RU2768260C1 - Способ измерения прогиба технологического канала ядерного реактора - Google Patents

Способ измерения прогиба технологического канала ядерного реактора Download PDF

Info

Publication number
RU2768260C1
RU2768260C1 RU2021128446A RU2021128446A RU2768260C1 RU 2768260 C1 RU2768260 C1 RU 2768260C1 RU 2021128446 A RU2021128446 A RU 2021128446A RU 2021128446 A RU2021128446 A RU 2021128446A RU 2768260 C1 RU2768260 C1 RU 2768260C1
Authority
RU
Russia
Prior art keywords
fiber
deflection
sensor
nuclear reactor
optic sensor
Prior art date
Application number
RU2021128446A
Other languages
English (en)
Inventor
Артем Николаевич Федоров
Александр Александрович Подосинников
Максим Алексеевич Степанов
Original Assignee
Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом")
Акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля" (АО "НИКИЭТ")
Общество с ограниченной ответственностью "Пролог" (ООО "Пролог")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом"), Акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля" (АО "НИКИЭТ"), Общество с ограниченной ответственностью "Пролог" (ООО "Пролог") filed Critical Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом")
Priority to RU2021128446A priority Critical patent/RU2768260C1/ru
Priority to KR1020247003106A priority patent/KR20240032053A/ko
Priority to PCT/RU2021/000549 priority patent/WO2023055251A1/ru
Priority to CN202180101482.8A priority patent/CN117769748A/zh
Priority to CA3225720A priority patent/CA3225720A1/en
Application granted granted Critical
Publication of RU2768260C1 publication Critical patent/RU2768260C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Предлагаемое изобретение относится к способу измерения прогиба технологического канала ядерного реактора. Способ включает размещение внутри центральной трубки тепловыделяющей сборки закрепленного на конце гибкой полой несущей штанги, по крайней мере, одного волоконно-оптического датчика, подачу светового сигнала по подключенным к датчику волоконно-оптическим линиям, регистрацию отраженных световых сигналов с помощью соединенного с волоконно-оптическими линиями фотоприемника. Определение прогиба технологического канала ядерного реактора осуществляют на основе анализа параметров светового сигнала. Причем используется волоконно-оптический датчик, снабженный гравитационным маятником, подвешенным с возможностью отклонения на нижнем конце волоконно-оптического датчика, гибкую полую несущую штангу перемещают с волоконно-оптическим датчиком вдоль центральной трубки тепловыделяющей фиксируют сдвиг интерференционной картины отраженного светового сигнала в газовом зазоре между верхней торцевой поверхностью гравитационного маятника и нижней торцевой поверхностью соединенных с фотоприемником и закрепленных на датчике волоконно-оптических линий. Далее на основании профилограмм газового зазора рассчитывают величину и направление прогиба центральной трубки тепловыделяющей сборки от вертикальной оси, по которым судят о наличии и величине прогиба технологического канала ядерного реактора. Техническим результатом является упрощение проведения измерений прогиба технологического канала ядерного реактора при одновременном сохранении точности измерения. 4 ил.

Description

Настоящее изобретение относится к измерительной технике и может быть использовано при реализации способа измерения прогиба протяженных вертикально направленных каналов, и, в частности, для измерения прогиба технологических каналов ядерных реакторов, в том числе ядерного реактора типа РБМК.
Наиболее близким техническим решением к заявляемому способу является способ измерения прогиба технологического канала ядерного реактора, включающий размещение в центральной трубке тепловыделяющей сборки несущего элемента как минимум с одним волоконно-оптическим датчиком, подачу светового сигнала по волоконно-оптическим линиям датчика и регистрацию прогиба центральной трубки тепловыделяющей сборки в виде профилограмм путем анализа отраженных световых сигналов (патент РФ №2626301, дата публикации 25.07.2017, МПК G01B 5/20).
В известном способе используют волоконно-оптические датчики деформации, представляющие собой решетки Брэгга, внедренные на нескольких уровнях в структуру радиационно-стойкого кварцевого оптического волокна. Для создания светового сигнала используют лазерное излучение длиной волны от 800 нм до 1600 нм (800*10-9 м до 1600*10-9 м), а в качестве несущего элемента применяют гибкий полый стержень, внутри которого размещены волоконно-оптические датчики деформации. При прогибе технологического канала происходит прогиб центральной трубки тепловыделяющей сборки, а, следовательно, и прогиб расположенного в центральной трубке гибкого стержня с волоконно-оптическими датчиками, при этом на волоконно-оптические датчики деформации воздействуют усилия растяжения или сжатия. При прохождении по волоконно-оптическим линиям датчиков деформации светового сигнала, инициированного узкополосным перестраиваемым лазером, длина волны, отраженной решеткой Брэгга, меняется. Это изменение регистрируется фотоприемником и анализируется при помощи программных средств, установленных на компьютере.
Недостатком известного способа измерения прогиба технологического канала ядерного реактора является сложная и трудоемкая технология изготовления волоконно-оптического датчика деформации, связанная с технически сложным выполнением в радиационно-стойком кварцевом оптическом волокне микроскопических точек с измененным показателем преломления, образующих решетку Брэгга.
Задачей, на решение которой направлено предлагаемое изобретение, является создание способа измерения прогиба технологического канала тепловыделяющей сборки ядерного реактора, позволяющего исключить применение радиационно-стойкого кварцевого оптического волокна с микроскопическими точками с измененным показателем преломления, образующими решетку Брэгга, изготовление которого включает в себя сложную и трудоемкую технологическую операцию получения указанных микроскопических точек при одновременном сохранении возможности получения достоверной информации об изменении геометрических параметров технологического канала тепловыделяющей сборки ядерного реактора в процессе его эксплуатации.
Техническим результатом настоящего изобретения является упрощение проведения измерений прогиба технологического канала ядерного реактора при одновременном сохранении точности измерения.
Указанный технический результат в заявляемом способе измерения прогиба технологического канала ядерного реактора, включающем размещение внутри центральной трубки тепловыделяющей сборки закрепленного на конце гибкой полой несущей штанги, по крайней мере, одного волоконно-оптического датчика, подачу светового сигнала по подключенным к датчику волоконно-оптическим линиям, регистрацию отраженных световых сигналов с помощью соединенного с волоконно-оптическими линиями фотоприемника и определение прогиба технологического канала ядерного реактора на основе анализа параметров светового сигнала с помощью подключенного к фотоприемнику компьютера, достигается тем, что волоконно-оптический датчик снабжают гравитационным маятником, подвешенным с возможностью отклонения на нижнем конце волоконно-оптического датчика, перемещают гибкую полую несущую штангу с волоконно-оптическим датчиком вдоль центральной трубки тепловыделяющей сборки и с помощью фотоприемника и компьютера фиксируют сдвиг интерференционной картины отраженного светового сигнала в газовом зазоре между верхней торцевой поверхностью гравитационного маятника и нижней торцевой поверхностью соединенных с фотоприемником и закрепленных на датчике волоконно-оптических линий, изменяющемся при перемещении волоконно-оптического датчика за счет отклонения гравитационного маятника от оси искривленной центральной трубки тепловыделяющей сборки, на основании зафиксированных сдвигов интерференционной картины отраженного светового сигнала регистрируют профилограммы изменений газового зазора для каждой волоконно-оптической линии каждого волоконно-оптического датчика, а на основании полученных профилограмм газового зазора рассчитывают величину и направление прогиба центральной трубки тепловыделяющей сборки от вертикальной оси, по которым судят о наличии и величине прогиба технологического канала ядерного реактора.
Сущность настоящего изобретения поясняется чертежами, где на фиг. 1 представлена общая схема устройства для осуществления способа измерения прогиба технологического канала ядерного реактора, на фиг. 2 изображен общий вид волоконно-оптического датчика для проведения измерений, на фиг. 3 представлена схема расположения волоконно-оптического датчика в прямой центральной трубке тепловыделяющей сборки для осуществления способа измерения прогиба технологического канала ядерного реактора, на фиг. 4 показана схема расположения волоконно-оптического датчика в центральной трубке тепловыделяющей сборки с прогибом.
Способ измерения прогиба технологического канала ядерного реактора осуществляется следующим образом.
Внутри центральной трубки тепловыделяющей сборки размещают гибкую полую несущую штангу, на конце которой закреплен, по крайней мере, один волоконно-оптический датчик. Световой сигнал подают по подключенным к датчику волоконно-оптическим линиям, регистрируют отраженный световой сигнал с помощью соединенного с волоконно-оптическими линиями фотоприемником. На основе анализа параметров светового сигнала определяют прогиб технологического канала ядерного реактора с помощью подключенного к фотоприемнику компьютера. Волоконно-оптический датчик снабжают гравитационным маятником, подвешенным с возможностью отклонения на нижнем конце волоконно-оптического датчика, перемещают гибкую полую несущую штангу с волоконно-оптическим датчиком вдоль центральной трубки тепловыделяющей сборки и с помощью фотоприемника и компьютера фиксируют сдвиг интерференционной картины отраженного светового сигнала в газовом зазоре между верхней торцевой поверхностью гравитационного маятника и нижней торцевой поверхностью соединенных с фотоприемником и закрепленных на датчике волоконно-оптических линий, изменяющемся при перемещении волоконно-оптического датчика за счет отклонения гравитационного маятника от оси искривленной центральной трубки тепловыделяющей сборки. На основании зафиксированных сдвигов интерференционной картины отраженного светового сигнала регистрируют профилограммы изменений газового зазора для каждой волоконно-оптической линии каждого волоконно-оптического датчика, а на основании полученных профилограмм газового зазора рассчитывают величину и направление прогиба центральной трубки тепловыделяющей сборки от вертикальной оси, по которым судят о наличии и величине прогиба технологического канала ядерного реактора.
Предлагаемое изобретение поясняется примером конкретного выполнения, описанными ниже. Приведенный пример не является единственно возможными, но наглядно демонстрирует возможность достижения данной совокупностью существенных признаков заявленного технического результата.
Пример.
Гибкую полую несущую штангу 1 с закрепленным на ее конце как минимум одним волоконно-оптическим датчиком 2 устанавливают в центральной трубке 3 тепловыделяющей сборки. Затем подключают волоконно-оптический датчик 2 к перенастраиваемому лазеру 4 и фотоприемнику 5, которые, в свою очередь, подключают через блок 6 первичной обработки информации к компьютеру 7. Корпус волоконно-оптического датчика 2 жестко соединен посредством втулки 8 с гибкой полой несущей штангой 1. Трубка 9 и крышка 10 корпуса волоконно-оптического датчика 2 обеспечивают герметичность полости волоконно-оптического датчика 2, которая заполнена инертным газом. После установки гибкой полой несущей штанги 1 в исходное положение - гибкая полая несущая штанга 1 полностью опущена в центральную трубку 3 тепловыделяющей сборки - начинают подъем гибкой полой несущей штанги 1. Измерение прогиба проводят при перемещении гибкой полой несущей штанги 1 в центральной трубке 3 тепловыделяющей сборки, при этом на волоконно-оптический датчик 2 по волоконно-оптическим линиям 11 подают световой сигнал от перестраиваемого лазера 4, а отраженный волоконно-оптическим датчиком 2 сигнал принимают фотоприемником 5.
При наличии прогиба технологического канала и, соответственно, прогиба центральной трубки 3 тепловыделяющей сборки, гравитационный маятник 12 волоконно-оптического датчика 2 за счет гибкого элемента 13 отклоняется на угол, пропорциональный углу отклонения волоконно-оптического датчика 2 от вектора силы тяжести.
То есть при подъеме гибкой полой несущей штанги 1 происходит отклонение волоконно-оптического датчика 2 относительно поля силы тяжести и, как следствие, отклонение гравитационного маятника 12 на угол а (фиг. 4) относительно центральной оси волоконно-оптического датчика 2. В результате происходит изменение геометрических параметров газового зазора 14, а именно происходит изменение расстояний между отражающей поверхностью гравитационного маятника 12 и торцами волоконно-оптических линий 11 (величина зазора X1 1≠Х2 1 на фиг. 4), что вызывает сдвиг интерференционной картины, который регистрируют посредством фотоприемника 5 и анализируют при помощи специализированных программных средств, установленных на компьютере 7. В результате измерений для каждой волоконно-оптической линии 11 регистрируют профилограммы газового зазора 14. На основании полученных профилограмм газового зазора 14 рассчитывают профилограммы величины и направления отклонения центральной трубки 3 тепловыделяющей сборки от вертикальной оси, а затем рассчитывают величины и направления прогиба технологического канала, в котором размещена тепловыделяющая сборка.
Предлагаемый способ может быть использован при измерении прогиба технологических каналов ядерных реакторов, в том числе ядерного реактора типа РБМК.
Использование предлагаемого способа позволяет с необходимой точностью определить прогиб центральной трубки тепловыделяющей сборки и на его основании рассчитать прогиб технологического канала ядерного реактора типа РБМК.

Claims (1)

  1. Способ измерения прогиба технологического канала ядерного реактора, включающий размещение внутри центральной трубки тепловыделяющей сборки закрепленного на конце гибкой полой несущей штанги, по крайней мере, одного волоконно-оптического датчика, подачу светового сигнала по подключенным к датчику волоконно-оптическим линиям, регистрацию отраженных световых сигналов с помощью соединенного с волоконно-оптическими линиями фотоприемника и определение прогиба технологического канала ядерного реактора на основе анализа параметров светового сигнала с помощью подключенного к фотоприемнику компьютера, отличающийся тем, что волоконно-оптический датчик снабжают гравитационным маятником, подвешенным с возможностью отклонения на нижнем конце волоконно-оптического датчика, перемещают гибкую полую несущую штангу с волоконно-оптическим датчиком вдоль центральной трубки тепловыделяющей сборки и с помощью фотоприемника и компьютера фиксируют сдвиг интерференционной картины отраженного светового сигнала в газовом зазоре между верхней торцевой поверхностью гравитационного маятника и нижней торцевой поверхностью соединенных с фотоприемником и закрепленных на датчике волоконно-оптических линий, изменяющемся при перемещении волоконно-оптического датчика за счет отклонения гравитационного маятника от оси искривленной центральной трубки тепловыделяющей сборки, на основании зафиксированных сдвигов интерференционной картины отраженного светового сигнала регистрируют профилограммы изменений газового зазора для каждой волоконно-оптической линии каждого волоконно-оптического датчика, а на основании полученных профилограмм газового зазора рассчитывают величину и направление прогиба центральной трубки тепловыделяющей сборки от вертикальной оси, по которым судят о наличии и величине прогиба технологического канала ядерного реактора.
RU2021128446A 2021-09-29 2021-09-29 Способ измерения прогиба технологического канала ядерного реактора RU2768260C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2021128446A RU2768260C1 (ru) 2021-09-29 2021-09-29 Способ измерения прогиба технологического канала ядерного реактора
KR1020247003106A KR20240032053A (ko) 2021-09-29 2021-12-08 원자로 기술 채널 굴곡 측정 방법
PCT/RU2021/000549 WO2023055251A1 (ru) 2021-09-29 2021-12-08 Способ измерения прогиба технологического канала ядерного реактора
CN202180101482.8A CN117769748A (zh) 2021-09-29 2021-12-08 核反应堆工艺通道的偏转测量方法
CA3225720A CA3225720A1 (en) 2021-09-29 2021-12-08 Method of measuring bending of a nuclear reactor fuel channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021128446A RU2768260C1 (ru) 2021-09-29 2021-09-29 Способ измерения прогиба технологического канала ядерного реактора

Publications (1)

Publication Number Publication Date
RU2768260C1 true RU2768260C1 (ru) 2022-03-23

Family

ID=80819800

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021128446A RU2768260C1 (ru) 2021-09-29 2021-09-29 Способ измерения прогиба технологического канала ядерного реактора

Country Status (5)

Country Link
KR (1) KR20240032053A (ru)
CN (1) CN117769748A (ru)
CA (1) CA3225720A1 (ru)
RU (1) RU2768260C1 (ru)
WO (1) WO2023055251A1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594819A (en) * 1995-07-26 1997-01-14 Electric Power Research Institute Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
RU2246144C2 (ru) * 2003-04-07 2005-02-10 Смоленская атомная электростанция Способ и устройство контроля газового зазора технологического канала уран-графитового ядерного реактора
RU2361173C2 (ru) * 2007-08-13 2009-07-10 Открытое акционерное общество "Сибирский химический комбинат" Устройство для контроля искривления технологических каналов ядерного реактора
RU2626301C1 (ru) * 2016-11-15 2017-07-25 Общество с ограниченной ответственностью "Пролог" Способ измерения искривления технологического канала ядерного реактора типа РБМК и устройство для его осуществления
FR3045833B1 (fr) * 2015-12-18 2018-02-09 Electricite De France Dispositif de controle et de mesure de defauts de soudure d'une paroi cylindrique et procede qui en fait usage
KR101896850B1 (ko) * 2017-12-07 2018-09-07 한전케이피에스 주식회사 원자로 헤드관통관 검사 시스템 및 검사 방법
EP3542372A1 (fr) * 2016-11-15 2019-09-25 Framatome Dispositif d'éclairage sous eau pour l'inspection visuelle d'un équipement de réacteur nucléaire et procédé associé
RU2726038C1 (ru) * 2019-11-12 2020-07-08 Федеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук Способ неразрушающего контроля конструкций из композиционного материала
RU2738751C1 (ru) * 2020-07-01 2020-12-16 Общество с ограниченной ответственностью Научно-производственная фирма "Сосны" Способ ультразвукового контроля параметров формоизменения тепловыделяющих сборок ядерных реакторов

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594819A (en) * 1995-07-26 1997-01-14 Electric Power Research Institute Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
RU2246144C2 (ru) * 2003-04-07 2005-02-10 Смоленская атомная электростанция Способ и устройство контроля газового зазора технологического канала уран-графитового ядерного реактора
RU2361173C2 (ru) * 2007-08-13 2009-07-10 Открытое акционерное общество "Сибирский химический комбинат" Устройство для контроля искривления технологических каналов ядерного реактора
FR3045833B1 (fr) * 2015-12-18 2018-02-09 Electricite De France Dispositif de controle et de mesure de defauts de soudure d'une paroi cylindrique et procede qui en fait usage
RU2626301C1 (ru) * 2016-11-15 2017-07-25 Общество с ограниченной ответственностью "Пролог" Способ измерения искривления технологического канала ядерного реактора типа РБМК и устройство для его осуществления
EP3542372A1 (fr) * 2016-11-15 2019-09-25 Framatome Dispositif d'éclairage sous eau pour l'inspection visuelle d'un équipement de réacteur nucléaire et procédé associé
KR101896850B1 (ko) * 2017-12-07 2018-09-07 한전케이피에스 주식회사 원자로 헤드관통관 검사 시스템 및 검사 방법
RU2726038C1 (ru) * 2019-11-12 2020-07-08 Федеральное государственное бюджетное учреждение науки Пермский федеральный исследовательский центр Уральского отделения Российской академии наук Способ неразрушающего контроля конструкций из композиционного материала
RU2738751C1 (ru) * 2020-07-01 2020-12-16 Общество с ограниченной ответственностью Научно-производственная фирма "Сосны" Способ ультразвукового контроля параметров формоизменения тепловыделяющих сборок ядерных реакторов

Also Published As

Publication number Publication date
CN117769748A (zh) 2024-03-26
KR20240032053A (ko) 2024-03-08
CA3225720A1 (en) 2023-04-06
WO2023055251A1 (ru) 2023-04-06

Similar Documents

Publication Publication Date Title
Guo et al. Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam
US20060013523A1 (en) Fiber optic position and shape sensing device and method relating thereto
CN105783866B (zh) 一种基于低相干干涉技术的液位仪及沉降监测系统
RU2540258C1 (ru) Устройство для измерения деформаций и способ измерения деформаций
US6541758B2 (en) Liquid-level gauge
RU2626301C1 (ru) Способ измерения искривления технологического канала ядерного реактора типа РБМК и устройство для его осуществления
US11473943B2 (en) Optical fiber sensor
CN105806262B (zh) 一种基于低相干干涉技术的测斜系统及方法
US5235179A (en) Evanescent wave liquid level sensor with density compensation
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
RU2768260C1 (ru) Способ измерения прогиба технологического канала ядерного реактора
CN110608675B (zh) 基于光纤光栅传感技术的多点位移测试方法
RU2774260C1 (ru) Способ измерения прогиба протяженного вертикально направленного канала
WO2023055253A1 (ru) Способ измерения прогиба протяженного вертикально направленного канала
RU2775863C1 (ru) Устройство для измерения прогиба протяжённого, вертикально направленного канала
Caucheteur et al. Simultaneous bend and temperature sensor using tilted FBG
WO2023055252A1 (ru) Устройство для измерения прогиба протяжённого вертикально направленного канала
Chawah et al. Direct non-invasive measuring techniques of nanometric liquid level variations using extrinsic fiber Fabry–Perot interferometers
CN108431558A (zh) 通过光反射测量计测量液位的装置、包括该装置的结构和对应的测量方法
RU2783678C1 (ru) Оптико-электронный способ измерения диаметра цилиндрического объекта
Han et al. Comprehensive error equation for fiber optic inclinometer
Burnett et al. Optical Fibre‐based Vectoral Shape Sensor
RU2714488C1 (ru) Способ и устройство измерения искривления технологического канала ядерного реактора
Eichhorn et al. Pressure and thermal effects on Rayleigh fiber-optic strain measurment for soil-structure interaction
SU1105540A1 (ru) Устройство дл определени неровностей автомобильной дороги