RU2785450C1 - Способ получения из Ahnfeltia tobuchiensis агарозы, используемой в качестве основы питательных сред - Google Patents
Способ получения из Ahnfeltia tobuchiensis агарозы, используемой в качестве основы питательных сред Download PDFInfo
- Publication number
- RU2785450C1 RU2785450C1 RU2022108311A RU2022108311A RU2785450C1 RU 2785450 C1 RU2785450 C1 RU 2785450C1 RU 2022108311 A RU2022108311 A RU 2022108311A RU 2022108311 A RU2022108311 A RU 2022108311A RU 2785450 C1 RU2785450 C1 RU 2785450C1
- Authority
- RU
- Russia
- Prior art keywords
- agarose
- tobuchiensis
- ahnfeltia
- agar
- hours
- Prior art date
Links
- 229920000936 Agarose Polymers 0.000 title claims abstract description 51
- 235000015097 nutrients Nutrition 0.000 title claims abstract description 20
- 241001134800 Ahnfeltia Species 0.000 title claims description 31
- 229920001817 Agar Polymers 0.000 claims abstract description 62
- 239000008272 agar Substances 0.000 claims abstract description 55
- 238000000605 extraction Methods 0.000 claims abstract description 33
- 239000000499 gel Substances 0.000 claims abstract description 28
- 239000000284 extract Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 18
- 241000195493 Cryptophyta Species 0.000 claims abstract description 17
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium monoxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000012153 distilled water Substances 0.000 claims abstract description 11
- 239000007864 aqueous solution Substances 0.000 claims abstract description 10
- 239000000292 calcium oxide Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000011575 calcium Substances 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 238000001802 infusion Methods 0.000 claims abstract description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 238000003825 pressing Methods 0.000 claims description 10
- 238000000746 purification Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 150000001674 calcium compounds Chemical class 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 4
- 230000001603 reducing Effects 0.000 abstract description 4
- 235000010419 agar Nutrition 0.000 description 50
- 239000002609 media Substances 0.000 description 19
- 239000000047 product Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 241000206572 Rhodophyta Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 241000607477 Yersinia pseudotuberculosis Species 0.000 description 4
- 229920001222 biopolymer Polymers 0.000 description 4
- 230000001419 dependent Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 150000004676 glycans Polymers 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 150000004804 polysaccharides Polymers 0.000 description 4
- 241001474374 Blennius Species 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000015450 Tilia cordata Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 230000002906 microbiologic Effects 0.000 description 3
- 230000000877 morphologic Effects 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 229960005069 Calcium Drugs 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M Sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 241000607734 Yersinia <bacteria> Species 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 210000004027 cells Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000003009 desulfurizing Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229940079593 drugs Drugs 0.000 description 2
- 239000001963 growth media Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L mgso4 Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HYRUXGRHTJRKNG-SMBWEDIMSA-N (2S,3R,4R,5R,6R)-2-[(2R,3R,4R,5R,6S)-6-[(2R,3R,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-methoxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)-5-methoxyoxane-3,4-diol Chemical compound O[C@@H]1[C@@H](O)[C@H](OC)O[C@H](CO)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](OC)[C@@H](CO)O2)O)[C@@H](CO)O1 HYRUXGRHTJRKNG-SMBWEDIMSA-N 0.000 description 1
- DCQFFOLNJVGHLW-DSOBHZJASA-N 3,6-anhydro-α-L-galactopyranose Chemical compound O[C@H]1[C@@]2([H])OC[C@]1([H])O[C@@H](O)[C@H]2O DCQFFOLNJVGHLW-DSOBHZJASA-N 0.000 description 1
- 241001428381 Ahnfeltiaceae Species 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N Ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 210000000941 Bile Anatomy 0.000 description 1
- 229960003563 Calcium Carbonate Drugs 0.000 description 1
- 229940041514 Candida albicans extract Drugs 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N Carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 210000002421 Cell Wall Anatomy 0.000 description 1
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M Crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- FBPFZTCFMRRESA-KAZBKCHUSA-N D-Mannitol Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KAZBKCHUSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N D-sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 210000004544 DC2 Anatomy 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N Deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 241001428398 Gelidiales Species 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 229960001235 Gentian Violet Drugs 0.000 description 1
- 241000272409 Gracilaria corticata Species 0.000 description 1
- 241001428219 Gracilariaceae Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N Neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 229940054269 Sodium Pyruvate Drugs 0.000 description 1
- CZMRCDWAGMRECN-GDQSFJPYSA-N Sucrose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)[C@@]1(CO)[C@H](O)[C@@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-GDQSFJPYSA-N 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 230000001580 bacterial Effects 0.000 description 1
- 244000052616 bacterial pathogens Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium;oxygen(2-) Chemical group [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000010192 crystallographic characterization Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000006160 differential media Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl radical Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002530 ischemic preconditioning Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000006916 nutrient agar Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000000737 periodic Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N β-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
Images
Abstract
Изобретение относится к области микробиологии для использования в качестве основы питательных сред. Способ осуществляют следующим образом. Подготавливают водоросли Ahnfeltia tobuchiensis. Осуществляют трехкратную экстракцию химическим соединением кальция, в качестве которого используют 1,5%-ный водный раствор окиси кальция температурой 90-100°С. Длительность каждого этапа экстракции составляет 1-2 ч. Отделяют экстракты на каждом этапе и смешивают их. Очищают и желируют полученный экстракт. Сформированный гель из водоросли измельчают, промывают настаиванием в дистиллированной воде и высушивают. Полученный агар заливают дистиллированной водой до его концентрации 5-10 % по массе, расплавляют на водяной бане, последовательно замораживают и оттаивают. После чего желируют и сформированный из агара гель прессуют при давлении 50-100 Па в течение 6-8 ч. Прессованный гель из агара заливают перекисью водорода в количестве 2 % по массе и выдерживают в течение 2 ч при температуре 30°С и рН 9. Полученную агарозу измельчают и прессуют при давлении 50-100 Па в течение 6-8 ч. Сформированный из агарозы коагель измельчают и сушат до постоянной массы при давлении 120-130 Па. Изобретение обеспечивает снижение трудоемкости за счет уменьшения количества и длительности этапов, обеспечение высокой эффективности извлечения целевых продуктов, повышение безопасности производства за счет использования более экологичного реагента, расширение области применения, повышение качества готового продукта, обусловленное низким содержанием сульфатов. 8 з.п. ф-лы, 3 ил., 2 табл., 5 пр.
Description
Изобретение относится к технологиям переработки агароносных водорослей и может быть использовано для получения агарозы, используемой в микробиологии в качестве основы питательных сред.
В последние годы биополимеры морских водорослей, такие как агар и агароза, вызывают значительный интерес с точки зрения их использования в фармакологии и медицине, привлекая значительное внимание из-за практически неисчерпаемости ресурсов и естественной доступности. Кроме того, их универсальные свойства, такие как нетоксичность, биосовместимость, биоразлагаемость и гибкость, обеспечивают значительную эффективность использования при многофункциональных приложениях.
Мировым биотехнологическим природным ресурсом агара в основном являются морские красные водоросли семейства Gracilariaceae (порядок Gelidiales). Однако активное использование этих водорослей во многих странах мира для промышленного производства агара привело к истощению их запасов и значительному росту мировых цен на микробиологический агар.
В дальневосточных морях РФ сосредоточены значительные ресурсы других красных водорослей - семейства Ahnfeltiaceae род Ahnfeltia (в частности, его дальневосточного вида - A. tobuchiensis), активный вылов которых в промысловых зонах может быть увеличен за счет сбора штормовых выбросов. В настоящее время в РФ производство микробиологического агара и агарозы из анфельции отсутствует, а биотехнологический потенциал этой водоросли недооценен, несмотря на наличие запаса этого ценного сырья и наличие потребностей внутреннего рынка, что в условиях интенсификации процесса импортозамещения приобретает особую актуальность.
Агар был первым гидрофильным коллоидом, обнаруженным в морских водорослях. Этот биополимер является составным компонентом опорной структуры клеточных стенок красных водорослей и экстрагируется из них после кипячения. Полученный агаровый биополимер представляет собой смесь полисахаридов агарозы и агаропектина. В водных растворах агар образует плотный студень. В результате глубокой переработки и очистки агара, а также удаления агаропектина получается агароза (линейный полисахарид, состоящий из повторяющихся звеньев 1,3-связанной β-D-галактозы и 1,4-связанной 3,6-ангидро-α-L-галактозы, составляющий до 70% состава), которая может быть использована для аффинной хроматографии или в качестве основы питательных сред для культивирования бактерий с научными и клиническими целями (Бурова Н.В., Подкорытова А.В. Физико-химическая характеристика агара из красных водорослей рода Ahnfeltia: рекомендации по его применению // Известия КГТУ,2020; 56:73-87; Egorov A.M., Vakhabov A.Kh., Chernyak V.Ya. Isolation of agarose and granulation of agar and agarose gel. J. Chromatography A 1970; 46:143-148; Martău G.A., Mihai M., Vodnar D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers. 2019; 11:1837).
Микробиологи используют агар для приготовления питательных сред для выращивания бактерий более 120 лет. Л. Пастер произвел революцию в микробиологии в 1890-х годах, предложив использовать этот биополимер для культивирования микроорганизмов в виде отдельных колоний и их последующего изучения. Но в последние десятилетия было выявлено несоответствие между общим количеством засеянных и количеством культивируемых бактериальных клеток на чашках с питательными средами, приготовленными на основе агара из морских водорослей. Этот феномен, который в дальнейшем стал проблемой, был определен микробиологами как «большой аномалией подсчета на чашках» («great plate count anomaly»). Природа этого феномена долгое время была нераспознанной и остается в настоящее время не в полной мере определенной (Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K, Tamaki H, Tanaka M, Nakatsu CH, Kamagata Y. A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol. 2014; 80(24):7659-7666).
Изучение причин этого феномена привело к открытию ряда факторов, которые ингибируют рост бактерий. В частности, присутствие фосфатов, которые опосредуют нежелательные химические реакции между компонентами агара в процессе автоклавирования, снижали ростовые характеристики питательных сред, что было подтверждено экспериментами, которые провели Т. Tanaka и др. в 2014 г.
В отличие от агар-агара, агароза содержит меньше заряженных химических групп, в том числе сульфатов, и обладает ярко выраженными гелеобразующими свойствами, образуя гель высокой прочности.
В отличие от синтетических аналогов, агароза, полученная из красных водорослей, уже при температуре 84-96°С плавится и превращается в прозрачную жидкость. Динамическая вязкость расплавленного 1% раствора агарозы составляет 10-15 Па⋅с, что примерно соответствует 50% раствора сахарозы при 20-22°С. Растворы агарозы характеризуются ярко выраженным гистерезисом они затвердевают, образуя гель, при значительно более низких температурах (30-42°С). Такая особенность облегчает манипуляции с расплавленной агарозой - можно не опасаться преждевременного ее застывания в гель. Более того, расплавленную на кипящей бане агарозу предварительно охлаждают до 50-55°С и уже при этой температуре дозируют и заливают в чашки Петри или пробирки, что удобно при использовании в питательных средах углеводов и исключает возникновение тепловых деформаций при застывании геля (Martău G.A., Mihai M., Vodnar D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel). 2019; 11:1837; Zhang C, An D, Xiao Q, Chen FQ, Zhang YH, Weng HF, Xiao AF. Convenient Agarose Preparation with Hydrogen Peroxide and Desulfation Process Analysis. Mar Drugs. 2021; 19(6):297).
Известен способ получения агара особой очистки из Анфельции тобучинской, включающий последовательную смену ряда технологических операций:
- замачивание на 24 часа водоросли в известковом растворе (1-2% СаО) в соотношении к массе воздушно-сухой анфельции 1:12-1:15;
- после промывания проводят 7-кратное экстрагирование агара при 1,0-1,2 атм (1-е экстрагирование - без добавления СаО; 2-4-е экстрагирование - с добавлением известкового раствора, 5-7-е экстрагирование - с добавлением воды температурой 85-90°С); полный цикл автоклавирования составляет 29 ч, слив экстракта (температурой 90°С) в отстойник проводят через каждые 9-10 ч при продолжительности отстаивания 4 ч;
- экстракт агара сепарируют и охлаждают до температуры 60°С;
- гелеобразование из экстракта в желировочном аппарате в течение 2 ч;
- разрезание геля и промывка в 2-2,5-кратном объеме водопроводной водой температурой 18-20°С при периодической смене воды (слива в канализацию) и общей продолжительности промывки геля 30-36 ч;
- после слива последней порции воды и стекания геля в течение 2-4 ч его подают в реакторы плавления для получения раствора агара температурой 85-90°С, где охлаждают до температуры 55-60°С, а затем проводят осаждение неагаровых примесей путем сепарирования раствора при температурах 50-55°С и 80°С, а для осаждения примесей используют карбонат кальция;
- гелеобразование из экстракта в желировочном аппарате до температуры 20-22°С, после чего гель отжимают прессованием, измельчают, сушат и обезвоживают прессованием («Сборник технологических инструкций по обработке водорослей». Приказ Министерства рыбного хозяйства СССР (Дальрыба) 466, от 19 июня, 1985 г., с. 18-21, ТУ 9284-095-00472012-97).
При этом готовый продукт содержит 0,3-0,5% сульфатов.
В качестве ближайшего аналога принят способ получения высокоочищенного агара и агарозы из красной водоросли Анфельции тобучинской, включающий подготовку водоросли Ahnfeltia tobuchiensis, ее трехкратную экстракцию химическим соединением кальция, отделение экстрактов на каждом этапе, их смешивание, очистку и желирование, промывание полученного геля водой и его сушку (см. патент РФ № 2189990, МПК C08B 37/12, 2002 г.).
При этом готовый продукт содержит 0,3-0,7% сульфатов.
Недостатком известных аналогов являются высокая трудоемкость технологии, обусловленная многоэтапностью и длительностью, и ограниченная область применения в микробиологии, обусловленная высоким содержанием сульфатов в готовом продукте.
Задачей, на решение которой направлено заявляемое изобретение, является разработка технологии получения агарозы, которая подходит для приготовления питательных сред, используемых для культивирования бактерий.
Технический результат, который достигается при решении поставленной задачи, выражается в следующем:
- снижение трудоемкости за счет уменьшения количества и длительности этапов;
- обеспечение высокой эффективности извлечения целевых продуктов;
- повышение безопасности производства за счет использования более экологичного реагента;
- расширение области применения, поскольку готовый продукт подходит для приготовления питательных сред, используемых для культивирования бактерий;
- повышение качества готового продукта, обусловленное низким содержанием сульфатов.
Поставленная задача решается тем, что способ получения из Ahnfeltia tobuchiensis агарозы, используемой в качестве основы питательных сред, включающий подготовку водоросли Ahnfeltia tobuchiensis, ее трехкратную экстракцию химическим соединением кальция, отделение экстрактов на каждом этапе, их смешивание, очистку и желирование, промывание полученного геля водой и его сушку, отличается тем, что в качестве химического соединения кальция используют 1,5%-ный водный раствор окиси кальция температурой 90-100°С, а длительность каждого этапа экстракции составляет 1-2 ч, полученные экстракты смешивают, очищают, желируют, сформированный гель из водоросли Ahnfeltia tobuchiensis измельчают, промывают настаиванием в дистиллированной воде и высушивают, полученный агар заливают дистиллированной водой до его концентрации 5-10% по массе, расплавляют на водяной бане, последовательно замораживают и оттаивают, после чего желируют и сформированный из агара гель прессуют при давлении 50-100 Па в течение 6-8 ч, далее прессованный гель из агара заливают перекисью водорода в количестве 2% по массе и выдерживают в течение 2 ч при температуре 30°С и рН 9, после чего полученную агарозу измельчают, прессуют при давлении 50-100 Па в течение 6-8 ч, и сформированный из агарозы коагель измельчают и сушат до постоянной массы при давлении 120-130 Па.
Кроме того, при подготовке Ahnfeltia tobuchiensis промытые водоросли замачивают в воде температурой 60-80°С при гидромодуле 1:15, периодически перемешивая, и через 1 ч воду сливают через сито.
Кроме того, гидромодуль на первом этапе экстракции равен 1:10, а на последующих - 1:15.
Кроме того, гидромодуль на всех этапах экстракции равен 1:15.
Кроме того, отделение экстрактов на каждом этапе осуществляют путем фильтрации.
Кроме того, смесь экстрактов очищают путем центрифугирования.
Кроме того, промытый гель из водоросли Ahnfeltia tobuchiensis высушивают путем прессования с последующей сушкой при температуре 70°С до постоянной массы.
Кроме того, расплавленную на водяной бане смесь агара с водой замораживают и оттаивают до тех пор, пока она не станет прозрачной.
Кроме того, сформированный из агарозы коагель сушат в сублимированной вакуумной сушилке.
Сопоставительный анализ совокупности существенных признаков предлагаемого технического решения и совокупности существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».
При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.
Признак «в качестве химического соединения кальция используют 1,5%-ный водный раствор окиси кальция температурой 90-100°С, а длительность каждого этапа экстракции составляет 1-2 ч», а также признаки зависимых пунктов формулы со второго по четвертый описывают тип используемого экстрагента и режимные характеристики экстракции, влияющие на эффективность извлечения и качество готового продукта.
Температура экстрагента 90-100°С увеличивает выход сухих веществ из сырья в экстрагент на 1% (Polysaccharides and Their Derivatives, 2nd ed., Academic Press, New York 1973, рр. 122-134), что подтверждается относительной плотностью экстракта.
С дальнейшим увеличением температуры вязкость экстрактов, которая связана с межмолекулярными взаимодействиями отталкивания молекул всех компонентов экстракта, изменяется двухфазно: сначала повышается, а затем снижается и в значительной степени зависит от химического состава агаропектина, который у A. tobuchiensis содержит значительное количество заряженных сложноэфирных групп сульфата галактана, а также органические кислоты.
Силы взаимодействия снижают плотность молекул и повышают вязкость экстракта, с увеличением температуры звенья молекул высокомолекулярных соединений колеблются более энергично и вязкость экстракта уменьшается, что наблюдается при Т > 100°С. Кроме того, при повышении температуры скорость молекулярной диффузии увеличивается за счет увеличения кинетической энергии молекул и снижения вязкости экстрагента.
Сокращение времени экстракции в целом и длительности каждого этапа экстракции в частности основано на зарубежной публикации (Polysaccharides and Their Derivatives, 2nd ed., Academic Press, New York 1973, рр. 122-134).
Эмпирические исследования авторов показали, что через 1-2 ч экстракции значимых изменений физических параметров экстракта (коэффициент динамической вязкости и относительной плотности) не происходит вследствие незначительного перехода сухих веществ в жидкую фазу - экстрагент (не более 0,2%).
Зарубежный опыт показывает, что диффузия агара из разрушенных клеток происходит в течение первого часа. Удлинение времени экстрагирования приводит к тому, что в экстрагент переходят балластные вещества (в том числе сульфатсодержащие), что приводит к снижению качества конечного продукта - агарозы (Yousefi M.K., Islami H.R., Filizadeh Y. Effect of extraction process on agar properties of Gracilaria corticata (Rhodophyta) collected from the Persian Gulf. Phycologia 2013; 52(6):481-487).
Учитывая вышесказанное, длительность каждого этапа экстракции 1-2 ч обеспечивает оптимальные условия перехода экстрактивных веществ из сырья в экстрагент.
При гидромодуле 1:10, 1:15 создаются оптимальные условия для повышения экстракции агара и снижения выделения из водоросли неагаровых примесей, что способствует освобождению молекулы агара от отрицательно заряженных низкомолекулярных фракций и сульфатных групп.
Увеличение расхода экстрагента в данном случае будет компенсироваться увеличением качества конечного продукта за счет снижения содержания сульфатов. Следовательно, уменьшение гидромодуля в заявляемом способе (в сравнении с ближайшим аналогом) приводит к повышению экономичности и эффективности процесса экстракции.
Признаки «экстракты смешивают, очищают, желируют, сформированный гель из водоросли Ahnfeltia tobuchiensis измельчают, промывают настаиванием в дистиллированной воде и высушивают» и признаки пятого и шестого зависимых пунктов формулы описывают технологию получения агара из экстрактов.
Признаки «агар заливают дистиллированной водой до его концентрации 5-10% по массе, расплавляют на водяной бане, последовательно замораживают и оттаивают, после чего желируют и сформированный из агара гель прессуют при давлении 50-100 Па в течение 6-8 ч» описывают технологию очистки агара от примесей и его последующее желирование, при этом содержание сульфатов в очищенном агаровом экстракте в виде прессованного геля составляет 0,55-0,62%.
Признаки «прессованный гель из агара заливают перекисью водорода в количестве 2% по массе и выдерживают в течение 2 ч при температуре 30°С и рН 9, полученную агарозу измельчают, прессуют при давлении 50-100 Па в течение 6-8 ч, и сформированный из агарозы коагель измельчают и сушат до постоянной массы при давлении 120-130 Па» и признаки седьмого и восьмого зависимых пунктов формулы описывают технологию десульфатирования агара с получением из него агарозы.
Перекись водорода (Н2О2) в сравнении с реагентами, используемыми для щелочной (известковой) обработки сырья, является более экологичным реагентом, который широко применяется в медицине.
В биотехнологии известен отбеливающий эффект Н2О2 на агар, который существенно увеличивает качество агара (An D., Xiao Q., Zhang C., Cai M., Zhang Y., Weng H., Chen F., Xiao A. Preparation, characterization, and application of high-whiteness agar bleached with hydrogen peroxide. Food Hydrocoll. 2021; 113:106520). Кроме того, Н2О2 часто используется в качестве десульфуратора при добыче нефти для предотвращения загрязнение атмосферы диоксидом серы (Julião D., Mirante F., Ribeiro S.O., Gomes A.C., Valenca R., Ribeiro J.C., Pillinger M., Castro B., Goncalves S., Balula S.S. Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts. Fuel. 2019; 241:616-624).
Как показали исследования, при очистке агара с помощью Н2О2 максимальный эффект десульфирования наблюдается при рН 9,0, при котором гидроксильный радикал HO• является основным активным компонентом (Zhang C, An D, Xiao Q, Chen FQ, Zhang YH, Weng HF, Xiao AF. Convenient Agarose Preparation with Hydrogen Peroxide and Desulfation Process Analysis. Mar Drugs. 2021; 19(6):297).
Эмпирически и в результате анализа литературных данных авторами установлено, что максимальный эффект десульфатирования (59%) при концентрации Н2О2 2% по массе достигается при инкубации в течение 2 ч при температуре 30°С, а содержание сульфата в конечном продукте составляет 0,28-0,30%.
Признаки первого зависимого пункта формулы описывают процедуру подготовки Ahnfeltia tobuchiensis к экстракции.
На фиг.1 представлена блок-схема осуществления заявляемого способа получения из Ahnfeltia tobuchiensis агарозы.
На фиг.2 приведен вид колоний Y. pseudotuberculosis (48-часовая культура) по примеру 4:
а - выросшая на экспериментальной дифференциально-диагностической питательной среде;
б - выросшая на контрольной дифференциально-диагностической питательной среде Серова.
На фиг.3 представлен вид колоний, сформированных бактериями культуры Y. pseudotuberculosis штамм 512-Ib по примеру 5 через 48 ч:
а - выросшие на контрольной селективной среде CIN;
б - выросшие на экспериментальной питательной среде.
Заявляемый способ осуществляют на стандартном оборудовании в несколько этапов.
I. Подготовка сырья.
Слоевища (таллом) красной водоросли Ahnfeltia tobuchiensis очищают и промывают в водопроводной воде, далее промытые водоросли замачивают в водопроводной воде (рН 6,5±0,5) температурой 60-80°С на 1 ч при гидромодуле 1:15, периодически перемешивая.
Окись кальция при взаимодействии с водой образует щелочь - гидроксид кальция (Са(ОН)2), реакция носит экзотермический характер, повышая температуру смеси до 100-110°С и рН смеси до 9-10.
Рекомендуемый режим наиболее приемлем, т.к. анфельция хорошо разваривается, в результате чего достигается максимальное извлечение агара, а по истечении указанного времени водорослевый остаток отделяют путем фильтрации через сито (0,25).
II. Экстракция.
Подготовленную водоросль Ahnfeltia tobuchiensis трехкратно экстрагируют 1,5%-ным водным раствором окиси кальция температурой 90-100°С, на первом этапе гидромодуль равен 1:10 или 1:15, а на последующих - 1:15, причем длительность каждого этапа экстракции составляет 1-2 ч и на каждом этапе осуществляют отделение экстрактов фильтрацией.
III. Получение агара.
Полученные экстракты смешивают, очищают центрифугированием, желируют, сформированный гель из водоросли Ahnfeltia tobuchiensis измельчают на кубики размером 3-5 см, промывают настаиванием в дистиллированной воде и высушивают путем прессования с последующей сушкой при температуре 70°С до постоянной массы.
IV. Очистка и желирование агара.
Агар заливают дистиллированной водой до его концентрации 5-10% по массе, расплавляют на водяной бане, последовательно замораживают и оттаивают до прозрачности смеси, желируют и сформированный из агара гель прессуют при давлении 50-100 Па в течение 6-8 ч.
V. Десульфатирование агара
Прессованный гель из агара заливают перекисью водорода в количестве 2% по массе и выдерживают в течение 2 ч при температуре 30°С и рН 9.
Полученную агарозу измельчают, обезвоживают прессованием на гидравлическом прессе при давлении 50-100 Па в течение 6-8 ч.
Далее полученный коагель измельчают и сушат в сублимированной вакуумной сушилке при остаточном давлении 120-130 Па.
Готовый продукт - агарозу хранят во флаконах в сухом месте для последующего применения в качестве основы для приготовления микробиологических питательных сред.
Примеры осуществления способа приведены в таблице 1.
Таблица 1
Примеры получения агарозы из Ahnfeltia tobuchiensis
Название параметра | Пример 1 | Пример 2 | Пример 3 |
Температура 1,5%-ного водного раствора окиси кальция | 90°С | 95°С | 100°С |
Гидромодуль и длительность экстракции: 1-ый этап 2-й этап 3-й этап |
1:10; 1,5 ч 1:15; 2 ч 1:15; 1 ч |
1:15; 2 ч 1:15; 1 ч 1:15; 1,5 ч |
1:10; 1 ч 1:15; 1,5 ч 1:15; 2 ч |
Концентрация агара по массе | 5 | 10 | 8 |
Давление прессования геля из агара | 100 Па | 75 Па | 50 Па |
Длительность прессования геля из агара | 6 ч | 7 ч | 8 ч |
Давление прессования агарозы | 50 Па | 100 Па | 75 Па |
Длительность прессования агарозы | 8 ч | 6 ч | 7 ч |
Давление сушки коагеля из агарозы | 125 Па | 120 Па | 130 Па |
Характеристики готового продукта приведены в таблице 2.
Таблица 2
Характеристики агарозы, полученной из Ahnfeltia tobuchiensis
Характеристика готового продукта | Пример 1 | Пример 2 | Пример 3 |
Содержание сульфатов | 0,28% | 0,30% | 0,29% |
Прозрачность | 87% | 85% | 90% |
Использование агарозы в качестве основы для приготовления микробиологических питательных сред поясняется дополнительными примерами.
Пример 4.
По стандартной технологии приготовили экспериментальную дифференциально-диагностическую питательную среду следующего состава: глюкоза 0,5 г; мочевина 0,25 г; молибденовокислый аммоний 0,1 г; сода безводная 0,1 г; 30% водный раствор сухой желчи 2,0 мл; 1,6% водный раствор конго-рот 0,8 мл; 1% водный раствор генцианвиолета 0,1 мл; сухая агароза, полученная заявляемым способом, 3,5 г; дистиллированная вода 100,0 мл.
В качестве контроля использовали среду Серова, приготовленную традиционным способом (Серов ГД, Знаменский ВА, Вишняков АК. Дифференциальная среда для выделения микроба псевдотуберкулеза // Журн. микробиол., эпидемиол., иммунобиол. 1968; 6:146-149).
На контрольную и экспериментальные питательные среды был посеян клинический штамм 512-Ib Yersinia pseudotuberculosis (коллекция НИИ ЭМ им. Г.П. Сомова).
После инкубации 48 ч был проведен анализ культуральных, морфологических и тинкториальных свойств выросших микроорганизмов (см. фиг.2), который показал идентичность скорости роста, характеристики колоний и выросших иерсиний.
Пример 5.
По стандартной технологии приготовили экспериментальную питательную среду следующего состава: пептон 20,0 г; дрожжевой экстракт 2,0 г; натрия хлорид 1,0 г; натрия пируват 2,0 г; магния сульфат 0,01 г; натрия дезоксихолат 0,5 г; маннит 20,0 г; нейтральный красный 0,03 г; кристаллический фиолетовый 0,001 г; сухая агароза, полученная заявляемым способом, 3,5 г; рН 7,4±0,2.
В качестве контроля использовали селективную среду CIN, приготовленную согласно инструкции фирмы-изготовителя (Yersinia Selective Agar Base, HiMedia Laboratories).
На контрольную и экспериментальные питательные среды был посеян клинический штамм 512-Ib Yersinia pseudotuberculosis (коллекция НИИ ЭМ им. Г.П. Сомова).
После инкубации 48 ч был проведен анализ культуральных, морфологических и тинкториальных свойств выросших микроорганизмов (см. фиг.3), который показал, что полученная по заявляемому способу агароза в качестве основы питательного агара для культивирования и изучения бактерий по ростовым характеристикам, морфологическим признакам колоний не уступает агару особой очистки, используемому в коммерческих отечественном и зарубежном питательных средах.
Claims (9)
1. Способ получения из Ahnfeltia tobuchiensis агарозы, используемой в качестве основы питательных сред, включающий подготовку водоросли Ahnfeltia tobuchiensis, ее трехкратную экстракцию химическим соединением кальция, отделение экстрактов на каждом этапе, их смешивание, очистку и желирование, промывание полученного геля водой и его сушку, отличающийся тем, что в качестве химического соединения кальция используют 1,5%-ный водный раствор окиси кальция температурой 90-100°С, а длительность каждого этапа экстракции составляет 1-2 ч, полученные экстракты смешивают, очищают, желируют, сформированный гель из водоросли Ahnfeltia tobuchiensis измельчают, промывают настаиванием в дистиллированной воде и высушивают, полученный агар заливают дистиллированной водой до его концентрации 5-10 % по массе, расплавляют на водяной бане, последовательно замораживают и оттаивают, после чего желируют и сформированный из агара гель прессуют при давлении 50-100 Па в течение 6-8 ч, далее прессованный гель из агара заливают перекисью водорода в количестве 2 % по массе и выдерживают в течение 2 ч при температуре 30оС и рН 9, после чего полученную агарозу измельчают, прессуют при давлении 50-100 Па в течение 6-8 ч, и сформированный из агарозы коагель измельчают и сушат до постоянной массы при давлении 120-130 Па.
2. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что при подготовке Ahnfeltia tobuchiensis промытые водоросли замачивают в воде температурой 60-80°С при гидромодуле 1:15, периодически перемешивая, и через 1 ч воду сливают через сито.
3. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что гидромодуль на первом этапе экстракции равен 1:10, а на последующих – 1:15.
4. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что гидромодуль на всех этапах экстракции равен 1:15.
5. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что отделение экстрактов на каждом этапе осуществляют путем фильтрации.
6. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что смесь экстрактов очищают путем центрифугирования.
7. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что промытый гель из водоросли Ahnfeltia tobuchiensis высушивают путем прессования с последующей сушкой при температуре 70°С до постоянной массы.
8. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что расплавленную на водяной бане смесь агара с водой замораживают и оттаивают до тех пор, пока она не станет прозрачной.
9. Способ получения из Ahnfeltia tobuchiensis агарозы по п.1, отличающийся тем, что сформированный из агарозы коагель сушат в сублимированной вакуумной сушилке.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2785450C1 true RU2785450C1 (ru) | 2022-12-08 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2103293C1 (ru) * | 1993-02-04 | 1998-01-27 | Владимир Васильевич Жебуртович | Способ переработки агаросодержащих водорослей |
RU2189990C1 (ru) * | 2001-04-05 | 2002-09-27 | Государственное унитарное предприятие Тихоокеанский научно-исследовательский рыбохозяйственный центр | Способ получения высокоочищенного агара и агарозы из красной водоросли анфельции тобучинской |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2103293C1 (ru) * | 1993-02-04 | 1998-01-27 | Владимир Васильевич Жебуртович | Способ переработки агаросодержащих водорослей |
RU2189990C1 (ru) * | 2001-04-05 | 2002-09-27 | Государственное унитарное предприятие Тихоокеанский научно-исследовательский рыбохозяйственный центр | Способ получения высокоочищенного агара и агарозы из красной водоросли анфельции тобучинской |
Non-Patent Citations (1)
Title |
---|
БУРОВА Н. В. и др., Физико-химическая характеристика агара из красных водорослей рода Ahnfeltia: рекомендации по его применению, Известия Калининградского государственного технического университета, 2020, N 56, с.73-87. EGOROV A.M., Isolation of agarose and granulation of agar and agarose gel, Journal of Chromatography А, 1970, v.46, N 2, p.143-148. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Çakar et al. | Improvement production of bacterial cellulose by semi-continuous process in molasses medium | |
Raghunandan et al. | Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. | |
Lestari et al. | Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste | |
Bertocchi et al. | Polysaccharides from cyanobacteria | |
KR100236507B1 (ko) | 비취성 겔용 겔란 고무 | |
Afreen et al. | Production of bacterial cellulose from Acetobacter Xylinum using fruits wastes as substrate | |
CN101985641B (zh) | 一种利用麦秆制备细菌纤维素的方法 | |
CN105420127B (zh) | 高分子量普鲁兰多糖的高产菌株及利用该菌株生产高分子量普鲁兰多糖的方法 | |
Diaz-Ramirez et al. | Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers | |
Shah et al. | Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK | |
CN113073121B (zh) | 一种含高聚合度多聚磷酸盐的纳米碳材料及高聚合度多聚磷酸盐的制备方法 | |
CN102586151B (zh) | 一株高产多糖的菌株及利用该菌株发酵生产多糖的方法 | |
JP5886641B2 (ja) | 多糖類の精製方法 | |
CN102337313A (zh) | 一种制备海藻糖的方法 | |
RU2785450C1 (ru) | Способ получения из Ahnfeltia tobuchiensis агарозы, используемой в качестве основы питательных сред | |
JPH051718B2 (ru) | ||
CN101864471B (zh) | 一种微生物发酵法生产透明质酸的方法 | |
Patel et al. | Sustainable bioconversion of industrial wastes into bacterial cellulose for diverse applications: a way towards pollution control and abatement | |
Keshk et al. | Natural bacterial biodegradable medical polymers: Bacterial cellulose | |
CN1515592A (zh) | 微生物酶法制备低分子量岩藻多糖工艺 | |
CN102391317A (zh) | 一种从褐藻寡糖发酵液中分离褐藻寡糖的方法 | |
CN111893149A (zh) | 一种利用无患子果壳制备细菌纤维素的方法 | |
CN115353979A (zh) | 一株产高分子量普鲁兰多糖的短梗霉yat007菌株及其应用 | |
RU2323005C1 (ru) | Способ получения ксантанового загустителя "сараксан" или "сараксан-т" | |
ALABBOSH et al. | Agricultural wastes as a carbon or nitrogen source for production of bacterial cellulose. A mini review |