности, отличающийся тем, что в качестве дробленого кремнесодержащего компонента используют ячеистое стекло с размером зерен 3,0-10,0 мм, а известковая суспензия дополнительно содержит 0,5-7,0 мас.% гидроксида одновалентного щелочного металла.
2. Силикатный кирпич, характеризующийся тем, что он получен из сырьевой смеси, приготовленной способом по п.1, сформован в виде изделия при давлении и прошел гидротермальную обработку в автоклаве.
RU2009129836/03A 2009-08-03 2009-08-03 Способ приготовления смеси для силикатного кирпича и силикатный кирпич RU2409531C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009129836/03A RU2409531C1 (ru) 2009-08-03 2009-08-03 Способ приготовления смеси для силикатного кирпича и силикатный кирпич

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009129836/03A RU2409531C1 (ru) 2009-08-03 2009-08-03 Способ приготовления смеси для силикатного кирпича и силикатный кирпич

Publications (1)

Publication Number Publication Date
RU2409531C1 true RU2409531C1 (ru) 2011-01-20

Family

ID=46307610

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009129836/03A RU2409531C1 (ru) 2009-08-03 2009-08-03 Способ приготовления смеси для силикатного кирпича и силикатный кирпич

Country Status (1)

Country Link
RU (1) RU2409531C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641154C2 (ru) * 2012-04-19 2018-01-16 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Заполнение пустот строительного кирпича пористым материалом

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641154C2 (ru) * 2012-04-19 2018-01-16 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Заполнение пустот строительного кирпича пористым материалом

Similar Documents

Publication Publication Date Title
Hamad Materials, production, properties and application of aerated lightweight concrete
Aliabdo et al. Utilization of crushed clay brick in cellular concrete production
Karakurt et al. Utilization of natural zeolite in aerated concrete production
Rashad et al. An investigation on alkali-activated fly ash pastes modified with quartz powder subjected to elevated temperatures
Ferrándiz-Mas et al. Physical and mechanical characterization of Portland cement mortars made with expanded polystyrene particles addition (EPS)
Acar et al. Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings
TR201708039T4 (tr) İnorganik polimerler ile yapılan seramik materyallerin oluşturulması.
Rahman et al. Light weight concrete from rice husk ash and glass powder
Haq et al. Setting and curing of mortars obtained by alkali activation and inorganic polymerization from sodium silicate and silica aggregate
Darweesh Geopolymer cement based on bioactive egg shell waste or commercial calcium carbonates
Wongkeo et al. Properties of high calcium fly ash geopolymer lightweight concrete
RU2409531C1 (ru) Способ приготовления смеси для силикатного кирпича и силикатный кирпич
RU2303021C1 (ru) Ячеистобетонная смесь и способ ее приготовления
RU2298539C1 (ru) Легкий ячеистый бетон
RU2408555C1 (ru) Способ приготовления смеси для изготовления легких силикатных строительных изделий и строительное изделие
RU2536693C2 (ru) Сырьевая смесь для изготовления неавтоклавного газобетона и способ приготовления неавтоклавного газобетона
Owsiak et al. Effects of bentonite additives on autoclaved sand-lime product properties
RU2605110C1 (ru) Древесно-цементная смесь для изготовления строительных блоков
JP4628584B2 (ja) 軽量気泡コンクリート
RU151756U1 (ru) Сырьевая смесь для производства ячеистого газобетона, твердеющего в среде углекислого газа
RU2569422C1 (ru) Древесно-цементная смесь
RU2303015C1 (ru) Сырьевая смесь для изготовления легких силикатных стеновых материалов для строительных изделий и строительное изделие
RU2409534C1 (ru) Способ приготовления смеси для ячеистых силикатных строительных изделий и строительное изделие
RU2303014C1 (ru) Сырьевая смесь для изготовления силикатных стеновых изделий и силикатное стеновое изделие
RU2433975C1 (ru) Способ изготовления гранулированного заполнителя для бетона

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180804