RU2763907C1 - Установка для извлечения меди из кислых растворов - Google Patents

Установка для извлечения меди из кислых растворов Download PDF

Info

Publication number
RU2763907C1
RU2763907C1 RU2021109264A RU2021109264A RU2763907C1 RU 2763907 C1 RU2763907 C1 RU 2763907C1 RU 2021109264 A RU2021109264 A RU 2021109264A RU 2021109264 A RU2021109264 A RU 2021109264A RU 2763907 C1 RU2763907 C1 RU 2763907C1
Authority
RU
Russia
Prior art keywords
copper
exchange columns
concentrate
reactor
desorption solution
Prior art date
Application number
RU2021109264A
Other languages
English (en)
Inventor
Сергей Владимирович Жиленко
Антон Геннадьевич Смирнов
Наталья Евгеньевна Тюкалова
Виктор Константинович Грузднев
Инна Валерьевна Мамонтова
Владимир Николаевич Рычков
Евгений Владимирович Кириллов
Сергей Владимирович Кириллов
Григорий Михайлович Буньков
Original Assignee
Публичное акционерное общество «Северсталь» (ПАО «Северсталь»)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество «Северсталь» (ПАО «Северсталь») filed Critical Публичное акционерное общество «Северсталь» (ПАО «Северсталь»)
Priority to RU2021109264A priority Critical patent/RU2763907C1/ru
Application granted granted Critical
Publication of RU2763907C1 publication Critical patent/RU2763907C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper

Abstract

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов.Установка для извлечения содержит ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через ионообменные колонны, устройства для получения концентрата меди и насосы для перекачивания технологических сред. Ионообменные колонны выполнены с возможностью заполнения их сорбентом с биспиколиламинными группами. В качестве устройств для получения концентрата меди используют реактор осаждения гидроксида меди, фильтр для фильтрации гидроксида меди и электролизер, которые выполнены с возможностью получения трех концентратов меди из насыщенного медью раствора десорбции, прошедшего ионообменные колонны. Установка содержит байпасную магистраль, которая выполнена с возможностью подачи насыщенного медью раствора десорбции в реактор осаждения гидроксида меди или в электролизер. Изобретение позволяет увеличить степень извлечения меди, что дает возможность получать концентраты меди нескольких типов без потерь меди с технологическими осадками. 1 ил., 2 табл., 2 пр.

Description

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов .
Известна установка извлечения меди из кислых растворов способом цементации. Установка состоит из вращающегося барабана с металлом-осадителем, отстойника цементационного осадка, сборника обезмеженного раствора (Халезов, Б.Д., Ватолин Н.А., Макурин Ю.Н., Быков Н.А. Исследование извлечения меди в барабанном цементаторе / Б.Д. Халезов, Н.А. Ватолин, Ю.Н. Макурин, Н.А. Быков // Горный информационно-аналитический бюллетень. - 2005. - №5. - С. 302-311). Установка обеспечивает непрерывное перемешивание медьсодержащего раствора с металлом-осадителем с одновременным активным удалением частичек цементационной меди и посторонних механических примесей с поверхности скрапа. Однако высокие диффузионные ограничения приводят к низкой степени извлечения меди и малой производительности установки, что делает процесс извлечения меди малоэффективным.
Наиболее близким к предлагаемому изобретению является установка (Экстракция и сорбция в металлургии никеля, кобальта и меди : (Материалы по теории и практике) : [Сборник статей] / [Под общ. ред. Э. Н. Меркина] ; М-во цвет. металлургии СССР. Центр. науч.-исслед. ин-т информации и техн.-экон. исследований цвет. металлургии. - Москва: 1970. - 182 с.), включающая реактор нейтрализатор для нейтрализации раствора до рН=4,3÷4,5 известью, ионообменные колонны, заполненные сорбентом с иминодиацетатными группами, реактор приготовления раствора десорбции, устройство получения концентрата меди из насыщенного медью раствора десорбции - автоклавный восстановитель, насосы для перекачивания технологических сред.
Недостатком указанной установки является наличие реактора нейтрализатора. Реактор необходим т.к. последующая стадия сорбции меди предполагает использование в ионообменных колоннах сорбента с иминодиацетатными группами, который плохо сорбирует медь из кислых и слабокислых растворов при рН ≤ 4. Для этого необходимо провести операцию нейтрализации кислого раствора до рН=4,3÷4,5 в реакторе, добавляя в кислый раствор известь. Далее полученную в реакторе нейтрализаторе суспензию необходимо отфильтровать на фильтре с получением осадка извести. Таким образом использование реактора нейтрализатора и фильтра требует высоких временных, реагентных и энергетических затрат, значительных производственных площадей для размещения оборудования, привлечения дополнительного персонала. Кроме того, на этой стадии происходит частичная потеря меди за счет соосаждения ее с осадком извести.
Применение в составе установки устройства для получения концентрата меди из насыщенного медью раствора десорбции - автоклавного восстановителя, диктует использование высоких давлений и температур, что требует значительных энергозатрат. Кроме того, использование данного оборудования приводит как к получению концентрата меди низкого качества, так и к дополнительным потерям меди за счет ее соосаждения с осадком автоклавного восстановителя.
Задачей изобретения является разработка установки, обеспечивающей селективное извлечение меди из кислых растворов, увеличение степени извлечения меди за счет уменьшения потерь вследствие соосаждения с технологическими осадками.
Техническим результатом предлагаемого изобретения является, увеличение степени извлечение меди за счет использования сорбционных колонн, заполненных сорбентом с биспиколиламинными группами, что дает возможность получать концентраты меди нескольких типов без потерь меди с технологическими осадками.
Технический результат достигается тем, что установка для извлечения меди из кислых растворов, содержащая ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через ионообменные колонны, устройства для получения концентрата меди и насосы для перекачивания технологических сред, согласно изобретению ионообменные колонны выполнены с возможностью заполнения их сорбентом с биспиколиламинными группами, в качестве устройств для получения концентрата меди использованы реактор осаждения гидроксида меди, фильтр для фильтрации гидроксида меди и электролизер, которые выполнены с возможностью получения трех концентратов меди из насыщенного медью раствора десорбции, прошедшего ионообменные колонны, при этом установка содержит байпасную магистраль, которая выполнена с возможностью подачи насыщенного медью раствора десорбции в реактор осаждения гидроксида меди или в электролизер.
Использование ионообменных колонн, заполненных сорбентом с биспиколиламинными группами, позволяет отказаться от оборудования, необходимого для предварительной нейтрализации кислого раствора и вести извлечение меди непосредственно из кислого раствора. Это очень важное достоинство установки, т.к. существуют производства (травильные растворы, содержащие медь, растворы подземного и кучного выщелачивания медных руд), где с технологической точки зрения нельзя изменять химический состав кислого раствора. Кроме того, исключение предварительной операции нейтрализации позволяет снизить потери меди за счет соосаждения с осадком извести.
Достоинством установки является так же использование устройства, позволяющего получать концентраты меди нескольких типов без потерь меди с технологическими осадками.
Использование электролизера для извлечения концентрата меди непосредственно из насыщенного медью раствора десорбции позволяет резко снизить удельные затраты и повышает качество получаемого концентрата меди (концентрат меди I) в сравнении с использованием автоклавного восстановителя.
Ввиду того, что сорбция меди может в незначительной степени сопровождаться сорбцией элементов-примесей (железо, цинк, натрий, кальций и т.д.), то они могут также концентрироваться с медью в ионообменных колоннах и далее в насыщенном медью растворе десорбции. При выделении концентрата меди на электролизере эти примеси, при достижении определенных концентраций, могут загрязнять концентрат меди. Для получения концентрата меди более высокого качества введено дополнительное оборудование, состоящее из реактора осаждения гидроксида меди (концентрат меди II) и фильтра для фильтрации гидроксида меди. На этой операции можно отделиться от большинства примесей.
При последующей фильтрации и растворении гидроксида меди в кислоте в том же реакторе, где и осаждали гидроксид меди, получается электролит, содержание примесей в котором значительно меньше, чем в насыщенном медью растворе десорбции. При выделении на электролизере из такого электролита получается концентрат меди (концентрат меди III) более высокого качества.
Изобретение поясняется чертежами, где на фиг.1 показана установка для извлечения меди из кислых растворов, состоящая из ионообменных колонн (1,2), реактора приготовления раствора десорбции (3), реактора осаждения гидроокиси меди (5), фильтра для фильтрации гидроксида меди (4), электролизера (6), насосов (7).
Процесс извлечения меди из кислых растворов с использованием предлагаемой установка включает следующие операции:
- селективное извлечение ионов меди из кислого раствора с использованием сорбента с биспиколиламинными группами, загруженного в ионообменные колонны (1,2);
- десорбцию меди из насыщенного сорбента раствором десорбции, приготовленным в реакторе (3), с подачей насыщенного медью раствора десорбции или в реактор осаждения гидроксида меди (5) или сразу в электролизер (6) на получение концентрата меди (концентрат меди I);
- осаждение меди из насыщенного медью раствора десорбции в виде гидроксида меди (концентрат меди II) с последующей фильтрацией на фильтре (4);
- выделение на электролизере (6) концентрата меди (концентрат меди III) из электролита, приготовленного путем растворения в кислоте гидроксида меди в реакторе (5).
Установка содержит байпасную магистраль (Б1М1), которая позволяет выбирать способ переработки насыщенного медью раствора десорбции путем его нейтрализации кислотой с получением гидроксида меди в реакторе (5) или путем подачи в электролизер (6) с выделением концентрата меди (фиг. 1).
Использование установки для извлечения меди подтверждается следующими примерами.
Пример 1.
Установку подключили к потоку кислого раствора - солянокислый раствор травления (концентрация соляной кислоты 10 г/дм3), содержащего ионы меди 100 мг/дм3 и ионы железа 1000 мг/дм3. Одна ионообменная колонна была заполнена сорбентом с иминодиацетатными группами, другая ионообменная колонна была заполнена сорбентом с биспиколиламинными группами. Раствор подавался параллельно на две ионообменные колонны. Через ионообменные колонны было пропущено по 30 удельных (соответствующих объему колонны) объемов солянокислого раствора травления. Пробы солянокислого раствора травления отбирали на выходе из ионообменных колонн через равные промежутки времени и анализировали на медь и железо. По остаточной концентрации элементов в солянокислом растворе травления после колонн определяли степень сорбции меди и железа.
Таблица 1
Тип сорбента Степень извлечения Cu, % Степень извлечения Fe, %
Иминодиацетатные группы 5 80
Биспиколиламинные группы 96 2
Из представленных данный видно, что сорбция меди на сорбенте с иминодиацетатными и группами из кислого раствора практически не наблюдается. Сорбент с биспиколиламинными группами извлекает медь из такого раствора более чем на 90%, при этом практически не сорбируется железо, т.е. сорбция меди идет селективно.
Пример 2.
Установку подключили к потоку солянокислого раствора травления (концентрация соляной кислоты 10 г/дм3), содержащего ионы меди 100 мг/дм3 и ионы железа 1000 мг/дм3. Обе ионообменных колонны были заполнены сорбентом с биспиколиламинными группами. Раствор подавался последовательно через две ионообменные колонны. После насыщения медью ионообменных колонн, подача на них солянокислого раствора травления прекращалась. Через колонны последовательно пропускался раствор десорбции, приготовленный в реакторе приготовления раствора десорбции. При этом одну третью часть раствора десорбции, насыщенного медью, направляли в электролизер, где получали концентрат меди I. Одну треть закачивали в реактор осаждения гидроксида меди. Осаждали и фильтровали на фильтре с получением гидроксида меди - концентрата меди II. Одну треть закачивали в реактор осаждения гидроксида меди. Осаждали и фильтровали с получением гидроксида меди. Гидроксид меди растворяли в том же реакторе в кислоте с получением электролита, который направляли в электролизер, где получали концентрат меди III. Полученные образцы концентратов меди анализировали на содержание примесей. Параллельно проводили цикл с использованием оборудования, описанного в прототипе: нейтрализовали кислый раствор до рН = 4,5, фильтровали осадок извести, подавали отфильтрованный раствор на ионообменные колонны, заполненные сорбентом с иминодиацетатными группами. После насыщения сорбентов в ионообменных колоннах, готовили раствор десорбции в реакторе и десорбировали медь. Насыщенный медью раствор десорбции подавали в автоклавный восстановитель. Полученный концентрат меди анализировали на содержание примесей.
Таблица 2
Вариант получения катодной меди Степень извлечения меди в концентрат, % Соответствие качества концентратов меди, ГОСТ 859-2014 «Медь. Марки», ГОСТ 16539-79 Реактивы. Меди (II) оксид. Технические условия
Концентрат меди I 92 М1к
Концентрат меди II 89 99% в пересчете на CuO
Концентрат меди III 85 М00к
Концентрат меди (прототип) 63 не соответствует ГОСТ, содержание меди 83%
Из представленных данных видно, что предложенная установка позволяет достичь заявленный технический результат и получать концентраты меди, удовлетворяющие ГОСТ. При этом сквозная степень извлечения составляет более 80%. Реализация прототипа привела к значительным потерям меди с осадками и получению концентрата меди неудовлетворяющего ГОСТ.

Claims (1)

  1. Установка для извлечения меди из кислых растворов, содержащая ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через ионообменные колонны, устройства для получения концентрата меди и насосы для перекачивания технологических сред, отличающаяся тем, что ионообменные колонны выполнены с возможностью заполнения их сорбентом с биспиколиламинными группами, в качестве устройств для получения концентрата меди используют реактор осаждения гидроксида меди, фильтр для фильтрации гидроксида меди и электролизер, которые выполнены с возможностью получения трех концентратов меди из насыщенного медью раствора десорбции, прошедшего ионообменные колонны, при этом установка содержит байпасную магистраль, которая выполнена с возможностью подачи насыщенного медью раствора десорбции в реактор осаждения гидроксида меди или в электролизер.
RU2021109264A 2021-04-05 2021-04-05 Установка для извлечения меди из кислых растворов RU2763907C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021109264A RU2763907C1 (ru) 2021-04-05 2021-04-05 Установка для извлечения меди из кислых растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021109264A RU2763907C1 (ru) 2021-04-05 2021-04-05 Установка для извлечения меди из кислых растворов

Publications (1)

Publication Number Publication Date
RU2763907C1 true RU2763907C1 (ru) 2022-01-11

Family

ID=80040141

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021109264A RU2763907C1 (ru) 2021-04-05 2021-04-05 Установка для извлечения меди из кислых растворов

Country Status (1)

Country Link
RU (1) RU2763907C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2342192C2 (ru) * 2003-05-09 2008-12-27 Клин Тек Пти Лтд Способ и аппарат для десорбции материала
US7594951B2 (en) * 2005-12-07 2009-09-29 Gordon Rossiter Process for engineered ion exchange recovery of copper and nickel
US7713421B2 (en) * 2003-12-09 2010-05-11 Separation Design Group, Llc Sorption method, device, and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2342192C2 (ru) * 2003-05-09 2008-12-27 Клин Тек Пти Лтд Способ и аппарат для десорбции материала
US7713421B2 (en) * 2003-12-09 2010-05-11 Separation Design Group, Llc Sorption method, device, and system
US7594951B2 (en) * 2005-12-07 2009-09-29 Gordon Rossiter Process for engineered ion exchange recovery of copper and nickel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Захарьян С.В. Исследование и разработка гидрометаллургической технологической переработки бедного медно-сульфатного сырья Жезказганского региона с извлечением меди и сопутствующих ценных компонентов сорбционным методом., Авто диссертации на соискание ученой степени доктора технических наук, Екатеринбург, 2020. *
Под ред. Меркина Э.Н. Экстракция и сорбция в металлургии никеля, кобальта и меди., Сборник статей. Материалы по теории и практике., М., 1970. *
Под ред. Меркина Э.Н. Экстракция и сорбция в металлургии никеля, кобальта и меди., Сборник статей. Материалы по теории и практике., М., 1970. Захарьян С.В. Исследование и разработка гидрометаллургической технологической переработки бедного медно-сульфатного сырья Жезказганского региона с извлечением меди и сопутствующих ценных компонентов сорбционным методом., Автореферат диссертации на соискание ученой степени доктора технических наук, Екатеринбург, 2020. *

Similar Documents

Publication Publication Date Title
CN110902922B (zh) 含盐废酸中酸与盐分离的工艺
CN103011347B (zh) 一种电解处理含铜电镀废水并回收铜的方法
Moreira et al. Acid and metal reclamation from mining effluents: Current practices and future perspectives towards sustainability
CN101767904A (zh) 微生物法处理酸法地浸采铀矿山退役采区污染地下水工艺
CN111547892A (zh) 一种锰化工氨氮废水的处理方法
US20110195000A1 (en) Ion exchange cobalt recovery
CN105753219B (zh) 一种含钒废水深度净化处理及回收钒铬的工艺
CN102560536B (zh) 一种银电解液净化方法
RU2763907C1 (ru) Установка для извлечения меди из кислых растворов
CN101618898A (zh) 酸性废水中金、铂金和钯金的离子交换回收方法
CN103043834A (zh) 稀土冶炼废水处理工艺
Awadalla et al. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents
CN111087114A (zh) 钽铌生产废水的处理方法
CN201832563U (zh) 钒钠分离装置
CN104651880A (zh) 一种脱铜分氰联立工艺处理银冶炼含氰贫液的方法
CN104496000B (zh) 一种铜粉置换去除并回收水体中砷、锑的方法
CN102399996A (zh) 一种氰化浸金回水的净化与再生方法
CN102796012A (zh) 自含氢氧化四烷基铵的废液回收及纯化其的方法
CN104418446B (zh) 低浓度含铅废水的处理方法和设备
CN100354439C (zh) 纯化氯化铜溶液的方法
CN111719046A (zh) 一种分离水体中的铊并回收萃取剂的方法
CN218666204U (zh) 一种从硫精矿焙砂水洗废液中回收金、银、铜的系统
CN213327401U (zh) 一种硝酸型废液资源化制备尿素硝酸铵的系统
CN212050856U (zh) 含废酸和重金属的废水的处理设备
RU2759979C1 (ru) Способ извлечения меди из кислых растворов