RU2775032C1 - Модифицированная бетонная смесь для строительной 3d-печати - Google Patents
Модифицированная бетонная смесь для строительной 3d-печати Download PDFInfo
- Publication number
- RU2775032C1 RU2775032C1 RU2021140044A RU2021140044A RU2775032C1 RU 2775032 C1 RU2775032 C1 RU 2775032C1 RU 2021140044 A RU2021140044 A RU 2021140044A RU 2021140044 A RU2021140044 A RU 2021140044A RU 2775032 C1 RU2775032 C1 RU 2775032C1
- Authority
- RU
- Russia
- Prior art keywords
- superplasticizer
- sand
- portland cement
- concrete mixture
- printing
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 58
- 239000004567 concrete Substances 0.000 title claims abstract description 36
- 238000010276 construction Methods 0.000 title description 10
- 238000007639 printing Methods 0.000 title description 4
- 239000008030 superplasticizer Substances 0.000 claims abstract description 31
- 239000011398 Portland cement Substances 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000010146 3D printing Methods 0.000 claims abstract description 24
- 239000004576 sand Substances 0.000 claims abstract description 23
- GBPOWOIWSYUZMH-UHFFFAOYSA-N sodium;trihydroxy(methyl)silane Chemical compound [Na+].C[Si](O)(O)O GBPOWOIWSYUZMH-UHFFFAOYSA-N 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 8
- 229920005646 polycarboxylate Polymers 0.000 claims abstract description 8
- 150000002148 esters Chemical class 0.000 claims abstract description 7
- 238000000227 grinding Methods 0.000 claims abstract description 7
- 239000006004 Quartz sand Substances 0.000 claims abstract description 4
- SMYKVLBUSSNXMV-UHFFFAOYSA-J aluminum;tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-J 0.000 claims abstract description 3
- 235000019976 tricalcium silicate Nutrition 0.000 claims abstract description 3
- 239000005909 Kieselgur Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 abstract description 22
- 239000000306 component Substances 0.000 abstract description 20
- 238000010521 absorption reaction Methods 0.000 abstract description 14
- 238000001125 extrusion Methods 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000005452 bending Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000000654 additive Substances 0.000 abstract description 3
- 239000004566 building material Substances 0.000 abstract description 3
- 230000000996 additive Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 19
- 239000004568 cement Substances 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- -1 polypropylene Polymers 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 239000012071 phase Substances 0.000 description 4
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 4
- 229920001285 xanthan gum Polymers 0.000 description 4
- 229940082509 xanthan gum Drugs 0.000 description 4
- 235000010493 xanthan gum Nutrition 0.000 description 4
- 239000000230 xanthan gum Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000011414 polymer cement Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 210000001736 Capillaries Anatomy 0.000 description 1
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 description 1
- 229940067916 PCE Drugs 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LVSJLTMNAQBTPE-UHFFFAOYSA-N disodium tetraborate Chemical compound [Na+].[Na+].O1B(O)O[B-]2(O)OB(O)O[B-]1(O)O2 LVSJLTMNAQBTPE-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 235000021271 drinking Nutrition 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000004634 feeding behavior Effects 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Abstract
Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойного экструдирования (3D-печати) бетонной смеси на основе портландцемента, песка, тонкомолотого пуццоланового компонента, суперпластификатора и метилсиликонат натрия. Технический результат: снижение расхода портландцемента и суперпластификатора в модифицированной бетонной смеси, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из модифицированной бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм). Модифицированная бетонная смесь для строительной 3D-печати включает портландцемент, песок, суперпластификатор и воду. Портландцемент содержит, мас.%: трехкальциевый силикат 68,1, трехкальциевый алюминат 7,2, в качестве песка используют кварцевый песок с модулем крупности 2,2 - 2,4 и влажностью 1-2%, в качестве суперпластификатора используют суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430», и дополнительно она содержит тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг и метилсиликонат натрия «ГКЖ-11Н» при следующем содержании компонентов, мас.%: портландцемент – 20,0-23,0, песок – 62,63-66,37, суперпластификатор «MasterGlenium 430» – 0,20-0,23, тонкомолотый пуццолановый компонент – диатомит – 2,0-2,3, метилсиликонат натрия «ГКЖ-11Н» - 0,010-0,012, вода – 11,420-11,828. 2 табл.
Description
Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойного экструдирования (3D-печати) бетонной смеси на основе портландцемента, песка, тонкомолотого пуццоланового компонента, суперпластификатора и метилсиликонат натрия.
Известна сырьевая смесь на основе цемента для строительной 3D-печати, включающая сульфоалюминатный цемент – 150-400 кг, золу – 0-250 кг, песок с диаметром частиц 0,075-5 мм, полипропиленовую фибру с длиной 3-6 мм, суперпластификатор PCE производства Shandong Hongyi Technology Co., Ltd – 1,5-2,5% от массы цемента, замедлитель схватывания тетраборат натрия и винная кислота в соотношении 1:(1-1,5) – 0,01-0,2% от массы цемента, при этом 10-минутная осадка предлагаемого материала на основе цемента составляет 90-110 мм, начало схватывания составляет 15-80 мин, конец схватывания составляет 30-100 мин [1]. Недостатками данного изобретения являются наличие большого числа компонентов смеси, повышенный расход компонентов смеси и увеличение ее стоимости, вызванное применением быстротвердеющего сульфоалюминатного цемента и замедлителя схватывания.
Известна высокотиксотропная сырьевая смесь для строительной 3D-печати, включающая в себя, мас.%: специальный тиксотропный агент 1,0-3,0, цемент 35-40, суперпластификатор на основе эфиров поликарбоксилата 0,1-0,4, полипропиленовое волокно 0,1-0,4, воду 12,5-14,5, песок – остальное [2]. Недостатками данного изобретения являются снижение физико-механических характеристик композита при температуре свыше 140 0C, вызванное плавлением полипропиленового волокна.
Известен модифицированный полимерцементный композиционный материал для 3D-печати, включающий, мас.%: портландцемент 24,37-34,16, поливинилацетатная дисперсия 2,44-2,56, песок 50,74-61,38, жидкое стекло 1,70-2,44, фиброволокно полипропиленовое 0,02-0,03, флороглюцинфурфурольный модификатор 0,05-0,07, вода – остальное [3]. Недостатками данного изобретения являются невысокие сроки начала схватывания – до 45-70 мин, что вызывает затруднение транспортирования сырьевой смеси с завода на строительную площадку, низкие показатели прочности на сжатие и изгиб в возрасте 28 сут, повышенное водопоглощение.
Наиболее близким решением к предлагаемому изобретению является двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати, фаза 1 которой содержит компоненты в следующем массовом соотношении твердой фазы, %: портландцемент 44,1-44,5, песок 55,14-55,4, камедь ксантановая 0,08-0,1, тетракалий пирофосфат технический 0,08-0,1, полипропиленовая фибра 0,2-0,3; фаза 2 содержит компоненты в следующем массовом соотношении жидкой фазы, %: суперпластификатор 4,1-4,6, вода 95,4-95,9 [4].
Недостатками данного изобретения являются повышенный расход портландцемента и суперпластификатора (1,2-1,4% от массы портландцемента), низкая формоустойчивость напечатанных слоев из сырьевой смеси, высокие усадочные деформации затвердевшего композита вследствие повышенного расхода портландцемента и применения песка, принадлежащего к группе «очень мелкий» (согласно ГОСТ 8736-2014), высокое водопоглощение, низкие показатели предела прочности при изгибе затвердевшего композита, снижение физико-механических характеристик композита при температуре свыше 140°C, вызванное плавлением полипропиленового волокна, использование в качестве модификаторов вязкости тетракалия пирофофсфата и камеди ксантановой не предназначенной для использования в качестве добавок для бетонов и растворов (по ГОСТ 24211-2008). Также недостатком изобретения является отсутствие данных о влажности компонентов сырьевой смеси, влияющие на реологические и физико-механические свойства композитов, а также отсутствие данных об осуществлении данного изобретения на 3D-принтере, реализующем метод послойного экструдирования и качестве получаемых изделий. Кроме того, недостатком является используемый в изобретении способ подготовки образцов, заключающийся в их изготовлении в формах 70×70×70 мм, 70×70×280 мм, в то время как технология строительной 3D-печати исключает применение форм, что при приводит к изменению поровой структуры композита и искажению получения достоверных результатов физико-механических свойств (прочность на сжатие и растяжение, плотность, водопоглощение и др.).
Задачей предлагаемого изобретения является снижение расхода портландцемента, суперпластификатора в модифицированной бетонной смеси для строительной 3D-печати, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из модифицированной бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм).
Техническим результатом предлагаемого решения является снижение расхода портландцемента и суперпластификатора в модифицированной бетонной смеси, повышение формоустойчивости и обеспечение отсутствия дефектов в виде разрывов напечатанных слоев из модифицированной бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, снижение усадочных деформаций, водопоглощения, повышение предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере (без использования форм).
Поставленная задача достигается тем, что модифицированная бетонная смесь для строительной 3D-печати, включающая портландцемент, песок, суперпластификатор и воду, отличается тем, что используют портландцемент, содержаший, мас.%: трехкальциевый силикат 68,1, трехкальциевый алюминат 7,2, в качестве песка используют кварцевый песок с модулем крупности 2,2 - 2,4 и влажностью 1-2%, в качестве суперпластификатора используют суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430», и дополнительно она содержит тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг, и метилсиликонат натрия «ГКЖ-11Н» при следующем содержании компонентов, мас.%:
Портландцемент | 20,0-23,0 |
Песок | 62,63-66,37 |
Суперпластификатор «MasterGlenium 430» | 0,20-0,23 |
Тонкомолотый пуццолановый компонент – диатомит | 2,0-2,3 |
Метилсиликонат натрия «ГКЖ-11Н» | 0,010-0,012 |
Вода | 11,420-11,828. |
Для изготовления модифицированной бетонной смеси для строительной 3D-печати использовали следующие материалы:
Портландцемент ЦЕМ I 42,5Н производства ООО «Азия Цемент» (ГОСТ 31108-2016) со следующим минералогическим составом: С3S – 68,1%, С2S – 9,4%, С3А – 7,2%, С4AF – 11%;
Кварцевый песок Камско-Устьинского месторождения Республики Татарстан с модулем крупности 2,2-2,4, влажностью 1-2% (ГОСТ 8736-2014). Для приготовления образцов использовали песок с модулем крупности 2,3, с влажностью 1,5%;
Суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430» производства ООО «BASF Строительные системы», представляющий собой жидкость светло-коричневого цвета без содержания хлоридов, плотностью при 20°C 1,06 г/см3, pH – 3,5;
Тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг (СТО 23998461-020-2018). Для приготовления образцов использовали диатомит с гидравлической активностью 1553,7 мг/г, степенью помола 1443 м2/кг;
Метилсиликонат натрия «ГКЖ-11Н» производства ПАО «Химпром», представляющий собой жидкость темно-коричневого цвета плотностью 1,15 г/см3 при 20°C;
Водопроводная питьевая вода, удовлетворяющая требованиям ГОСТ 23732.
Предлагаемое изобретение осуществляется следующим образом: в работающий смеситель загружают заранее отдозированные сухие компоненты модифицированной бетонной смеси – портландцемент, песок, диатомит и производят их перемешивание до получения однородной массы. Затем производят дозирование по массе воды, суперпластификатора «MasterGlenium 430», метилсиликонат натрия, производят их перемешивание до получения однородного раствора и постепенно добавляют его к тщательно перемешанным сухим компонентам, осуществляя перемешивание смеси до получения однородной массы с подвижностью Пк 2 (по ГОСТ 28013-98) при глубине погружения эталонного конуса 7-8 см. На следующем этапе производят подготовку 3D-принтера: внутреннюю поверхность съемного накопительного бункера смачивают водопроводной питьевой водой или разделительной смазкой. Далее заполняют съемный накопительный бункер строительного 3D-принтера приготовленной модифицированной бетонной смесью и осуществляют пробное экструдирование до достижения однородности получаемого экструдата. Затем осуществляют формование модифицированной бетонной смеси методом послойного экструдирования (3D-печати) на строительном 3D-принтере (например, «АМТ» S-6044 компании ООО «СПЕЦАВИА») в соответствии с заранее подготовленной трехмерной цифровой моделью. Трехмерная цифровая модель образцов представляет собой полосу длиной 40 см, высотой одного слоя 20 мм. Печать модифицированной бетонной смеси производят при следующих регулируемых параметрах печати, задаваемых в программном комплексе «Mach3» (Artsoft founder Art Fenerty): скорость вращения шпинделя составляет 3000-5000 ед., скорость подачи – 4000-6000 ед/мин.
Формоустойчивость напечатанных слоев из модифицированной бетонной смеси оценивалась по способности смеси сохранять положение в пространстве под воздействием технологических факторов, а именно по максимальной высоте печатаемого образца без технологических перерывов до достижения им критического состояния – потери устойчивости в целом, характеризующаяся его опрокидыванием или потерей устойчивости формы образца со смещением напечатанных слоев.
Также были проведены испытания образцов по прототипу с использованием портландцемента ЦЕМ I 42,5Н по ГОСТ 31108-2016, песок с модулем крупности меньше или равным 1,25 по ГОСТ 8736-2014, камеди ксантановой с содержанием (C35Н49О29)n не менее 91%, тетракалия пирофосфата технического с содержанием К4Р2О5 не менее 98%, полипропиленовой фибры длиной 12 мм, суперпластификатора на основе поликарбоксилатных эфиров, воды.
Через 28 суток нормального твердения производили подготовку образцов для испытаний, сформованных методом послойного экструдирования (3D-печати), путем их распила на призмы размерами 40×40×160 мм. Водопоглощение затвердевшего композита определяли по ГОСТ 12730.3-78 «Бетоны. Метод определения водопоглощения». Предел прочности при изгибе затвердевшего композита определяли на образцах-балочках размерами 40х40х160 мм по ГОСТ 5802-86. «Растворы строительные. Методы испытаний» с использованием испытательной машины МИИ-100. Усадочные деформации оценивались по наличию образования на затвердевших композитах усадочных трещин, наличие дефектов виде разрывов напечатанных слоев из модифицированной бетонной смеси производилось визуально-инструментальным методом с использованием измерительной металлической линейки по ГОСТ 427-75 и измерительной лупы с подсветкой по ГОСТ 25706-83.
Составы модифицированных бетонных смесей для строительной 3D-печати приведены в таблице 1, физико-механические показатели для составов приведены в таблице 2.
Таблица 1
Компоненты | Составы модифицированных бетонных смесей для строительной 3D-печати, мас. % | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 (прототип) | |
Портландцемент | 18,0 | 21,5 | 21,5 | 20,0 | 21,5 | 23,0 | 25,0 | 37,85 |
Песок | 68,592 | 67,484 | 62,53 | 66,37 | 64,5 | 62,63 | 60,127 | 48,80 |
Суперпластификатор «MasterGlenium 430» | 0,18 | 0,215 | 0,20 | 0,22 | 0,23 | 0,25 | ||
Диатомит | 1,5 | 2,15 | 2,0 | 2,15 | 2,3 | 1,5 | ||
Метилсиликонат натрия «ГКЖ-11Н» | 0,008 | 0,011 | 0,010 | 0,011 | 0,012 | 0,013 | ||
Камедь ксантановая | 0,07 | |||||||
Тетракалий пирофосфат технический | 0,07 | |||||||
Полипропиленовая фибра | 1,72 | |||||||
Суперпластификатор на основе поликарбоксилатных эфиров | 0,47 | |||||||
Вода | 11,72 | 10,79 | 13,82 | 11,420 | 11,619 | 11,828 | 13,11 | 11,02 |
Таблица 2
Свойства | Физико-механические показатели для составов | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 (прототип) | |
Формоустойчивость напечатанных слоев из модифицированной бетонной смеси (высота изделия, полученная при 3D-печати без технологических перерывов), см | 13 | 10 | 11 | 19 | 21 | 20 | 11 | 10 |
Предел прочности при изгибе на 28 сут, МПа | 4,9 | 6,3 | 5,6 | 6,0 | 6,2 | 6,6 | 5,1 | 4,0 |
Водопоглощение, % | 10,9 | 8,9 | 12,4 | 7,7 | 7,5 | 7,4 | 7,6 | 7,5 |
Усадочные деформации (наличие усадочных трещин – да/нет) | да | нет | да | нет | нет | нет | нет | да |
Дефекты в виде разрывов (да/нет) | нет | да | нет | нет | нет | нет | нет | да |
Из приведенных данных следует, что максимальные значения показателей формоустойчивости напечатанных слоев из модифицированной бетонной смеси, предела прочности при изгибе, водопоглощения затвердевших композитов достигаются при содержании в составе модифицированной бетонной смеси портландцемента – 20,0-23,0% от общей массы композиции, песка – 62,63-66,37%, суперпластификатора «MasterGlenium 430» – 0,20-0,23%, тонкомолотого пуццоланового компонента – диатомита – 2,0-2,3%, метилсиликонат натрия «ГКЖ-11Н» – 0,010-0,012%, воды – 11,420-11,828%. При введении портландцемента, суперпластификатора «MasterGlenium 430», тонкомолотого пуццоланового компонента – диатомита, метилсиликонат натрия «ГКЖ-11Н», в количестве меньше указанных в таблице 1 (состав 4), наблюдается снижение показателей исследуемых свойств по сравнению с заявляемыми пределами. При их введении, в количестве больше указанных в таблице 1 (состав 6), исследуемые свойства композиций, напечатанных на 3D-принтере, снижаются. В составах модифицированных бетонных смесей для строительной 3D-печати (составы 2, 4-7) отсутствуют усадочные трещины, в составах 1, 3-7 отсутствуют дефекты в виде разрывов.
Модифицированная бетонная смесь для строительной 3D-печати, полученная согласно предлагаемому изобретению, обладает пониженным расходом портландцемента и суперпластификатора, повышенной формоустойчивостью и отсутствием дефектов в виде разрывов напечатанных слоев из модифицированной бетонной смеси с возможностью ее экструдирования на строительных 3D-принтерах, реализующих метод послойного экструдирования, изделия – высокими прочностными характеристиками при изгибе отсутствием усадочных трещин, низким водопоглощением.
Применение песка средней крупности с модулем крупности 2,2-2,4 в сочетании с уменьшенным цементно-песчаным отношением позволяет снизить развитие усадочных деформаций композита, сформованного методом послойного экструдирования (3D-печати). Кроме того, уменьшенное цементно-песчаное отношение позволяет снизить расход портландцемента в модифицированной бетонной смеси при обеспечении формуемости на 3D-принтере и физико-механических показателей.
Применение суперпластификатора «MasterGlenium 430» на основе поликарбоксилатных эфиров в количестве 0,20-0,23 мас.% позволяет сократить количество воды затворения, повысить плотность смеси и физико-механические характеристики затвердевшего композита при одновременном обеспечении оптимальных реотехнологических свойств модифицированной бетонной смеси для ее послойного экструдирования.
Введение тонкомолотового пуццоланового компонента – диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г позволяет улучшить формуемость модифицированной бетонной смеси за счет обеспечения связности, однородности и пластичности, что способствует получению затвердевших композитов, напечатанных на 3D-принтере, с пониженными усадочными деформациями и отсутствием на них дефектов.
Применение метилсиликоната натрия «ГКЖ-11Н» в количестве 0,010-0,012 мас.% позволяет снизить водопоглощение затвердевших композитов, напечатанных на 3D-принтере (без использования форм), за счет придания стенкам капилляров и пор водоотталкивающей способности.
Совместное использование суперпластификатора «MasterGlenium 430» в количестве 0,20-0,23 мас.%, диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г в количестве 2,0-2,3 мас.%, метилсиликонат натрия «ГКЖ-11Н» в количестве 0,010-0,012 мас.% способствует приданию модифицированной бетонной смеси оптимальных реотехнологических свойств, повышению формоустойчивости напечатанных слоев из модифицированной бетонной смеси, физико-механических показателей (повышение предела прочности при изгибе, снижение водопоглощения) затвердевших композитов, напечатанных на 3D-принтере.
Таким образом, предлагаемое решение позволяет получить модифицированную бетонную смесь для строительной 3D-печати с пониженным расходом портландцемента и суперпластификатора, обладающую высокой формоустойчивостью, и изделия на ее основе с высокими прочностными характеристиками при изгибе, низким водопоглощением, пониженными усадочными деформациями и отсутствием на них дефектов.
Источники информации
1. Патент CN 105753404A, B33Y70 / 00, Cement-based material used for building 3D (three-dimensional) printing, заяв. 13.02.2016, опубл. 13.07.2016.
2. Патент CN 108715531A, C04B28/02, A kind of high thixotropic 3D printing concrete and preparation method thereof, заяв. 12.06.2018, опубл. 28.08.2020.
3. Патент, RU 2 661 970, С04В 28/04, C04В 14/02, С04В 22/08, С04В 26/00, С04В2111/20, С04В2111/343, Модифицированный полимерцементный композиционный материал для 3D-печати, Полуэктова В.А., Шаповалов Н.А., Черников Р.О., Евтушенко Е.И., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет»., заяв. 31.07.2017, опубл. 23.07.2018, бюл. №21.
4. Патент, RU 2 729 086, С04В 28/04, Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати, Славчева Г.С., Аратмонова О.В., Шведова М.А., Бритвина Е.А., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет», заяв. 21.10.2019, опубл. 04.08.2020, бюл. №22.
Claims (2)
- Модифицированная бетонная смесь для строительной 3D-печати, включающая портландцемент, песок, суперпластификатор и воду, отличающаяся тем, что используют портландцемент, содержаший, мас.%: трехкальциевый силикат 68,1, трехкальциевый алюминат 7,2, в качестве песка используют кварцевый песок с модулем крупности 2,2 - 2,4 и влажностью 1-2%, в качестве суперпластификатора используют суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430», и дополнительно она содержит тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг и метилсиликонат натрия «ГКЖ-11Н» при следующем содержании компонентов, мас.%:
-
Портландцемент 20,0-23,0 Песок 62,63-66,37 Суперпластификатор «MasterGlenium 430» 0,20-0,23 Тонкомолотый пуццолановый компонент – диатомит 2,0-2,3 Метилсиликонат натрия «ГКЖ-11Н» 0,010-0,012 Вода 11,420-11,828
Publications (1)
Publication Number | Publication Date |
---|---|
RU2775032C1 true RU2775032C1 (ru) | 2022-06-27 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820763C1 (ru) * | 2023-12-29 | 2024-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) | Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105753404A (zh) * | 2016-02-03 | 2016-07-13 | 临沂大学 | 一种用于建筑3d打印的水泥基材料 |
RU2661970C1 (ru) * | 2017-07-31 | 2018-07-23 | федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" | Модифицированный полимерцементный композиционный материал для 3d печати |
RU2729086C1 (ru) * | 2019-10-21 | 2020-08-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" | Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати |
KR102194848B1 (ko) * | 2019-04-08 | 2020-12-23 | 이민희 | 3차원 프린팅을 이용한 시멘트 구조물 제조방법 |
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105753404A (zh) * | 2016-02-03 | 2016-07-13 | 临沂大学 | 一种用于建筑3d打印的水泥基材料 |
RU2661970C1 (ru) * | 2017-07-31 | 2018-07-23 | федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" | Модифицированный полимерцементный композиционный материал для 3d печати |
KR102194848B1 (ko) * | 2019-04-08 | 2020-12-23 | 이민희 | 3차원 프린팅을 이용한 시멘트 구조물 제조방법 |
RU2729086C1 (ru) * | 2019-10-21 | 2020-08-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" | Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати |
Non-Patent Citations (1)
Title |
---|
КАСТОРНЫХ Л.И. Добавки в бетоны и строительные растворы, учебно-справочное пособие, Ростов-на -Дону, Феникс, 2005, с.6-16, 87, 117-130. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820763C1 (ru) * | 2023-12-29 | 2024-06-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) | Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати |
RU2820808C1 (ru) * | 2023-12-29 | 2024-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) | Строительная смесь на основе гипсоцементно-пуццоланового вяжущего для 3D-печати |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2775032C1 (ru) | Модифицированная бетонная смесь для строительной 3d-печати | |
RU2777220C1 (ru) | Бетонная смесь для экструзии на 3d-принтере | |
RU2777223C1 (ru) | Модифицированная сырьевая смесь для экструзии на 3d-принтере | |
RU2777007C1 (ru) | Модифицированная сырьевая смесь для строительной 3d-печати в технологии аддитивного производства | |
RU2773913C1 (ru) | Строительная смесь для 3d-печати | |
RU2780512C1 (ru) | Модифицированная бетонная смесь для экструзии на 3d-принтере | |
RU2784503C1 (ru) | Бетонная смесь для послойного экструдирования (3d-печати) | |
RU2775131C1 (ru) | Бетонная смесь на основе цемента для строительной 3d-печати | |
RU2781201C1 (ru) | Сырьевая смесь для строительной 3d-печати в технологии аддитивного производства | |
RU2781199C1 (ru) | Модифицированная сырьевая смесь для строительной 3d-печати | |
RU2780314C1 (ru) | Модифицированная строительная смесь на основе цемента для 3d-печати | |
RU2786198C1 (ru) | Сырьевая смесь для экструзии на 3d-принтере | |
RU2778119C1 (ru) | Модифицированная сырьевая смесь для 3d-печати | |
RU2775133C1 (ru) | Модифицированная бетонная смесь для 3d-печати | |
RU2777887C1 (ru) | Строительная смесь на основе цемента для 3d-печати | |
RU2785161C1 (ru) | Модифицированная сырьевая смесь на основе цемента для строительной 3d-печати | |
RU2775135C1 (ru) | Бетонная смесь для 3d-печати | |
RU2780276C1 (ru) | Сырьевая смесь на основе цемента для строительной 3d-печати | |
RU2782914C1 (ru) | Сырьевая смесь для строительной 3d-печати | |
RU2781163C1 (ru) | Сырьевая смесь для аддитивного строительного производства способом экструзии материала | |
RU2780315C1 (ru) | Строительная смесь для 3d-принтера | |
RU2781303C1 (ru) | Модифицированная строительная смесь для 3d-принтера | |
RU2781203C1 (ru) | Сырьевая смесь для аддитивного строительного производства | |
RU2777224C1 (ru) | Бетонная смесь для строительной 3d-печати | |
RU2773914C1 (ru) | Строительная сырьевая смесь для 3d-печати |