RU2783506C1 - Способ извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива - Google Patents
Способ извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива Download PDFInfo
- Publication number
- RU2783506C1 RU2783506C1 RU2021133757A RU2021133757A RU2783506C1 RU 2783506 C1 RU2783506 C1 RU 2783506C1 RU 2021133757 A RU2021133757 A RU 2021133757A RU 2021133757 A RU2021133757 A RU 2021133757A RU 2783506 C1 RU2783506 C1 RU 2783506C1
- Authority
- RU
- Russia
- Prior art keywords
- nuclear fuel
- actinides
- anode residue
- anode
- electrolytic refining
- Prior art date
Links
- 229910052768 actinide Inorganic materials 0.000 title claims abstract description 27
- 150000001255 actinides Chemical class 0.000 title claims abstract description 27
- 238000007670 refining Methods 0.000 title claims abstract description 23
- 239000002915 spent fuel radioactive waste Substances 0.000 title claims abstract description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 22
- 239000000155 melt Substances 0.000 claims abstract description 19
- 229910013618 LiCl—KCl Inorganic materials 0.000 claims abstract description 16
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 12
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000004090 dissolution Methods 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000012320 chlorinating reagent Substances 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 150000003841 chloride salts Chemical class 0.000 claims abstract 2
- 239000000374 eutectic mixture Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 239000003758 nuclear fuel Substances 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000000605 extraction Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 230000005496 eutectics Effects 0.000 abstract description 2
- 238000001311 chemical methods and process Methods 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 230000004992 fission Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 150000001805 chlorine compounds Chemical class 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 238000009376 nuclear reprocessing Methods 0.000 description 5
- SAWLVFKYPSYVBL-UHFFFAOYSA-K Uranium(III) chloride Chemical compound Cl[U](Cl)Cl SAWLVFKYPSYVBL-UHFFFAOYSA-K 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- YKYOUMDCQGMQQO-UHFFFAOYSA-L Cadmium chloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N BeO Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- -1 actinide nitrides Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 230000000903 blocking Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000002927 high level radioactive waste Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- TWXTWZIUMCFMSG-UHFFFAOYSA-N nitride(3-) Chemical compound [N-3] TWXTWZIUMCFMSG-UHFFFAOYSA-N 0.000 description 1
- 238000005025 nuclear technology Methods 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Chemical class [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910052904 quartz Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002285 radioactive Effects 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Abstract
Изобретение относится способу извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива и может быть использовано в создании технологии замкнутого ядерного топливного цикла реакторов на быстрых нейтронах. Способ включает конверсию металлических урана и актинидов в хлориды путем химического растворения в расплаве эвтектической смеси LiCl-KCl, в который порционно вводят хлорирующий агент. Причем переработку анодного остатка ведут в аппарате с использованием атмосферы инертного газа, в качестве хлорирующего агента используют хлорид свинца, переработку анодного остатка ведут при температуре 500-700°С в том же аппарате, что и операцию электролитического рафинирования отработавшего ядерного топлива. Техническим результатом является повышение степени извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива без дополнительной переработки анодного остатка вне аппарата рафинирования. 1 ил.
Description
Изобретение относится к пирохимической переработке отработавшего ядерного топлива (ОЯТ) и может быть использовано для переработки анодного остатка операции электролитического рафинирования отработавшего ядерного топлива, содержащего актиниды и благородные металлы путем включения в технологию замкнутого ядерного топливного цикла (ЗЯТЦ) реакторов на быстрых нейтронах.
В настоящее время повышенное внимание уделяется неводным способам переработки отработавшего ядерного топлива, поскольку существующие гидрохимические способы являются небезопасными и малоэффективными. Более того, такие способы подразумевают значительные объемы радиоактивных отходов и длительную выдержку тепловыделяющих элементов перед переработкой, что не позволит организовать замкнутый ядерный топливный цикл для реакторов на быстрых нейтронах. Перспективность пирохимических технологий переработки ОЯТ заключается в том, что они позволяют исключить длительную выдержку топлива, существенно сократить либо полностью исключить побочные радиоактивные продукты переработки.
Разрабатываемые схемы пирохимической переработки ОЯТ включают ряд базовых операций с использованием расплавленных солей или металлов, причем во всех известных схемах присутствует операция электролитического рафинирования металлического или предварительно восстановленного оксидного ОЯТ, осуществляемая, преимущественно, в расплавленной эвтектической смеси LiCl-KCl. Сущность электролитического рафинирования ОЯТ заключается в анодном растворении и катодном осаждении актинидов, при этом продукты деления ядерного топлива концентрируются в анодном остатке (благородные металлы, цирконий и др.) и расплавленном электролите (щелочные и щелочноземельные металлы в виде хлоридов), а актиниды (уран, плутоний, минор-актиниды) выделяются на катоде, при этом анодный остаток представляет собой смесь индивидуальных металлов и сплавов различного состава. Следует отметить, что содержание актинидов в таком остатке значительно ниже, чем в первоначально растворяемом аноде, следовательно, активность извлекаемых компонентов понижена, что затрудняет их конверсию в хлоридный расплав.
Для повышения эффективности отделения актинидов от продуктов деления используют способы, включающие последовательное электроосаждение актинидов на жидкометаллическом, а затем на твердом катоде (Tadafumi Koyama, Masatoshi Iizuka, Yuichi Shoji, Reiko Fujita, Hiroshi Tanaka, Tsuguyuki Kobayashi, Moriyasu Tokiwai, An Experimental Study of Molten Salt Electrorefining of Uranium Using Solid Iron Cathode and Liquid Cadmium Cathode for Development of Pyrometallurgical Reprocessing // Journal of Nuclear Science and Technology. - 1997. - Vol. 34. - P. 384-390) [1]. Однако ни один из известных способов электролитического рафинирования в расплавленных солях не позволяет полностью извлечь актиниды из металлсодержащего анодного остатка, что обусловлено существенным снижением скорости анодного растворения. Как правило, в таком анодном остатке остается вплоть до 30% от исходного содержания актинидов, которые могут быть:
- захоронены (утилизированы);
- переработаны гидрохимическими способами после длительной выдержки;
- повторно вовлечены/загружены в шихту для получения анода операции электролитического рафинирования ОЯТ в расплавленной эвтектической смеси LiCl-KCl.
Захоронение и гидрохимическая переработка после длительной выдержки не приемлемы для технологии замкнутого ядерного топливного цикла реакторов на быстрых нейтронах, а повторное вовлечение в шихту для получения анода операции электролитического рафинирования ОЯТ в расплавленной эвтектической смеси LiCl-KCl представляется энергетически неэффективным и требующим дополнительных трудоемких операций и аппаратов. В частности, перед повторным сплавлением анодной массы в анод, повторно вовлекаемый анодный остаток необходимо отделить от остатков электролита в отдельном аппарате, что подразумевает несколько дополнительных операций перегрузки, а так же влечет за собой образование новых высокоактивных отходов, требующих дальнейшей переработки.
Наиболее близким к заявляемому является способ переработки анодных остатков отработавшего металлического топлива, включающий конверсию металлических урана и актинидов в хлориды путем химического растворения в хлоридном расплаве, содержащем хлорирующий агент (Masatoshi Iizuka, Masaaki Akagi & Takashi Omori, Development of Treatment Process for Anode Residue from Molten Salt Electrorefining of Spent Metallic Fast Reactor Fuel, Nuclear Technology 181(3) (2013)507-525) [2].
Данный способ осуществляют в хлоридном расплаве LiCl-KCl-CdCl2 в атмосфере инертного газа при температуре 500°С. При этом интенсифицировать процесс растворения целевых компонентов посредством увеличения температуры невозможно, т.к. использование в данном способе хлорида кадмия в качестве хлорирующего агента может вызвать активное испарение металлического кадмия, образующегося в результате взаимодействия его хлорида с металлическим ураном, что приведет к загрязнению аппарата хлорирования. Хлорид кадмия в расплав добавляют порционно во избежание его чрезмерного накопления в расплаве. Кроме того, данный способ реализуют в отдельном аппарате, в котором для облегчения растворения урана корзину с анодным остатком в расплаве вращают со скоростью 50 об/мин.
Задачей настоящего изобретения является повышение эффективности извлечения актинидов из анодного остатка операции электролитического рафинирования ОЯТ в расплавленной эвтектической смеси LiCl-KCl при обеспечении возможности извлечения актинидов из анодного остатка непосредственно в аппарате электролитического рафинирования.
Для этого предложен способ извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива, который, как и прототип, включает конверсию металлических урана и актинидов в хлориды путем химического растворения в расплаве эвтектической смеси LiCl-KCl, в который порционно вводят хлорирующий агент, при этом переработку анодного остатка ведут в аппарате с использованием атмосферы инертного газа. Новый способ отличается тем, что в качестве хлорирующего агента используют хлорид свинца, переработку анодного остатка ведут при температуре 500-700°С в том же аппарате, что и операцию электролитического рафинирования отработавшего ядерного топлива.
Сущность заявленного способа заключается в следующем. При контакте металлсодержащего анодного остатка, содержащего актиниды (An) и продукты деления, с хлоридом свинца в расплаве эвтектической смеси LiCl-KCl будет протекать обменная реакция, например:
Расплавленная эвтектическая смесь LiCl-KCl при этом выполняет функцию растворителя как исходного PbCl2, так и образующегося UCl3. Данные термодинамического моделирования, а именно, положительные значения стандартной энергии Гиббса (ΔG°), указывают на то, что реакции взаимодействия благородных металлов (преимущественно Pd, Rh, Ru) с хлоридом свинца протекать не будут. В результате селективного участия компонентов анодного остатка в реакции (1), актиниды в виде хлоридов будут растворяться в расплавленной эвтектической смеси LiCl-KCl, в то время как продукты деления (Pd, Rh, Ru) будут оставаться в анодном остатке, либо осаждаться на дно аппарата вместе с образующимся свинцом. Таким образом, введение хлорида свинца в аппарат для электрорафинирования с расплавленной эвтектической смесью LiCl-KCl приводит к растворению актинидов в виде хлоридов в расплавленной эвтектической смеси LiCl-KCl, притом, что продукты деления остаются в анодном остатке, либо осаждаются на дно аппарата для электрорафинирования вместе с образующимся свинцом. Следует отметить, что использование хлорида свинца в технологии отработавшего ядерного топлива известно из (Сборник докладов отраслевой конференции по теме "Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах", 11-12 октября 2018, с. 275-285) [3], однако в отличие от источника [3], где хлорид свинца применяют для переработки нитридов актинидов и продуктов деления, представляющих собой фактически нитиридные керамические соединения, в предложенном способе этот агент используют для хлорирования металлсодержащего анодного остатка, что не является известным.
Нижний предел температуры переработки анодного остатка в 500°С обусловлен температурой плавления хлорида свинца, а ограничение максимальной рабочей температуры в 700°С связано со значительным испарением хлоридных компонентов расплава при большей температуре. Порционное добавление хлорида свинца в аппарат для электрорафинирования, в котором в эвтектическом расплаве LiCl-KCl выдерживается анодный остаток, позволяет избежать экранирования поверхности обрабатываемого остатка образующимся по реакции (1) свинцом. Таким образом удается контролировать скорость процесса растворения анодного остатка и не допускать неполного извлечения целевых компонентов из анодного остатка. В отличие от прототипа, где хлорирующий агент вводят в расплав порционно во избежание его чрезмерного накопления в расплаве, в предложенном способе порционное введение хлорида свинца исключает блокировку поверхности анодного остатка. Кроме того, применение хлорида свинца позволяет интенсифицировать процесс переработки анодного остатка посредством увеличения рабочей температуры до 700°С, что в случае использования хлорида кадмия, как в прототипе, представляется затруднительным из-за интенсивного испарения образующегося металлического кадмия. В результате совокупного взаимодействия этих приемов повышается степень извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива, без дополнительной переработки анодного остатка вне аппарата рафинирования.
Новый технический результат, достигаемый заявленным способом, заключается в повышении степени извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива, без дополнительной переработки анодного остатка вне аппарата рафинирования.
Изобретение иллюстрируется рисунком, на котором показана зависимость концентрации трихлорида урана в расплаве в зависимости от времени. Точками отмечены моменты добавления в расплав очередной порции хлорида свинца. Горизонтальной линией показано теоретически рассчитанное максимально возможное содержание трихлорида урана в расплаве при полном переводе всего металлического урана из образца в расплав.
Эксперименты проводили в сухом инертном боксе, заполненном аргоном (содержание влаги в атмосфере менее 0.1 ppm, содержание кислорода менее 10 ppm). Аппарат электролитического рафинирования был представлен кварцевой ретортой, на дне которой размещали контейнер из стеклоуглерода либо оксида бериллия с предварительно приготовленной эвтектической смесью хлоридов LiCl-KCl. Хлориды лития и калия готовили методом зонной перекристаллизации с целью максимального удаления кислородных примесей, а затем сплавляли их в инертном боксе.
Для экспериментальной апробации способа использовали образцы модельного ядерного топлива, имитирующие анодный остаток операции электролитического рафинирования в вышеописанном аппарате и содержащие (мас.%): 30U-70 (Pd, Rh, Ru). Образцы погружали в расплавленную эвтектическую смесь LiCl-KCl при 500°С, после чего в нее же порционно добавляли хлорид свинца. Количество хлорида свинца, PbCl2, рассчитывали исходя из массы урана в обрабатываемом материале с 10%-ным избытком. В примере полную навеску хлорида свинца делили на 10 примерно равных порций и добавляли в расплав с интервалом в 4 часа. Перед добавлением очередной навески отбирали пробу расплава, которую анализировали на содержание U, Pb, а также Li, K, Pd, Rh, Ru методом оптической эмиссионной спектрометрии с индуктивно-связанной плазмой.
В результате, весь уран, содержащийся в модельном ядерном топливе, переходил в расплав в виде трихлорида, а благородные металлы оставались в анодном остатке, который частично растворялся в образовавшемся свинце.
На рисунке представлена типичная зависимость изменения концентрации хлорида урана в расплавленной эвтектической смеси LiCl-KCl во времени. Массовая концентрация трихлорида урана в расплаве увеличивается и достигает теоретического максимального значения после того, как в расплав добавляется вся навеска хлорида свинца. При температуре 700°С получен подобный результат.
Таким образом, заявленный способ пригоден для его включения в схему замкнутого ядерного топливного цикла для эффективной переработки анодного остатка, содержащего актиниды и продукты деления, в частности, благородные металлы.
Claims (1)
- Способ извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива, включающий конверсию металлических урана и актинидов в хлориды путем химического растворения в расплаве эвтектической смеси LiCl-KCl, в который порционно вводят хлорирующий агент, при этом переработку анодного остатка ведут в аппарате с использованием атмосферы инертного газа, отличающийся тем, что в качестве хлорирующего агента используют хлорид свинца, переработку анодного остатка ведут при температуре 500-700°С в том же аппарате, что и операцию электролитического рафинирования отработавшего ядерного топлива.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2783506C1 true RU2783506C1 (ru) | 2022-11-14 |
Family
ID=
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800262B1 (en) * | 2001-06-07 | 2004-10-05 | The United States Of America As Represented By The United States Department Of Energy | Method for making a uranium chloride salt product |
US20100305384A1 (en) * | 2007-09-04 | 2010-12-02 | Commissariat A L'energie Atomique | Process for Converting Alkaline-Earth Metal Chlorides to Tungstates and Molybdates and Applications Thereof |
RU2707562C1 (ru) * | 2018-08-22 | 2019-11-28 | Акционерное общество "Прорыв" | Способ переработки тепловыделяющих элементов |
RU2724117C1 (ru) * | 2019-05-31 | 2020-06-22 | Акционерное общество "Прорыв" | Способ переработки нитридного ядерного топлива |
RU2732740C1 (ru) * | 2017-12-29 | 2020-09-22 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6800262B1 (en) * | 2001-06-07 | 2004-10-05 | The United States Of America As Represented By The United States Department Of Energy | Method for making a uranium chloride salt product |
US20100305384A1 (en) * | 2007-09-04 | 2010-12-02 | Commissariat A L'energie Atomique | Process for Converting Alkaline-Earth Metal Chlorides to Tungstates and Molybdates and Applications Thereof |
RU2732740C1 (ru) * | 2017-12-29 | 2020-09-22 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах |
RU2707562C1 (ru) * | 2018-08-22 | 2019-11-28 | Акционерное общество "Прорыв" | Способ переработки тепловыделяющих элементов |
RU2724117C1 (ru) * | 2019-05-31 | 2020-06-22 | Акционерное общество "Прорыв" | Способ переработки нитридного ядерного топлива |
Non-Patent Citations (1)
Title |
---|
Masatoshi Iizuka, Masaaki Akagi & Takashi Omori, Development of Treatment Process for Anode Residue from Molten Salt Electrorefining of Spent Metallic Fast Reactor Fuel, Nuclear Technology 181(3) (2013)507-525). Сборник докладов отраслевой конференции по теме "Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах", 11-12 октября 2018, с.275-285. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Status of pyroprocessing technology development in Korea | |
Lee et al. | Pyroprocessing technology development at KAERI | |
Li et al. | Electrorefining experience for pyrochemical reprocessing of spent EBR-II driver fuel | |
Simpson | Developments of spent nuclear fuel pyroprocessing technology at Idaho National Laboratory | |
US4880506A (en) | Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels | |
Vaden et al. | Engineering-scale liquid cadmium cathode experiments | |
US8734738B1 (en) | Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel | |
JP4504247B2 (ja) | マイナーアクチニドリサイクル方法 | |
EP0379565B1 (en) | Process to separate transuranic elements from nuclear waste | |
Mcpheeters et al. | Application of the pyrochemical process to recycle of actinides from LWR spent fuel | |
Malmbeck et al. | Advanced fuel cycle options | |
RU2603844C1 (ru) | Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах | |
US2951793A (en) | Electrolysis of thorium and uranium | |
Rodrigues et al. | Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step | |
JP3940632B2 (ja) | ジルコニウム廃棄物のリサイクルシステム | |
JP2016507008A (ja) | イオン液体からのアクチニドの常温電着 | |
JP3120002B2 (ja) | 使用済み燃料の再処理方法 | |
RU2783506C1 (ru) | Способ извлечения актинидов из анодного остатка операции электролитического рафинирования отработавшего ядерного топлива | |
EP1240647B1 (en) | Actinide production | |
Souček et al. | Pyrochemical processes for recovery of actinides from spent nuclear fuels | |
JP2000284090A (ja) | 使用済み核燃料の再処理方法 | |
Uozumi et al. | Removal of rare-earth fission products from molten chloride salt used in pyroprocessing by precipitation for consolidation into glass-bonded sodalite waste form | |
RU2724117C1 (ru) | Способ переработки нитридного ядерного топлива | |
RU2772970C1 (ru) | Способ контролируемого извлечения актинидов из металлических продуктов отработавшего ядерного топлива в хлоридном расплаве | |
JP4025125B2 (ja) | 使用済み燃料の再処理方法 |