RU2763436C1 - Камера сгорания газовой турбины и способ изготовления детали горелки - Google Patents

Камера сгорания газовой турбины и способ изготовления детали горелки Download PDF

Info

Publication number
RU2763436C1
RU2763436C1 RU2021101546A RU2021101546A RU2763436C1 RU 2763436 C1 RU2763436 C1 RU 2763436C1 RU 2021101546 A RU2021101546 A RU 2021101546A RU 2021101546 A RU2021101546 A RU 2021101546A RU 2763436 C1 RU2763436 C1 RU 2763436C1
Authority
RU
Russia
Prior art keywords
section
laminated
perforated plate
burner part
metal material
Prior art date
Application number
RU2021101546A
Other languages
English (en)
Other versions
RU2763436C9 (ru
Inventor
Сатоси КУМАГАИ
Йосихиде ВАДАЯМА
Сигенобу ЕГУЦИ
Original Assignee
Мицубиси Пауэр, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Пауэр, Лтд. filed Critical Мицубиси Пауэр, Лтд.
Publication of RU2763436C1 publication Critical patent/RU2763436C1/ru
Application granted granted Critical
Publication of RU2763436C9 publication Critical patent/RU2763436C9/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/99Ignition, e.g. ignition by warming up of fuel or oxidizer in a resonant acoustic cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Gas Burners (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к камере сгорания газовой турбины. Камера сгорания газовой турбины содержит деталь горелки, которая формована посредством трехмерного аддитивного производства, причем эта деталь горелки включает в себя первый участок, который используется в первом диапазоне температур и/или первом диапазоне напряжений, и второй участок, который используется во втором диапазоне температур, который ниже первого диапазона температур, и/или во втором диапазоне напряжений, который ниже первого диапазона напряжений, при этом скорость ламинирования, с которой металлический материал ламинируется на первом участке посредством трехмерного аддитивного производства, ниже скорости ламинирования, с которой металлический материал ламинируется на втором участке. Деталь горелки представляет собой перфорированную пластину, которая смешивает топливо с воздухом. Первый участок располагается на перфорированной пластине со стороны пламени, а второй участок располагается на перфорированной пластине с противоположной от пламени стороны. Скорость ламинирования, с которой металлический материал ламинируется на первом участке, и скорость ламинирования, с которой металлический материал ламинируется на втором участке, переключаются между собой непрерывно. Изобретение позволяет подавлять образование высокотемпературного пламени и реализовать равномерное горение. 2 н. и 13 з.п. ф-лы, 2 табл., 9 ил.

Description

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к конструкции камеры сгорания газовой турбины и способу изготовления камеры сгорания газовой турбины и, в частности, касается технологии, применимой к конструкции и способу изготовления детали горелки, формованной посредством технологии трехмерного аддитивного производства деталей из металлов.
Для газовых турбин установлены строгие экологические стандарты в отношении выбросов NOx при работе газовых турбин для снижения нагрузки, которую выхлопные газы создают для окружающей среды. Так как количество выбросов NOx из выхлопных газов увеличивается с повышением температуры пламени, необходимо локально подавлять образование высокотемпературного пламени и реализовать равномерное горение. Для получения равномерного горения требуется горелка сложной конструкции, которая обеспечивает высокую дисперсность топлива.
В качестве средства для изготовления горелки сложной конструкции предлагается технология трехмерного аддитивного производства. В соответствии с технологией трехмерного аддитивного производства появляется возможность изготавливать сложную конструкцию за счет облучения металлических порошков лазером и, таким образом, спекания металлических порошков. Применение технологии трехмерного аддитивного производства для изготовления конструкции (детали) горелки позволяет реализовать сложную конструкцию, которая обеспечивает повышение дисперсности топлива.
Из уровня техники в области трехмерного аддитивного производства известен объект, который описывается, например, в выложенной заявке на патент Японии, опубликованной под № 2017-15326. В этой выложенной заявке на патент Японии, опубликованной под № 2017-15326, раскрыта "камера сгорания газовой турбины, которая включает в себя секцию камеры сгорания, в которую подаются топливо и воздух, перфорированную пластину, которая расположена с верхней по потоку стороны секции камеры сгорания и в которой сформировано множество отверстий для форсунок, расположенных концентрическими рядами, множество топливных форсунок, которые размещены с верхней по потоку стороны соответствующих отверстий для форсунок в перфорированной пластине и подают топливо в секцию камеры сгорания, пластину для топливных форсунок, которая поддерживает топливные форсунки и распределяет топливо, поступающее с верхней по потоку стороны топливных форсунок, и блок топливных форсунок, в котором множество топливных форсунок поддерживаются как одно целое на общем основании, причем блок топливных форсунок соединен с пластиной топливных форсунок.
Кроме того, в выложенной заявке на патент Японии, опубликованной под № 2017-15326 (абзац [0028]), указано, что "блок 40 топливных форсунок изготавливают посредством резания, точного литья, трехмерного аддитивного производства и т.д.".
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Несмотря на то, что трехмерное аддитивное производство позволяет создавать сложные конструкции, существует проблема трехмерного аддитивного производства, заключающаяся в том, что ламинирование требует времени и увеличения затрат. Время ламинирования можно сократить за счет увеличения скорости сканирования и выходной мощности лазера, который спекает металлический порошок, но в этом случае возникает проблема, связанная со снижением относительной плотности материала. Так как при снижении относительной плотности снижается и прочность материала, то, как правило, выбирают условия ламинирования, позволяющие достаточно повысить относительную плотность и, таким образом, приводящие к увеличению времени ламинирования.
В конструкции горелки есть участок, где действует высокая температура и/или напряжение, и поэтому требуется высокая прочность материала, и участок, где действует низкая температура и/или напряжение, и поэтому высокой прочности материала не требуется. Следовательно, необязательно, чтобы вся горелка имела высокую прочность, и можно оптимизировать прочность для каждого участка.
В выложенной заявке на патент Японии, опубликованной под № 2017-15326, проблемы трехмерного аддитивного производства, описанные выше, и решения этих проблем не рассматриваются.
Следовательно, задачей настоящего изобретения является создание камеры сгорания газовой турбины, которая включает в себя деталь горелки, которая формована посредством трехмерного аддитивного производства и прочность материала которой оптимизирована для каждого участка.
Кроме того, задачей настоящего изобретения также является разработка способа изготовления детали горелки посредством трехмерного аддитивного производства, который позволяет изготавливать деталь горелки, прочность материала которой может быть оптимизирована для каждого участка, за сравнительно короткое время.
Для решения вышеупомянутых проблем в соответствии с одним аспектом настоящего изобретения предлагается камера сгорания газовой турбины, включающая в себя деталь горелки, формованную посредством трехмерного аддитивного производства, причем эта деталь горелки включает в себя первый участок, который используется в первом диапазоне температур и/или первом диапазоне напряжений, и второй участок, который используется во втором диапазоне температур, который ниже первого диапазона температур, и/или во втором диапазоне напряжений, который ниже первого диапазона напряжений, и скорость ламинирования, с которой металлический материал ламинируется на первом участке посредством трехмерного аддитивного производства, ниже скорости ламинирования, с которой металлический материал ламинируется на втором участке.
В соответствии с другим аспектом настоящего изобретения предлагается способ изготовления детали горелки посредством трехмерного аддитивного производства, включающий в себя этапы (а) ламинирования металлического материала на первом участке, который используется в диапазоне высоких температур и/или диапазоне высоких напряжений детали горелки, при первой скорости ламинирования и (b) ламинирования металлического материала на втором участке, который используется в диапазоне высоких температур и/или диапазоне высоких напряжений, который ниже диапазона температур и/или диапазона напряжений первого участка, при второй скорости ламинирования, которая выше первой скорости ламинирования.
В соответствии с настоящим изобретением появляется возможность реализовать камеру сгорания газовой турбины, которая включает в себя деталь горелки, которая формована посредством трехмерного аддитивного производства, и прочность материала которой оптимизирована для каждого участка.
Кроме того, в способе изготовления детали горелки посредством трехмерного аддитивного производства появляется также возможность реализовать способ изготовления детали горелки, который позволяет изготавливать деталь горелки, прочность материала которой может быть оптимизирована для каждого участка, за сравнительно короткое время.
Следовательно, появляется возможность создания камеры сгорания газовой турбины, имеющую высокие экологические характеристики и преимущество по стоимости.
Проблемы, конструкции и технические результаты, не рассмотренные выше, станут очевидными из приводимого ниже описания вариантов осуществления.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - схематический вид в разрезе, иллюстрирующий один пример конструкции камеры сгорания газовой турбины в соответствии с одним вариантом осуществления настоящего изобретения;
Фиг. 2 - увеличенный схематический вид, иллюстрирующий один пример горелки 17 на фиг. 1;
Фиг. 3 - схематический вид, иллюстрирующий один пример одного распределения относительной плотности металлического материала на перфорированной пластине в соответствии с первым вариантом осуществления настоящего изобретения на концептуальном уровне;
Фиг. 4 - схематический вид, иллюстрирующий один пример одной зависимости между положением в осевом направления и скоростью ламинирования перфорированной пластины в соответствии с первым вариантом осуществления настоящего изобретения;
Фиг. 5 - схематический вид, иллюстрирующий один пример другого распределения относительной плотности металлического материала на перфорированной пластине в соответствии со вторым вариантом осуществления настоящего изобретения на концептуальном уровне;
Фиг. 6 - схематический вид, иллюстрирующий один пример другой зависимости между положением в осевом направлении и скоростью ламинирования перфорированной пластины в соответствии со вторым вариантом осуществления настоящего изобретения;
Фиг. 7 - схематический вид, иллюстрирующий один пример еще одного другого распределения относительной плотности металлического материала на примыкающем участке отверстия форсунки в перфорированной пластине в соответствии с третьим вариантом осуществления настоящего изобретения на концептуальном уровне;
Фиг. 8 - схематический вид, иллюстрирующий один пример еще одного распределения относительной плотности металлического материала на топливной форсунке в соответствии с четвертым вариантом осуществления настоящего изобретения на концептуальном уровне; и
Фиг. 9 - схематический вид, иллюстрирующий один пример зависимости между положением и скоростью ламинирования топливной форсунки в соответствии с четвертым вариантом осуществления настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ
Ниже со ссылками на прилагаемые чертежи приводится описание вариантов осуществления настоящего изобретения. При этом на каждом чертеже одни и те же элементы конструкции обозначены одними и теми же ссылочными позициями, и их подробного описания не приводится.
Сначала со ссылками на фиг. 1 и 2 будет описана камера сгорания газовой турбины, которая является объектом настоящего изобретения. Фиг. 1 представляет собой схематический вид в разрезе, иллюстрирующий один пример конструкции камеры сгорания газовой турбины в соответствии с одним вариантом осуществления настоящего изобретения. На фиг. 1 камера сгорания газовой турбины показана как газотурбинная установка 1, включающая в себя компрессор 3, газовую турбину 8 и генератор 9. На фиг. 2 представлен увеличенный схематический вид, иллюстрирующий один пример горелки 17 на фиг. 1.
Как показано на фиг. 1, газотурбинная установка 1 включает в себя компрессор 3 который забирает воздух 2 из атмосферы и сжимает воздух 2, камеру 7 сгорания, которая смешивает сжатый воздух 4, сжатый в компрессоре 3, с топливом 5, сжигает топливо 5 со сжатым воздухом 4 и вырабатывает высокотемпературный газ 6 сгорания с высоким давлением, газовую турбину 8, которая приводится в движение газом 6 сгорания, вырабатываемым в камере 7 сгорания, и отбирает энергию газа 6 сгорания в качестве мощности вращения, и генератор 9, который вырабатывает электричество, используя мощность вращения газовой турбины 8.
На фиг. 1 – конструкция, которая включает в себя торцевой фланец 10, внешний цилиндр 11, перфорированную пластину 12, пластину 13 с топливными форсунками, топливные форсунки 14 и вкладыш 15, показана в качестве одного примера камеры 7 сгорания. Однако настоящее изобретение не ограничивается камерой сгорания, показанной на фиг. 1, и может применяться к камерам сгорания, имеющим различные конструкции.
Сжатый воздух 4, сжатый компрессором 3, проходит через канал 16 потока, сформированный между внешним цилиндром 11 и вкладышем 15, и поступает в горелку 17. Часть сжатого воздуха 4 поступает во вкладыш 15 в качестве охлаждающего воздуха 18 для охлаждения вкладыша 15.
Топливо 5 проходит через трубопровод 19 подачи топлива со стороны торцевого фланца 10, поступает в пластину 13 с топливными форсунками, проходит через соответствующие топливные форсунки 14 и впрыскивается в перфорированную пластину 12. На входе в отверстия 20 для форсунок в перфорированной пластине 12 со стороны топливных форсунок топливо 5, которое впрыскивается из топливных форсунок 14, и сжатый воздух 4 смешиваются друг с другом, полученная воздушно-топливная смесь 21 из топлива 5 и сжатого воздуха 4 впрыскивается в камеру сгорания 22, и образуется пламя 23.
При этом в камере 7 сгорания в соответствии с настоящим изобретением можно использовать не только природный газ, но также топливо, такое как коксовый газ, отходящий газ нефтепереработки и газ газификации угля.
На фиг. 2 представлен увеличенный схематический вид, иллюстрирующий один пример горелки 17 на фиг. 1. На фиг. 2 показан увеличенный схематический вид верхней половины горелки 17. Горелка 17 включает в себя перфорированную пластину 12, пластину 13 с топливными форсунками и топливные форсунки 14. Центральные оси 40 перфорированной пластины 12 и пластины 13 с топливными форсунками совпадают друг с другом. Торец 30 с верхней по потоку стороны каждой топливной форсунки 14 металлургически соединен с пластиной 13 с топливными форсунками, а участок соединения между верхним по потоку торцом 30 и пластиной 13 с топливными форсунками уплотнен так, чтобы избежать утечки топлива 5.
Торцевой участок 52 каждой топливной форсунки не входит в контакт с соответствующим отверстием 20 для форсунки в перфорированной пластине 12, и поэтому сжатый воздух 4 может свободно проходить в отверстие 20 для форсунки. Как правило, в качестве способа соединения верхних по потоку торцов 30 топливных форсунок 14 и пластины 13 с топливными форсунками используется сварка, пайка и т.д.
Пример 1
Первый вариант осуществления
Ниже со ссылками на фиг. 3 и фиг. 4 приводится описание конструкции и способа изготовления детали горелки в соответствии с первым вариантом осуществления настоящего изобретения. В первом варианте осуществления в качестве одного примера детали горелки описывается перфорированная пластина 12.
Фиг. 3 иллюстрирует один пример одного распределения относительной плотности металлического материала на перфорированной пластине 12 в первом варианте осуществления. Фиг. 3 представляет собой схематический вид, иллюстрирующий один пример участка 54 перфорированной пластины 12, которая показана на фиг. 2. Так как нижняя по потоку торцевая поверхность 50 перфорированной пластины 12 нагревается лучистой теплотой и т.д. пламени 23. область 61, которая находится поблизости от нижней по потоку торцевой поверхности 50 перфорированной пластины 12, достигает высокой температуры. В то же время верхняя по потоку торцевая поверхность 51 перфорированной пластины 12 и внутренняя поверхность 62 каждого отверстия 20 для форсунки охлаждаются сжатым воздухом 4, и поэтому их температура становится ниже температуры нижней по потоку торцевой поверхности 50.
Термическое напряжение создается в области 61 вследствие разницы температур между нижней по потоку торцевой поверхностью 50 и верхней по потоку торцевой поверхностью 51 и разницы температур между нижней по потоку торцевой поверхностью 50 и внутренней поверхностью каждого отверстия 20 для форсунки. Следовательно, область 61 имеет высокую температуру, и в области 61 создается термическое напряжение, и поэтому требуется, чтобы область 61 имела высокую прочность материала. В то же время область 60, которая находится поблизости от верхней по потоку торцевой поверхностью 51 перфорированной пластины 12, имеет низкую температуру и низкое напряжение, и высокой прочности от материала в области 60 не требуется.
Следовательно, в первом варианте осуществления, как показано на фиг. 4, перфорированную пластину 12 изготавливают таким образом, что относительная плотность металлического материала в области 61 перфорированной пластины 12 повышается за счет снижения скорости ламинирования, с которой металлический материал ламинируется в области 61 при трехмерном аддитивном производстве, и, таким образом приоритет отдается прочности материала. В то же время перфорированную пластину 12 также изготавливают таким образом, что скорость ламинирования, с которой металлический материал ламинируется в области 60, повышается, и, таким образом, приоритет отдается времени и стоимости изготовления. В результате появляется возможность реализовать способ изготовления, позволяющий оптимизировать прочность материала и стоимость изготовления для каждого участка перфорированной пластины 12.
Таблица 1 иллюстрирует пример выбора скорости ламинирования для участка с низкой температурой и низким напряжением. В случае, когда скорость ламинирования является низкой (приблизительно 0,1 кг/ч), допустимое напряжение составляет приблизительно 600 МПа. В тоже время в случае высокой скорости ламинирования (приблизительно 0,2 кг/ч) допустимое напряжение снижается по мере снижения относительной плотности металлического материала приблизительно до 400 МПа. Однако приложенное напряжение составляет приблизительно 300 МПа, что ниже допустимого напряжения (приблизительно 400 МПа) при высокой скорости ламинирования. Следовательно, становится возможным изготовление, при котором скорость ламинирования повышается и, таким образом, приоритет отдается времени и стоимости изготовления.
Figure 00000001
Пример выбора скорости ламинирования для участка с высокой температурой и высоким напряжением иллюстрирует Таблица 2. В случае, когда скорость ламинирования является низкой (приблизительно 0,1 кг/ч), допустимое напряжение составляет приблизительно 500 МПа. В то же время в случае высокой скорости (приблизительно 0,2 кг/ч) допустимое напряжение снижается по мере снижения относительной плотности металлического материала приблизительно до 300 МПа. Так как температура металла составляет приблизительно 600°С, что выше температуры металла на участке с низкой температурой и низким напряжением, составляющей приблизительно 400°С, допустимые напряжения, которые соответствуют высокой и низкой скоростям ламинирования, ниже допустимых напряжений в Таблице 1. Следовательно, при изготовлении необходимо снизить скорость ламинирования и, таким образом, отдать приоритет прочности материала.
Figure 00000002
Однако каждое соотношение между каждой скоростью ламинирования и каждой характеристикой, которое приведено в Таблице 1 и Таблице 2, является типичным примером, и настоящее изобретение также применимо к примерам, отличным от рассмотренных выше типичных примеров.
Кроме того, в качестве металлического материала, ламинируемого посредством трехмерного аддитивного производства, предполагается использовать высокотемпературный материал, такой как сплав никель(Ni)-хром(Cr) - ион(Fe), который зарегистрирован под названием, например, Inconel 718 (зарегистрированный товарный знак) или т.п., однако настоящее изобретение применимо к широкому диапазону металлических материалов.
Как описано выше, деталь горелки в соответствии с первым вариантом осуществления имеет первый участок (область 61), который используется в первом диапазоне температур (в диапазоне высоких температур) и/или в первом диапазоне напряжений (в диапазоне высоких напряжений), и второй участок (область 60), который используется во втором диапазоне температур (в диапазоне низких температур), который ниже первого диапазона температур (диапазон высоких температур), и/или во втором диапазоне напряжений (в диапазоне низких напряжений), который ниже первого диапазона напряжений (диапазон высоких напряжений). Скорость ламинирования, с которой металлический материал ламинируется на первом участке (в области 61) посредством трехмерного аддитивного производства, ниже скорости ламинирования, с которой металлический материал ламинируется на втором участке (во второй области 60).
При этом относительная плотность металлического материала на первом участке (в области 61) выше относительной плотности металлического материала на втором участке (в области 60).
Таким образом, в камере сгорания газовой турбины, которая включает в себя деталь горелки, формованную посредством трехмерного аддитивного производства, появляется возможность реализовать камеру сгорания газовой турбины, которая включает в себя деталь горелки, прочность материала которой оптимизирована для каждого участка.
Кроме того, в способе изготовления детали горелки посредством трехмерного аддитивного производства способ изготовления детали горелки в соответствии с первым вариантом осуществления включает в себя этапы: (а) ламинирования металлического материала на первом участке, который используется в диапазоне высоких температур и/или высоких напряжений детали горелки, при первой скорости ламинирования и (b) ламинирования металлического материала на втором участке, который используется в диапазоне, который ниже по температуре и/или напряжению диапазона первого участка, при второй скорости ламинирования, которая выше первой скорости ламинирования.
Таким образом, в способе изготовления детали горелки посредством трехмерного аддитивного производства появляется возможность реализовать способ изготовления детали горелки, который позволяет изготавливать деталь горелки, прочность материала которой может быть оптимизирована для каждого участка, за сравнительно короткое время.
Второй вариант осуществления
Описание конструкции и способа изготовления детали горелки в соответствии со вторым вариантом осуществления настоящего изобретения приводится со ссылками на фиг. 5 и фиг. 6. Во втором варианте осуществления точно так же, как и в первом варианте осуществления, в качестве одного примера детали горелки описывается перфорированная пластина 12.
Фиг. 5 иллюстрирует один пример другого распределения относительной плотности металлического материала на перфорированную пластину 12 в соответствии со вторым вариантом осуществления. На фиг. 5 представлен схематический вид, на котором к схематическому виду на фиг. 3 добавлена область 70 перехода скорости ламинирования. В способе изготовления в соответствии с первым вариантом осуществления на фиг. 4 скорости ламинирования области 60 и области 61 переключаются между собой скачкообразно. Однако в случае, когда скачкообразное переключение скоростей ламинирования невозможно вследствие проблем управления устройством изготовления, или в случае, когда в результате скачкообразного переключения скоростей ламинирования снижается прочность материала, в способе изготовления с иллюстрацией на фиг. 6 можно предусмотреть область 70 перехода.
То есть, как показано на фиг. 6, за счет области 70 перехода появляется возможность непрерывного взаимного переключения скоростей ламинирования.
Третий вариант осуществления
Описание конструкции и способа изготовления детали горелки в соответствии с третьим вариантом осуществления настоящего изобретения приводится со ссылками на фиг. 7. В третьем варианте осуществления точно так же, как и в первом варианте осуществления, в качестве одного примера детали горелки описывается перфорированная пластина 12.
Фиг. 7 иллюстрирует один пример еще одного другого распределения относительной плотности металлического материала на участке 80, который примыкает к внутренней поверхности 62 каждого отверстия 20 для форсунки в перфорированной пластине 12, в третьем варианте осуществления. Кроме того, на фиг. 7 представлен схематический вид в разрезе по А-А на фиг. 3 или фиг. 5. Так как внутренняя поверхность 62 каждого отверстия 20 для форсунки охлаждается сжатым воздухом 4, термическое напряжение создается на примыкающем участке 80 внутренней поверхности 62 каждого отверстия 20 для форсунки.
Следовательно, в третьем варианте осуществления перфорированную пластину 12 изготавливают таким образом, что, скорость ламинирования металлического материала на примыкающем участке 80 внутренней поверхности 62 делается ниже скорости ламинирования металлического материала в области 81, где термическое напряжение снижается, и, таким образом, приоритет отдается прочности материала примыкающего участка 80 внутренней поверхности 62. В то же время перфорированную пластину 12 также изготавливают таким образом, что в области 81, где термическое напряжение снижается, скорость ламинирования металлического материала делается выше скорости ламинирования металлического материала на примыкающем участке 80 внутренней поверхности 62, и, таким образом, время изготовления и стоимость сокращаются.
То есть скорость ламинирования металлического материала на примыкающем участке 80 внутренней поверхности 62 отверстия 20 для форсунки, которое сформировано в перфорированной пластине 12, ниже скорости ламинирования металлического материала в области 81, которая расположена за пределами примыкающего участка 80.
Четвертый вариант осуществления
Описание конструкции и способа изготовления детали горелки в соответствии с четвертым вариантом осуществления настоящего изобретения приводится со ссылками на фиг. 8 и фиг. 9. В четвертом варианте осуществления в качестве одного примера детали горелки описывается одна из топливных форсунок 14.
Фиг. 8 иллюстрирует один пример еще одного распределения относительной плотности металлического материала на топливной форсунке 14 в четвертом варианте осуществления. Фиг. 8 представляет собой увеличенный схематический вид, иллюстрирующий один пример участка 55 топливной форсунки 14 на фиг. 2. Топливная форсунка 14 имеет консольную конструкцию, при которой эта топливная форсунка 14 поддерживается на своем основании 53 пластиной 13 с топливными форсунками.
Под действием сжатого воздуха 4, который проходит вокруг топливной форсунки 14, и вибрации пластины 13 с топливными форсунками в топливной форсунке 14 может возникать вибрация. Как правило, вибрационное напряжение является максимальным в основании 53. Кроме того, под действием теплового излучения пламени 23 может повыситься температура на переднем торце 52 топливной форсунки 14.
Следовательно, с учетом вибрационного напряжения и теплового излучения необходимо повысить прочность материала в области 90 и области 92 топливной форсунки 14. В то же время, так как область 91 имеет низкое вибрационное напряжение и низкую температуру, проблем не возникает, даже в случае, когда прочность материала в области 91 является низкой.
Следовательно, в четвертом варианте осуществления, как показано на фиг. 9, топливную форсунку 14 изготавливают таким образом, что скорости ламинирования металлического материала в области 90 и области 92 топливной форсунки 14 снижаются, и, таким образом, приоритет отдается прочности материала. В то же время топливную форсунку 14 также изготавливают таким образом, что в области 91 скорость ламинирования металлического материала повышается и, таким образом, приоритет отдается времени изготовления и стоимости. Таким образом, появляется возможность реализовать способ изготовления, который позволяет оптимизировать прочность материала и стоимость изготовления для каждого участка топливной форсунки 14.
То есть скорости ламинирования металлического материала на участке со стороны основания (в области 90) и участке со стороны переднего торца (в области 92) топливной форсунки 14 ниже скорости ламинирования металлического материала в области 91 между участком со стороны основания (в области 90) и участком со стороны переднего торца (в области 92).
При этом настоящее изобретение не ограничивается рассмотренными выше вариантами осуществления и включает в себя самые различные модификации. Например, рассмотренные выше варианты осуществления были подробно описаны, чтобы помочь в понимании настоящего изобретения, и настоящее изобретение не обязательно ограничивается вариантами, которые включают в себя все конструкции, описанные выше. Кроме того, можно также заменить одну конструкцию в соответствии с одним вариантом осуществления одной конструкцией в соответствии с другим вариантом осуществления. Кроме того, можно также добавить одну конструкцию другого варианта осуществления к одной конструкции одного варианта осуществления. Кроме того, можно добавить/удалить/заменить одну конструкцию в соответствии с каждым вариантом осуществления другой конструкцией в соответствии с каждым вариантом осуществления.
СПИСОК ССЫЛОЧНЫХ ПОЗИЦИЙ
1 - газотурбинная установка,
2 - воздух,
3 - компрессор,
4 - сжатый воздух,
5 - топливо,
6 - газ сгорания,
7 - камера сгорания,
8 - газовая турбина,
9 - генератор,
10 - торцевой фланец,
11 - внешний цилиндр,
12 - перфорированная пластина,
13 - пластина с топливными форсунками,
14 - топливная форсунка,
15 - вкладыш,
16 - канал потока,
17 - горелка,
18 - охлаждающий воздух,
19 - трубопровод подачи топлива,
20 - отверстие для форсунки,
21 - воздушно-топливная смесь,
22 - секция камеры сгорания,
23 - пламя,
30 - верхней по потоку торец (топливной форсунки 14),
40 - центральные оси (перфорированной пластины 12 и пластины 13 с топливными форсунками),
50 - нижняя по потоку торцевая поверхность (перфорированной пластины 12),
51 - верхняя по потоку торцевая поверхность (перфорированной пластины 12),
52 - передний торец (топливной форсунки 14),
53 - основание (топливной форсунки 14),
54 - участок перфорированной пластины 12,
55 - участок топливной форсунки 14,
60 - область (где скорость ламинирования перфорированной пластины 12 высока),
61 - область (где скорость ламинирования перфорированной пластины 12 низка),
62 - внутренняя поверхность (отверстия 20 для форсунки),
70 - область перехода (скорости ламинирования),
80 - участок, который примыкает к внутренней поверхности 62 (отверстия 20 для форсунки),
81 - область (где термическое напряжение уменьшается),
90 - область (где скорость ламинирования топливной форсунки 14 низка),
91 - область (где скорость ламинирования топливной форсунки 14 высока),
92 - область (где скорость ламинирования топливной форсунки 14 низка).

Claims (36)

1. Камера сгорания газовой турбины, содержащая деталь горелки, которая формована посредством трехмерного аддитивного производства,
причем эта деталь горелки включает в себя
первый участок, который используется в первом диапазоне температур и/или первом диапазоне напряжений, и
второй участок, который используется во втором диапазоне температур, который ниже первого диапазона температур, и/или во втором диапазоне напряжений, который ниже первого диапазона напряжений, при этом
скорость ламинирования, с которой металлический материал ламинируется на первом участке посредством трехмерного аддитивного производства, ниже скорости ламинирования, с которой металлический материал ламинируется на втором участке.
2. Камера сгорания газовой турбины по п. 1, отличающаяся тем, что
деталь горелки представляет собой перфорированную пластину, которая смешивает топливо с воздухом.
3. Камера сгорания газовой турбины по п. 2, отличающаяся тем, что
первый участок располагается на перфорированной пластине со стороны пламени, а
второй участок располагается на перфорированной пластине с противоположной от пламени стороны.
4. Камера сгорания газовой турбины по п. 1, отличающаяся тем, что
скорость ламинирования, с которой металлический материал ламинируется на первом участке, и скорость ламинирования, с которой металлический материал ламинируется на втором участке, переключаются между собой непрерывно.
5. Камера сгорания газовой турбины по п. 2, отличающаяся тем, что
скорость ламинирования, с которой металлический материал ламинируется на участке, который примыкает к внутренней поверхности отверстия форсунки, которое сформировано в перфорированной пластине, ниже скорости ламинирования, с которой металлический материал ламинируется в области, которая расположена за пределами участка, который примыкает к внутренней поверхности отверстия форсунки.
6. Камера сгорания газовой турбины по п. 1, отличающаяся тем, что
деталь горелки представляет собой топливную форсунку для использования в системе подачи топлива.
7. Камера сгорания газовой турбины по п. 6, отличающаяся тем, что
скорость ламинирования, с которой металлический материал ламинируется на участке со стороны основания и участке со стороны переднего торца топливной форсунки, ниже скорости ламинирования, с которой металлический материал ламинируется в области между участком со стороны основания и участком со стороны переднего торца топливной форсунки.
8. Камера сгорания газовой турбины по п. 1, отличающаяся тем, что
относительная плотность металлического материала на первом участке выше относительной плотности металлического материала на втором участке.
9. Способ изготовления детали горелки посредством трехмерного аддитивного производства, содержащий этапы:
(a) ламинирования металлического материала на первом участке, который используется в диапазоне высоких температур и/или диапазоне высоких напряжений детали горелки, при первой скорости ламинирования; и
(b) ламинирования металлического материала на втором участке, который используется в диапазоне высоких температур и/или диапазоне высоких напряжений, который ниже диапазона температур и/или диапазона напряжений первого участка, при второй скорости ламинирования, которая выше первой скорости ламинирования.
10. Способ изготовления детали горелки по п. 9, отличающийся тем, что
деталь горелки представляет собой перфорированную пластину, которая смешивает топливо с воздухом.
11. Способ изготовления детали горелки по п. 10, отличающийся тем, что
первый участок располагается на перфорированной пластине со стороны пламени, а
второй участок располагается на перфорированной пластине с противоположной от пламени стороны.
12. Способ изготовления детали горелки по п. 9, отличающийся тем, что
первая скорость ламинирования на этапе (а) и вторая скорость ламинирования на этапе (b) переключаются между собой непрерывно.
13. Способ изготовления детали горелки по п. 10, отличающийся тем, что
скорость ламинирования, с которой металлический материал ламинируется на участке, который примыкает к внутренней поверхности отверстия форсунки, которое сформировано в перфорированной пластине, ниже скорости ламинирования, с которой металлический материал ламинируется в области, которая расположена за пределами участка, который примыкает к внутренней поверхности отверстия форсунки.
14. Способ изготовления детали горелки по п. 9, отличающийся тем, что
деталь горелки представляет собой топливную форсунку для применения в системе подачи топлива.
15. Способ изготовления детали горелки по п. 14, отличающийся тем, что
скорость ламинирования, с которой металлический материал ламинируется на участке со стороны основания и участке со стороны переднего торца топливной форсунки, ниже скорости ламинирования, с которой металлический материал ламинируется в области между участком со стороны основания и участком со стороны переднего торца топливной форсунки.
RU2021101546A 2020-03-31 2021-01-26 Камера сгорания газовой турбины и способ изготовления детали горелки RU2763436C9 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061683A JP7272989B2 (ja) 2020-03-31 2020-03-31 ガスタービン燃焼器、バーナ部品の製造方法
JP2020-061683 2020-03-31

Publications (2)

Publication Number Publication Date
RU2763436C1 true RU2763436C1 (ru) 2021-12-29
RU2763436C9 RU2763436C9 (ru) 2022-04-18

Family

ID=77659098

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021101546A RU2763436C9 (ru) 2020-03-31 2021-01-26 Камера сгорания газовой турбины и способ изготовления детали горелки

Country Status (5)

Country Link
US (1) US11674688B2 (ru)
JP (1) JP7272989B2 (ru)
CN (1) CN113464978A (ru)
DE (1) DE102021200807A1 (ru)
RU (1) RU2763436C9 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097117A1 (en) * 2021-11-29 2023-06-01 The Regents Of The University Of California 3d printed clay cookstoves

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167983A1 (en) * 2013-12-13 2015-06-18 General Electric Company Bundled tube fuel injector tube tip
DE102015111396A1 (de) * 2014-07-17 2016-01-21 General Electric Company Brennkammerkappe mit Kühlkanal
KR20180126551A (ko) * 2016-03-25 2018-11-27 제네럴 일렉트릭 컴퍼니 패널 연료 분사기를 갖는 연소 시스템
JP6535525B2 (ja) * 2015-07-01 2019-06-26 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
RU2744963C1 (ru) * 2020-06-09 2021-03-17 Акционерное общество "Металлист-Самара" Камера сгорания газотурбинной установки с выносными жаровыми трубами и малоэмиссионным горелочным устройством

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599056B2 (ja) * 2002-09-30 2004-12-08 松下電工株式会社 三次元形状造形物の製造方法
JP4889266B2 (ja) * 2005-09-05 2012-03-07 パナソニック株式会社 3次元形状造形物およびその製造方法
CN100404174C (zh) 2006-01-24 2008-07-23 华中科技大学 一种快速制造功能梯度材料的制备方法
US9649690B2 (en) 2014-02-25 2017-05-16 General Electric Company System having layered structure and method of making the same
EP3025809B1 (en) 2014-11-28 2017-11-08 Ansaldo Energia IP UK Limited Method for manufacturing a component using an additive manufacturing process
DE102016209084A1 (de) 2016-05-25 2017-11-30 MTU Aero Engines AG Verfahren und Vorrichtung zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
JP6841693B2 (ja) 2017-03-15 2021-03-10 旭有機材株式会社 積層鋳型の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167983A1 (en) * 2013-12-13 2015-06-18 General Electric Company Bundled tube fuel injector tube tip
DE102015111396A1 (de) * 2014-07-17 2016-01-21 General Electric Company Brennkammerkappe mit Kühlkanal
JP6535525B2 (ja) * 2015-07-01 2019-06-26 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
KR20180126551A (ko) * 2016-03-25 2018-11-27 제네럴 일렉트릭 컴퍼니 패널 연료 분사기를 갖는 연소 시스템
RU2744963C1 (ru) * 2020-06-09 2021-03-17 Акционерное общество "Металлист-Самара" Камера сгорания газотурбинной установки с выносными жаровыми трубами и малоэмиссионным горелочным устройством

Also Published As

Publication number Publication date
CN113464978A (zh) 2021-10-01
RU2763436C9 (ru) 2022-04-18
JP7272989B2 (ja) 2023-05-12
US20210302022A1 (en) 2021-09-30
JP2021161881A (ja) 2021-10-11
US11674688B2 (en) 2023-06-13
DE102021200807A1 (de) 2021-09-30

Similar Documents

Publication Publication Date Title
US10774740B2 (en) Gas turbine assembly and corresponding operating method
JP5544141B2 (ja) ガスタービンにおける統合型燃焼器−第1段ノズル並びに関連する方法
CN106996318B (zh) 用于热气体路径构件的冷却补块
US8733108B2 (en) Combustor and combustor screech mitigation methods
EP2642206B1 (en) Systems and methods for preventing flash back in a combustor assembly
US9127842B2 (en) Burner, operating method and assembly method
EP2515042A2 (en) Aerodynamic fuel nozzle
US9416975B2 (en) Dual fuel combustor for a gas turbine engine including a toroidal injection manifold with inner and outer sleeves
CN216518320U (zh) 一种燃气发生器
RU2763436C1 (ru) Камера сгорания газовой турбины и способ изготовления детали горелки
KR20150075043A (ko) 가스 터빈용 연소기의 작동 방법 및 가스 터빈용 연소기
US20140352312A1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
US9103552B2 (en) Burner assembly including a fuel distribution ring with a slot and recess
US20180340689A1 (en) Low Profile Axially Staged Fuel Injector
CN114320665A (zh) 一种燃气发生器
JP5718796B2 (ja) シール部材を備えたガスタービン燃焼器
US11608803B2 (en) Insert device for fuel injection
RU2766382C1 (ru) Камера сгорания газовой турбины и способ изготовления топливной форсунки
US20130305734A1 (en) Fuel Plenum Premixing Tube with Surface Treatment
US20130227928A1 (en) Fuel nozzle assembly for use in turbine engines and method of assembling same
JPH0252930A (ja) ガスタービン燃焼器
US20150082806A1 (en) Micro-Mixer Fuel Plenum and Methods for Fuel Tube Installation
JP2013160496A (ja) タービンエンジンで使用するための燃料噴射組立体及びその組み立て方法
RU2766495C1 (ru) Камера сгорания газовой турбины
RU217743U1 (ru) Горелочное устройство камеры сгорания

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
TK49 Information related to patent modified

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 1-2021 FOR INID CODE(S) (54)

TH4A Reissue of patent specification
TK49 Information related to patent modified

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 1-2021 FOR INID CODE(S) (54)