RU2785665C1 - Способ производства мелющих шаров из стали - Google Patents

Способ производства мелющих шаров из стали Download PDF

Info

Publication number
RU2785665C1
RU2785665C1 RU2022103210A RU2022103210A RU2785665C1 RU 2785665 C1 RU2785665 C1 RU 2785665C1 RU 2022103210 A RU2022103210 A RU 2022103210A RU 2022103210 A RU2022103210 A RU 2022103210A RU 2785665 C1 RU2785665 C1 RU 2785665C1
Authority
RU
Russia
Prior art keywords
balls
less
temperature
tempering
rolling
Prior art date
Application number
RU2022103210A
Other languages
English (en)
Inventor
Константин Николаевич Шведов
Михаил Андреевич Казаковцев
Виталий Юрьевич Рубцов
Ильяс Каримович Галимьянов
Михаил Николаевич Щелоков
Константин Евгеньевич Соколов
Андрей Викторович Шкабара
Original Assignee
Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК")
Filing date
Publication date
Application filed by Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") filed Critical Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК")
Application granted granted Critical
Publication of RU2785665C1 publication Critical patent/RU2785665C1/ru

Links

Abstract

Изобретение относится к прокатному производству, в частности к термической обработке мелющих шаров из стали, содержащей, мас.%: С 0,60-0,64; Mn 0,75-0,90; Si 1,75-2,00; Al 0,015-0,035; P менее 0,025; S менее 0,025; Cr 0,20-0,30; Ni менее 0,25; Cu менее 0,20; N менее 0,009; Аs менее 0,040; Sn менее 0,020; H менее 0,0002; Са 0,0020-0,0030; Fe - остальное. Способ включает прокатку шаров, охлаждение шаров, закалку, отпуск, при этом производят шары с условным диаметром 80-120 мм, причем после прокатки шары подстуживают до температуры 670-800°С, затем шары подвергают закалке в закалочной среде, при этом длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 80-100 мм от 2,5 до 4 мин, для шаров с условным диаметром 110-120 мм от 3,0 до 4,5 мин, а последующий отпуск производят при температуре 150-270°С с длительностью выдержки от 160 до 320 мин. Изобретение направлено на повышение эксплуатационной стойкости шаров, получение мелющих шаров условным диаметром 80-120 мм, имеющих объемную твердостью, характеризующуюся 5 группой твердости по ГОСТ 7524-2015. 2 з.п. ф-лы, 3 табл.

Description

Изобретение относится к прокатному производству, в частности к термической обработке мелющих шаров.
Известны изобретения получения стали для производства мелющих шаров: патент RU №2415194 C1 «Сталь» МПК6 C22C 38/38; C22C 38/34; C22C 38/32, опубликованного 27.03.2011,бюл.9 [1], патент RU №2425168 С2 «Сталь» МПК6 C22C 38/26, опубликованного 27.07.2011, бюл.21 [2], патент RU №2425169 «Сталь» МПК6 C22C 38/40, опубликованного 27.07.2011, бюл.21 [3], а также авторские свидетельства, авторское свидетельство SU1497262 A1 «Сталь» МПК6 C22C 38/14, конвенционный приоритет 13.01.1988 [4], Авторское свидетельство SU1446189 A1 «Сталь» МПК6 C22C 38/16, опубликованного 23.12.1988 [5].
Известен способ производства стальных мелющих шаров патент RU №2596737 С1 МПК6 C21D 9/36; B21H 1/14; C21D 1/02; B23P 15/00 ; C22C 38/40, опубликованного 10.09.2016, бюл.25 [6], включающий нагрев непрерывнолитой заготовки , прокатку на сортовом стане горячей прокатки круглых заготовок соответствующего размера, последующий их нагрев в индукционном устройстве, прокатку из них шаров на стане поперечно-винтовой прокатки при температуре 950-1050°C, подстуживание шаров перед закалкой, закалку и самоотпуск шаров в контейнерах, при этом квадратную непрерывнолитую заготовку изготавливают сечением (100-150)×(100-150) мм. из стали со следующим соотношением компонентов, мас %: углерод 0,6-1,05; кремний 0,15-2,0; марганец 0,2-1,2; хром 0,03-0,5; медь 0,03-0,40; железо и неизбежные примеси остальное, а нагрев круглых заготовок производят в индукционном устройстве до температуры на выходе из индукторов 1070-1140°C, подстуживание шаров до температуры закалки 840-900°C осуществляют в подстуживающем барабане со скоростью его вращения в диапазоне 6,0-22,0 об/мин с выравниванием температуры шаров по сечению за счет вращения шаров в барабане в течение менее 2 мин, а закалку шаров производят в закалочном барабане со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C.
Недостатком этого способа является то, что данный способ не позволяет получить 5 группу твердости со сплошной прокаливаемостью, а только частичную прокаливаемость, отвечающую 4-ой группе, и имеет более низкий градиент.
Известно устройство и способ термической обработки шаров, патент RU 2455369 С1 МПК6 C21D 9/36, опубликованного 10.07.2012, бюл.19 [7], включающий после штамповочного или прокатного нагрева подстуживание шаров с температуры штамповки или прокатки до температуры закалки, закалку путем охлаждения шаров с температуры закалки в воде и отпуск, при этом перед закалкой производят выравнивание температуры шаров, а затем их подстуживание водой со скоростью охлаждения не более 12 град./с на 150-200°С ниже температуры конца прокатки или штамповки.
Недостатком этого способа является, что в нем отсутствует технология получения шаров 5 группы твердости. Также существенным отличием в технологии является температура шаров перед закалкой, которая составляет 830-900°С, что подразумевает применение сталей целевого назначения ниже 5 группы твердости.
Известен способ термической обработки мелющих шаров патент №2113513 МПК6 C21D 9/36; B21H 1/14, опубликованного 10.09.2016, бюл.25 [8], включающий прокатку, подстуживание до температуры закалки в течение 2-12 мин. и закалку.
Известен способ термической обработки мелющих шаров авторское свидетельство №1344793 А1 МПК6 C21D 9/36, опубликованного 15.10.1987 [9], включающий нагрев до температуры аустенизации, выдержку, подстуживание, и закалку в воде, при этом подстуживание осуществляют со скоростью 20-50°С/с до достижения средней по сечению шаров температуры 600-70°С.
Недостатком этих способов является то, что режимы термической обработки не позволяют получать сплошную прокаливаемость шаров.
Известен способ и устройство термической обработки шаров RU 2634541 C1 МПК6 C21D 9/36, опубликованного 31.10.2017, бюл.31 [10], включающий выравнивание температуры шаров с температуры штамповки или прокатки до температуры закалки на воздухе при их размещении на конвейере, охлаждение в воде с температуры закалки во вращающемся закалочном барабане и отпуск, при этом выравнивание температуры шаров до температуры закалки на воздухе производят в течение более 40 с при размещении на конвейере, выполненном с возможностью размещения по одному шару в каждом из его конструктивных элементов, а охлаждение шаров в воде производят до температуры ниже точки начала мартенситного превращения Мн, при этом шары равномерно и по одному размещены в ячейках закалочного барабана, в которые подают воду для омывания шаров, затем проводят отпуск шаров путем нагрева и термостатирования в печи и последующее окончательное охлаждение.
Недостатком этого способа является то, что по технологии термической обработки на предлагаемых марках стали после сплошной прокаливаемости шаров остаются остаточные напряжения, которые способствуют их дальнейшему разрушению в процессе эксплуатации
Наиболее близким (прототипом) по технической сущности к заявленному устройству, по количеству сходных признаков, является патент RU2756671 C1 МПК51 B21H/14; C21D 9/36; С22С 38/24 опубликованного 04.10.2021, бюл.28 [11], включающий прокатку, закалку, отпуск, отличающийся тем, что производят шары с условным диаметром 80-100 мм, после прокатки шары подстуживают до температуры 740-800°С, закалку шаров производят в закалочной среде с выдержкой в течение от 3,0 до 4,0 мин, а последующий отпуск проводят при температуре 180-260°С и времени выдержки в течение от 180 до 320 мин, при этом после отпуска проводят самоотпуск с временем выдержки в течение от 12 до 48 часов.
Недостатком этого способа является то, что объемная прокаливаемость предложенной марки стали и режимов термообработки характеризуется 5-ой группой твердости шаров, однако данная марка стали требует существенно-точного проведения режимов термической обработки в очень узком диапазоне, для исключения образования остаточных напряжений в виде трещин.
Технический результат на достижение которого направлено предполагаемое изобретение является: повышение эксплуатационной стойкости шаров, получение мелющих шаров с объемной твердостью, характеризующейся 5 группой твердости с условными диаметрами 80-120 мм по ГОСТ 7524-2015 [12], при этом с существенным диапазоном возможных температур, для возможности использования данной марки стали на большинстве шаропрокатных станов.
Технический результат достигается тем, что в способе производства мелющих шаров с объемной твердостью из стали, содержащей мас.% : С 0,60-0,64; Mn 0,75-0,90; Si 1,75-2,00; Al 0,015-0,035; P менее 0,025; S менее 0,025; Cr 0,20- 0,30; Ni менее 0,25; Cu менее 0,20; N менее 0,009; Аs менее 0,040; Sn менее 0,020; H менее 0,0002; Са 0,0020-0,0030; Fe - остальное, включающий прокатку шаров, охлаждение шаров, закалку и последующий отпуск шаров, согласно изобретения, после прокатки шары подстуживают до температуры 670-800, затем шары подвергают закалке в закалочной среде, при этом длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 80-100 мм от 2,5 до 4,0 мин, для шаров условным диаметром 110-120 мм от 3,0 мин до 4,5 мин, а последующий отпуск шаров производят при длительности выдержки от 160 до 320 мин. при температуре 150-270°С.
Кроме того, в качестве закалочной среды используют воду или среду с удельной теплоемкостью от 3800 до 4000 Дж/кг⋅град. и коэффициентом теплопроводности от 0,4 до 0,7 Вт/м⋅град, а также благодаря тому, что последующий отпуск проводят либо только при низкотемпературном , либо многостадийном отпуске.
Сущность изобретения заключается в следующем.
Использование предлагаемого способа обеспечивает получение мартенситной структуры по всей глубине мелющих шаров. Мартенситная структура в сталях образуется при высокой скорости охлаждения, при фазовом переходе ниже точки AC3(точки начала аустенизации) до окончания превращения, согласно кинетики превращения по диаграммам переохлажденного аустенита. Получение сплошной прокаливаемости возможно при высокой скорости охлаждения как поверхности, так и сердцевины (центра) шаров. Особенно сложно достичь такого превращения при больших диаметрах шаров.
Шар, является фигурой с максимальной массовостью объекта (отношение массы к объему), поэтому зеркало теплоотдачи в среде максимально мало. По закону Фурье теплоотдача начинается от поверхности шара и заканчивается центром шара, поэтому максимальный эффект возможно получить на тех материалах у которых кинематика превращения происходит с максимальной теплопроводностью внутри объекта.
Кроме этого, сплошная прокаливаемость создает внутренние напряжения (интенсивно остывающая поверхность имеет более плотную структуру, чем внутренняя часть материала и при дальнейшем охлаждении создается послойное завершение превращения), которые за счет разницы состояния вызывают появление дислокаций и затем могут привести к появлению трещин на шарах, что недопустимо согласно ГОСТ 7524-2015[12]. Также необходимо получить минимальное изменение градиента твердости (снижение твердости от поверхности к центру шара).
Химический состав стали для производства мелющих шаров, содержащий мас.% : С 0,60-0,64; Mn 0,75-0,90; Si 1,75-2,00; Al 0,015-0,035; P менее 0,025; S менее 0,025; Cr 0,20- 0,30; Ni менее 0,25; Cu менее 0,20; N менее 0,009; Аs менее 0,040; Sn менее 0,020; H менее 0,0002; Са 0,0020-0,0030; Fe - остальное, позволяет решить данное противоречие, обеспечить объемную твердость готовых шаров, характеризующейся 5 группой, при этом исключить возниконовение внутренних напряжений, при достаточном интервале температурно-временных параметров, с возможностью их производства из данной марки стали на большинстве шаропрокатных станов.
Подстуживание мелющих шаров до температуры 670-800°С после прокатки позволяет обеспечить требуемую температуру начала закалки. Отклонение от указанного интервала температур как выше 800°С, так и ниже 670°С не позволяет начать закалку шаров с температур, обеспечивающих полную закалку, при неполной закалке образуется смешенная структура троостита и мартенсита или бейнита и мартенсита, что снижает твердость шаров ниже установленного норматива.
Длительность процесса закалки регулируют в зависимости от диаметра шаров, группы их твердости и химического состава стали. Например, при получении мелющих шаров 5 группы твердости длительность закалки шаров условным диаметром 80-100 мм 2,0 - 4,0 мин, для шаров условным диаметром 110-120 мм 3,0 - 4,5 мин.
Увеличение времени пребывания мелющих шаров в закалочной среде свыше установленных границ нецелесообразно, т.к. данного времени достаточно для прохождения объемной прокаливаемости. Уменьшение времени пребывания мелющих шаров в закалочной среде ниже установленных границ приведет к недостаточной прокаливаемости шара и отсутствию получения объемной твердости.
Последующий отпуск мелющих шаров осуществляют при температуре 150-270°С, что позволяет произвести снятие поверхностных напряжений, возникающих в процессе закалки.
Отклонение от указанного диапазона температур ниже установленного значения температуры приведет к отсутствию прогревания поверхности и в дальнейшем к возможности образования трещин, а превышение установленного значения температуры приведет к началу преобразований в зернах (характерно отпускной хрупкости первого рода) и появлению охрупчивания поверхности.
Способ получения мелющих шаров с объемной твердостью работает следующим образом.
Получение мелющих шаров, отвечающих требованиям 5 группы твердости и достаточным интервалом температурно-временных параметров, возможно с использованием материала шаров из марки стали 60С2А, содержащем, мас.%: С 0,60-0,64; Mn 0,75-0,90; Si 1,75-2,00; Al 0,015-0,035; P менее 0,025; S менее 0,025; Cr 0,20- 0,30; Ni менее 0,25; Cu менее 0,20; N менее 0,009; Аs менее 0,040; Sn менее 0,020; H менее 0,0002; Са 0,0020-0,0030; Fe - остальное, при проведении соответствующей термической обработки.
Технология термической обработки заключается в следующих этапах:
1. Прокатка мелющих шаров
2. Подстуживание мелющих шаров условным диаметром 80-120 мм до температур 670-800°С, после прокатки, либо нагрева шаров до заданных температур.
3. Закалка мелющих шаров в воде:
- для шаров с условным диаметром 80-100 мм от 2,5 мин до 4,0 мин,
- для шаров условным диаметром 100-120 мм от 3,0 до 4,5 мин.
либо в прочей среде с удельной теплоемкостью от 3800 Дж/к⋅град до 4400 Дж/кг⋅град. и коэффициентом теплопроводности от 0,4 Вт/м⋅град до 0,7 Вт/м⋅град, с соблюдением тех-же температурно-временных параметров.
4. Последующее проведение низкотемпературного одно или многостадийного отпуска шаров.
Пример конкретного выполнения способа.
Испытание по технологии предлагаемого изобретения были осуществлены на участке шаропрокатного стана рельсобалочного цеха АО «ЕВРАЗ НТМК» при производстве шаров с условным диаметром ∅80-100 мм. марок стали 60С2А-1.
Прокатку мелющих шаров с условными диаметрами от 80 мм до 100 мм производили на стане поперечно-винтовой прокатки при температуре 950-1050°С. Затем мелющие шары подстуживали на воздухе до температуры 700°С. После чего в закалочных барабанах осуществляли закалку мелющих шаров в воде с длительностью выдержки:
- для шаров условным диаметром 80-100 мм от 2,5 мин,
- для шаров условным диаметром 110-120 мм от 4 мин.
Далее производили низкотемпературный отпуск шаров с условным
диаметром 80-100 мм при температуре 180°С. Твердость шаров составила: для шаров с условным диаметром ∅80, на поверхности 59 HRC объемная 51 HRC.
Химический состав стали приведен в таблице 1
Таблица 1.
Химический состав марки стали 60С2А-1
С, % Мn, % Si, % Al, % P, % S, % Cr, % Ni, % Сu, % N, % As, % Sn, % Ca, % H, ppm
0,60-0,64 0,75-0,90 1,75-2,0 0,015-0,035 <0,025 <0,025 0,20-0,30 <0,25 <0,20 <0,009 <0,040 <0,020 0,0020-0,0030 <2
Регламентируемые значения твердости мелющих шаров 4 группы приведены в таблице 2
Регламентированные значения твердости мелющих шаров 5 группы приведены в таблице 3
Таблица 2
Условный диаметр шара, мм Твердость, HRC, не менее
Поверхность шара на ½ радиуса
От 80 до 100 включ. 52 40
От 110 до 120 включ. 50 35
Таблица 3
Условный диаметр шара, мм Твердость, HRC согласно ГОСТ, не менее
Поверхность шара Объемная
От 80 до 100 включ. 58 48
От 110 до 120 включ. 56 43
где объемную твердость (ОТ) вычисляют по формуле:
ОТ=0,289Tпов+0,436T0,25+0,203T0,5+0,63T0,75+0,009Tц,
где Tпов – значение твердости поверхности шара,
Tц – значение твердости центра шара,
T0,25, T0,5, T0,75 – значение твердости на расстоянии от поверхности шара.
Обеспечивается: получение мелющих шаров с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015 в масштабах производства для шаров от 80 до 120 мм.
Таким образом, данное техническое решение соответствует критерию «новизна».
Применение предлагаемого способа изготовления мелющих шаров обеспечивает получение мелющих шаров с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015 [11], при этом осуществление термической обработки для данной марки стали возможно на большинстве шаропрокатных станов. Таким образом, данное техническое решение соответствует критерию «новизна».
Анализ патентов и научно-технической информации не выявил использования новых существенных признаков, используемых в предлагаемом решении. Следовательно, предлагаемое изобретение соответствует критерию «изобретательский уровень».
Подтверждено опытно, что использование предлагаемого изобретения позволяет:
- получать мелющие шары 5 группы твердости диаметрами от 80 до 120 мм.
- за 2020-2021 год отгружено потребителю 302 т шаров 5 группы твердости из данной марки стали, произведенных на участке ШПС РСЦ АО «ЕВРАЗ-НТМК» и 272 т шаров 4 группы твердости из данной марки стали, произведенных на участке ШПС КСЦ АО «ЕВРАЗ-НТМК».
Результаты испытаний опытной плавки шаров, полученных на предлагаемых устойчивых режимах, показал положительный результат в получении требуемых значений объемной прокаливаемости.
Источники информации
[1] патент RU №2415194 C1 «Сталь» МПК6 C22C 38/38; C22C 38/34; C22C38/32, опубликованного 27.03.2011,бюл.9;
[2] патент RU №2425168 С2 «Сталь» МПК6 C22C 38/26, опубликованного 27.07.2011, бюл.21;
[3] патент RU №2425169 «Сталь» МПК6 C22C 38/40, опубликованного
27.07.2011, бюл.21;
[4] авторские свидетельства, авторское свидетельство SU1497262 A1
«Сталь» МПК6 C22C 38/14, конвенционный приоритет 13.01.1988;
[5] Авторское свидетельство SU1446189 A1 «Сталь» МПК6 C22C 38/16, опубликованного 23.12.1988;
[6] патент RU №2596737 С1 C1 «Способ производства стальных мелющих шаров» МПК6 C21D 9/36; B21H 1/14; C21D 1/02; B23P 15/00; C22C 38/40, опубликованного 10.09.2016;
[7] патент RU 2455369 C1 «Устройство и способ термической обработки шаров» МПК6 C21D 9/36, опубликованного 10.07.2012, бюл.19;
[8] патент RU 2113513 С1 «Способ термической обработки мелющих шаров» МПК6 C21D 9/36; B21H 1/14, опубликованного 10.09.2016, бюл.25;
[9] Авторское свидетельство SU №1344793 А1 «Способ термической обработки мелющих шаров авторское свидетельство МПК6 C21D 9/36, опубликованного 15.10.1987;
[10] патент RU2634541 C1 «Способ и устройство термической обработки шаров» МПК6 C21D 9/36, опубликованного 31.10.2017, бюл.31;
[11] патент RU2756671 C1 «Способ производства мелющих шаров (варианты)» МПК51 B21H/14; C21D 9/36; С22С 38/24 опубликованного 04.10.2021, бюл.28;
[12] ГОСТ 7524-2015;
[13] ГОСТ 9013-59.

Claims (3)

1. Способ производсва мелющих шаров из стали, содержащей, мас.%: С 0,60-0,64; Mn 0,75-0,90; Si 1,75-2,00; Al 0,015-0,035; P менее 0,025; S менее 0,025; Cr 0,20-0,30; Ni менее 0,25; Cu менее 0,20; N менее 0,009; Аs менее 0,040; Sn менее 0,020; H менее 0,0002; Са 0,0020-0,0030; Fe - остальное , включающий прокатку шаров, охлаждение шаров, закалку, отпуск, отличающийся тем, что производят шары с условным диаметром 80-120 мм, причем после прокатки шары подстуживают до температуры 670-800°С, затем шары подвергают закалке в закалочной среде, при этом длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 80-100 мм от 2,5 до 4 мин, для шаров с условным диаметром 110-120 мм от 3,0 до 4,5 мин, а последующий отпуск производят при температуре 150-270°С с длительностью выдержки от 160 до 320 мин.
2. Способ по п.1, отличающийся тем, что в качестве закалочной среды используют воду или среду с удельной теплоемкостью от 3800 до 4000 Дж/кг·град и коэффициентом теплопроводности от 0,4 до 0,7 Вт/м·град.
3. Способ по п.1, отличающийся тем, что в качестве отпуска проводят низкотемпературный отпуск или многостадийный отпуск.
RU2022103210A 2022-02-09 Способ производства мелющих шаров из стали RU2785665C1 (ru)

Publications (1)

Publication Number Publication Date
RU2785665C1 true RU2785665C1 (ru) 2022-12-12

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804745C1 (ru) * 2023-03-09 2023-10-04 Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Способ производства мелющих шаров из стали

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634541C1 (ru) * 2016-08-31 2017-10-31 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Способ и устройство термической обработки шаров
CN109777941A (zh) * 2019-03-04 2019-05-21 沈阳建臻钢球有限公司 一种热轧、热锻钢球余热淬火装置及淬火工艺
CN112011723A (zh) * 2020-09-02 2020-12-01 宁国市华丰耐磨材料有限公司 一种马-贝-奥复相高铬多元合金铸铁磨球
CN112029980A (zh) * 2020-09-02 2020-12-04 宁国市华丰耐磨材料有限公司 一种用于铸造磨球生产的水-空交替淬火热处理工艺
RU2745922C1 (ru) * 2020-08-04 2021-04-02 Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Способ производства мелющих шаров
RU2756671C1 (ru) * 2020-12-20 2021-10-04 Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») Способ производства мелющих шаров (варианты)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634541C1 (ru) * 2016-08-31 2017-10-31 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Способ и устройство термической обработки шаров
CN109777941A (zh) * 2019-03-04 2019-05-21 沈阳建臻钢球有限公司 一种热轧、热锻钢球余热淬火装置及淬火工艺
RU2745922C1 (ru) * 2020-08-04 2021-04-02 Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Способ производства мелющих шаров
CN112011723A (zh) * 2020-09-02 2020-12-01 宁国市华丰耐磨材料有限公司 一种马-贝-奥复相高铬多元合金铸铁磨球
CN112029980A (zh) * 2020-09-02 2020-12-04 宁国市华丰耐磨材料有限公司 一种用于铸造磨球生产的水-空交替淬火热处理工艺
RU2756671C1 (ru) * 2020-12-20 2021-10-04 Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») Способ производства мелющих шаров (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804745C1 (ru) * 2023-03-09 2023-10-04 Акционерное общество "ЕВРАЗ Нижнетагильский металлургический комбинат" (АО "ЕВРАЗ НТМК") Способ производства мелющих шаров из стали

Similar Documents

Publication Publication Date Title
KR101513378B1 (ko) 핫 스탬프용 강판 및 핫 스탬프용 강판의 제조 방법
US6896746B2 (en) Hot-rolled steel wire rods and bars usable for machine structural use without annealing and method for producing the same
JP6586519B2 (ja) 効果的に結晶粒を微細化する継目無鋼管のオンライン制御冷却方法および製造方法
JP4187334B2 (ja) 中空円筒状ワークの熱処理方法
CN111690801B (zh) 一种获得全贝氏体组织的合金工具钢盘条生产工艺
US11441202B2 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
JPH04365816A (ja) 冷間加工用棒鋼線材の製造方法
JP4123672B2 (ja) 靱性に優れた高強度継目無鋼管の製造方法
RU2442830C1 (ru) Способ производства высокопрочных стальных фабрикатов
RU2756671C1 (ru) Способ производства мелющих шаров (варианты)
RU2745922C1 (ru) Способ производства мелющих шаров
RU2785665C1 (ru) Способ производства мелющих шаров из стали
JP3372219B2 (ja) 鋼材製部品の製造方法
RU2778651C1 (ru) Способ производства мелющих шаров из стали
RU2791495C1 (ru) Способ производства мелющих шаров из стали (варианты)
RU2778650C1 (ru) Способ производства мелющих шаров из стали
JP3717745B2 (ja) マンドレルバーとその製造方法
RU2612101C1 (ru) Способ подготовки горячекатаного проката для изготовления метизных крепежных изделий
RU2804745C1 (ru) Способ производства мелющих шаров из стали
JPS63161117A (ja) 高強度高靭性熱間圧延鋼材の製造方法
RU2790722C1 (ru) Способ производства мелющих шаров
CN115261569B (zh) 一种60Cr3钢球化退火方法
JP2004169178A (ja) 焼入れ鋼の部材、特に転がり軸受鋼の部材の製造方法
JPS61199035A (ja) ネツク部の強籾な複合ロ−ルの製造方法
JP4517459B2 (ja) 超微細マルテンサイト組織を有する鋼材の製造方法