RU2757266C1 - Устройство обнаружения биопатогенов в воздухе - Google Patents

Устройство обнаружения биопатогенов в воздухе Download PDF

Info

Publication number
RU2757266C1
RU2757266C1 RU2021115281A RU2021115281A RU2757266C1 RU 2757266 C1 RU2757266 C1 RU 2757266C1 RU 2021115281 A RU2021115281 A RU 2021115281A RU 2021115281 A RU2021115281 A RU 2021115281A RU 2757266 C1 RU2757266 C1 RU 2757266C1
Authority
RU
Russia
Prior art keywords
air
radiation
particles
air flow
fluorescence
Prior art date
Application number
RU2021115281A
Other languages
English (en)
Inventor
Роман Игоревич Пронин
Николай Викторович Тышкунов
Дмитрий Леонидович Поклонский
Валерия Викторовна Вельтищева
Роман Николаевич Бухтин
Original Assignee
Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ filed Critical Публичное акционерное общество "Красногорский завод им. С.А. Зверева", ПАО КМЗ
Priority to RU2021115281A priority Critical patent/RU2757266C1/ru
Application granted granted Critical
Publication of RU2757266C1 publication Critical patent/RU2757266C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к области измерительной техники и касается устройства для обнаружения биопатогенов в воздухе. Устройство содержит узел для подготовки воздуха, концентратор, оптическую камеру и источник излучения, направленный на воздушный поток внутри оптической камеры для возбуждения частиц в воздушном потоке для создания излучения флуоресценции и рассеянного частицами излучения. На выходе оптической камеры расположен делитель, на первом выходе которого расположено первое измерительное средство для измерения излучения флуоресценции. На втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами. В устройство между концентратором и оптической камерой введен термостабилизирующий элемент воздушного потока. До термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения. Технический результат заключается в повышении точности определения наличия биопатогенов в воздухе и увеличении диапазона эксплуатационных температур. 1 ил.

Description

Изобретение относится к области определения наличия в воздухе биопатогенов, а именно к устройствам обнаружения биопатогенов в воздухе для защиты человека или животных от вредного воздействия бактерий, вирусов.
Из уровня техники известен пластиковый детектор частиц для обнаружения биологического аэрозоля и других флуоресцирующих веществ по патенту № US 9500591 B1 МПК G01N 21/64, G01N 21/47, G01N 15/14, B29D 11/00, В29K 77/00, В29K 507/04, В29K 509/08 опубл. 22.11.2016 г.
Также известно устройство определения биологического загрязнения воздуха, описанное в патенте RU 2337349, МПК G01N 21/64, опубл. 27.10.2008, состоящее из конструкции подготовки потока пробы воздуха, источника ультрафиолетового излучения, приемника излучения частиц. Конструкция подготовки потока пробы воздуха выполнена в виде виртуального импактора с возможностью формирования на выходе коаксиальных мажорного и охватывающего его минорного потоков воздуха, при этом мажорный вход импактора представляет собой заборный элемент анализируемой пробы воздуха. Приемник излучения частиц выполнен в виде спектрофлуориметра, оснащенного оптическим элементом спектрального разложения флуоресценции аэрозольных частиц в сфокусированном объеме пробы и фотоприемником. Но в данном устройстве использование виртуального импактора, который не реализует концентрирование аэрозоля, содержащегося в потоке воздуха, уменьшает объем воздуха, поступающий в устройство для анализа, в единицу времени. Кроме того, отсутствует возможность эксплуатации прибора в широком диапазоне температур окружающего воздуха включая отрицательные.
Наиболее близким к заявляемому является устройство, описанное в патенте RU №2559521С2 МПК G01N 15/14, G01N 21/64, G01N 21/53, опубл. 10.08.2015 г., под названием «Способ и устройство для обнаружения биологического материала». Способ и устройства в соответствии с изобретением, в частности, подходят для обнаружения/идентификации биологических частиц. В состав устройства входит: измерительный блок, источник света, светоделительное зеркало, первое измерительное средство и второе измерительное средство. Воздушный поток сначала подают в концентратор с виртуальным импактором. В концентраторе имеет место разделение потоков, которое снижает скорость основного воздушного потока в десять раз от исходного. Сконцентрированный поток с помощью вводного сопла направляют в оптическую камеру, в которой происходит возбуждение частиц ультрафиолетовым излучением и сбор излучения рассеяния и люминесценции. Для предотвращения загрязнения оптической камеры используют систему газового затвора. Но у данного устройства отсутствует возможность эксплуатации прибора в широком диапазоне температур окружающего воздуха включая отрицательные.
Задачей изобретения является повышение точности определения наличия биопатогенов в воздухе, увеличение диапазона эксплуатационных температур и упрощение конструкции устройства.
Технический результат настоящего изобретения заключается в повышении точности определения наличия биопатогенов в воздухе, увеличении диапазона эксплуатационных температур и упрощении конструкции устройства.
Это достигается тем, что в устройстве для обнаружения биопатогенов в воздухе, содержащем частицы биологического и/или инертного биологического материала, которое выполнено с возможностью подачи воздушного потока в узел для подготовки воздуха через концентратор внутрь оптической камеры, и выведения воздушного потока из оптической камеры, вне узла подготовки воздуха расположен источник излучения, направленный на воздушный поток внутри оптической камеры и испускающий пучок излучения для возбуждения частиц в воздушном потоке для создания излучения флуоресценции, на выходе оптической камеры расположен делитель, на первом выходе делителя расположено первое измерительное средство для измерения излучения флуоресценции, испускаемого частицами, и для создания сигнала флуоресценции, описывающего излучение флуоресценции, на втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания, описывающего излучение, рассеянное частицами, устройство для аналого-цифрового преобразования сигналов подключенное к выходам первого и второго измерительных средств для преобразования сигнала флуоресценции и сигнала рассеивания в виде цифровых значений, к выходу устройства для аналого-цифрового преобразования сигналов подключено аналитическое средство для анализа сигнала флуоресценции и сигнала рассеивания для обнаружения биопатогенов, в отличие от известного, в устройство за концентратором до оптической камеры введен термостабилизирующий элемент воздушного потока, и, кроме того, до термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.
Указанный технический результат реализуется за счет следующей конструкции устройства обнаружения биопатогенов в воздухе.
На фигуре показан один из вариантов осуществления устройства обнаружения биопатогенов в воздухе. Устройство обнаружения биопатогенов включает узел 1 для подготовки воздуха, источник излучения (на фигуре не показан), делитель 2, на первом выходе делителя 2 расположено первое измерительное средство 3, на втором выходе делителя 2 расположено второе измерительное средство 4. В узле 1 для подготовки воздуха находятся концентратор 5, оптическая камера 6, соединение 7 отсасываемого потока воздуха из концентратора 5, защитное воздушное соединение 8, верхнее сопло 9, нижнее сопло 10, термостабилизирующий элемент 11 воздушного потока 12. Устройство предназначено для забора воздуха из окружающей среды, концентрирования воздушного потока в концентраторе 5, подачи очищенного воздуха через защитное воздушное соединение 8 к сконцентрированному воздушному потоку 12, находящемуся за термостабилизирующим элементом 11 перед оптической камерой 6. Далее происходит подача сконцентрированного воздушного потока 12 в оптическую камеру 6 через верхнее сопло 9, выведение воздушного потока 12 из оптической камеры 6 происходит через нижнее сопло 10. Термостабилизирущий элемент 11 воздушного потока 12 устанавливается перед оптической камерой 6 и предназначен для поддержания температуры сконцентрированного воздушного потока 12 в определенном диапазоне. Использование термостабилизирующего элемента 11 воздушного потока 12 позволяет увеличить рабочий температурный диапазон, то есть появляется возможность проводить анализ воздуха при температурах окружающей среды, например, от -50°С, тогда как температура воздушного потока внутри устройства поддерживается, например, в диапазоне 20-25°С. Термостабилизирующий элемент 11 воздушного потока 12 реализован с возможностью нагрева сконцентрированного воздушного потока 12 до высоких температур, например, до 120-130°С, при диапазоне температур окружающей среды, например, от -50°С до +50°С. Нагрев воздушного потока 12 до высоких температур позволяет повысить точность обнаружения биопатогенов в воздухе за счет того, что спектры излучения флуоресценции частиц биологического происхождения зависят от температуры этих частиц, а также с изменением температуры биологических частиц изменяется квантовый выход флуоресценции этих частиц. Таким образом, для некоторых типов частиц, спектры излучения флуоресценции которых близки при температуре, например, 20°С, можно подобрать такую температуру воздушного потока 12, при которой спектры излучения флуоресценции различаются в достаточной для идентификации степени. Использование термостабилизирующего элемента 11 воздушного потока 12 повышает точность определения наличия биопатогенов в воздухе и увеличивает диапазон эксплуатационных температур.
Дополнительно устройство обнаружения биопатогенов в воздухе содержит узел охлаждения источника излучения (на фигуре не показан), который в качестве теплоносителя использует воздух, который выводится из концентратора 5 через соединение 7 отсасываемого потока воздуха. Источник излучения независимо от своего типа выделяет тепло, которое необходимо отводить, для поддержания требуемого диапазона температур источника излучения. Использование пассивных или активных систем охлаждения, широко использующихся в других типах устройств недостаточно эффективно в заявляемом устройстве в широком диапазоне температур окружающего воздуха, так как все компоненты устройства находятся в герметичном корпусе. Таким образом, предлагается использовать узел охлаждения, конструктивно представляющий собой, например, радиатор для пассивного охлаждения, который отдает тепло воздуху, который выводится из концентратора 5 через соединение 7 отсасываемого потока воздуха. Использование описанного узла охлаждения источника излучения упрощает конструкцию устройства обнаружения биопатогенов в воздухе.
Источник излучения не показан на фигуре, так как источник излучения расположен перпендикулярно плоскости фигуры. На фигуре отмечен пучок излучения 13, который испускает источник излучения. Пучок излучения 13 представляет собой пучок излучения, сфокусированный на сконцентрированном воздушном потоке 12 между верхним соплом 9 и нижним соплом 10. Средства, необходимые для придания требуемых характеристик пучку излучения 13, не показаны на чертежах, но они могут представлять собой средства, широко используемые в технике.
Делитель 2 включает дихроическое зеркало 14, и может дополнительно включать фильтр 15. Делитель 2 крепится к оптической камере 6. На первом выходе делителя 2 установлено первое измерительное средство 3 предназначенное для измерения излучения флуоресценции, испускаемого частицами, с которыми сталкивается пучок излучения 13, и для создания сигнала флуоресценции 16, описывающего излучения флуоресценции. На втором выходе делителя 2 установлено второе измерительное средство 4 предназначенное для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания 17, описывающего излучение, рассеянное частицами. Внутри оптической камеры 6, может быть расположен оптический элемент 18, выполненный в виде, например, эллиптического зеркала, предназначенного для сбора излучения флуоресценции частиц и излучения, рассеянного частицами, в направлении на делитель 2. Дополнительно устройство обнаружения биопатогенов в воздухе содержит устройство 19 для аналого-цифрового преобразования сигналов, и аналитическое средство 20, данные средства, равно как и алгоритмы, которые используются описанными средствами, могут представлять собой средства, широко используемые в технике.
Устройство 19 для аналого-цифрового преобразования сигналов подключено к выходу первого измерительного средства и выходу второго измерительного средства и предназначено для преобразования в цифровые значения сигнала флуоресценции 16 и сигнала рассеивания 17, которые поступают с первого измерительного средства 3 и второго измерительного средства 4 соответственно. Аналитическое средство 20 подключено к выходу устройства 19 и предназначено для анализа сигнала флуоресценции 16 и сигнала рассеивания 17 на предмет обнаружения биопатогенов в воздухе. Средства тревоги и отображения (на фигуре не показаны), которые подают сигнал тревоги, данные средства, равно как и алгоритмы, которые используются описанными средствами, могут представлять собой средства, широко используемые в технике.
Устройство обнаружения биопатогенов в воздухе работает следующим образом. Производится забор воздуха из окружающей среды. Забранный объем воздуха поступает в концентратор 5. В концентраторе 5 формируется сконцентрированный воздушный поток 12, содержащий в себе большинство частиц, которые находились в забранном объеме воздуха, при этом расход сконцентрированного воздушного потока 12 в несколько раз меньше расхода забранного из окружающей среды воздуха. Оставшаяся часть воздуха выводится из концентратора через соединение 7 отсасываемого потока воздуха, и направляется в узел охлаждения источника излучения. Далее сконцентрированный воздушный поток 12 поступает в термостабилизирующий элемент 11, затем в верхнее сопло 9. В верхнем сопле 9 происходит объединение сконцентрированного воздушного потока 12 с потоком очищенного воздуха, который поступает через защитное воздушное соединение 8. В сопле 9 потоки воздуха объединяются таким образом, что реализуется газовый затвор, препятствующий загрязнению элементов в оптической камере 6 веществами и частицами, которые содержатся в сконцентрированном воздушном потоке. В технической литературе газовый затвор иначе иногда называют аэродинамической фокусировкой или акустической фокусировкой в зависимости от тех средств, которые используются для реализации газового затвора. Различные вариации реализации газового затвора широко известны, например, по устройствам, описанным в патентах US 10267723 В1 (опубл. 23.04.2019), № US 8266950 B2 (опубл. 18.09.2012), № WO 2008122051 А1 (опубл. 09.10.2008), № JР 6456605 В2 (опубл. 23.01.2019), № WO 2014141994 A1 (опубл. 18.09.2014). Воздушный поток 12 протекает через оптическую камеру 6 и выводится через нижнее сопло 10. Далее воздушный поток 12 выводится из устройства. Когда частицы, содержащиеся в воздушном потоке 12, пересекают пучок излучения 13, часть излучения упруго рассеивается частицами, еще часть излучения испускается частицами в виде излучения флуоресценции. Излучение, рассеянное частицами, и излучение флуоресценции частиц поступает на делитель 2, на котором происходит разделение поступившего излучения с помощью дихроического зеркала 14 на излучение флуоресценции, поступающее в первое измерительное средство 3, и излучение, рассеянное частицами, поступающее на второе измерительное средство 4. При необходимости перед первым измерительным средством 3 устанавливается фильтр 15. Первое измерительное средство 3 и второе измерительное средство 4 формируют сигналы флуоресценции 16 и сигналы рассеивания 17 соответственно.
Заявленное устройство представляет собой автоматический прибор, реализующий проточно-оптический метод анализа аэрозолей на предмет содержания в дисперсной фазе аэрозоля биопатагенов. Проточно-оптический метод анализа аэрозолей заключается в том, что устройство забирает воздух из окружающей атмосферы, концентрирует содержащиеся в воздухе частицы в воздушный поток, аэродинамически фокусирует воздушный поток, облучает частицы, содержащиеся в потоке воздуха, излучением, сфокусированным в области анализа, и выполняет анализ излучения, рассеянного частицами, и излучения флуоресценции частиц. Прием излучения, рассеянного частицами, и излучения флуоресценции частиц производится первым измерительным средством и вторым измерительным средством, которые представляют собой оптико-электронные преобразователи, например, фотоэлектронные умножители. Анализ аэрозоля производится в автоматическом беспрерывном режиме работы.
Таким образом, достигается технический результат, а именно повышена точность определения наличия биопатогенов в воздухе и увеличен диапазона эксплуатационных температур и, кроме того, для упрощения конструкции устройства введен узел охлаждения источника излучения, использующего поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.

Claims (1)

  1. Устройство для обнаружения биопатогенов в воздухе, содержащем частицы биологического и/или инертного биологического материала, которое выполнено с возможностью подачи воздушного потока в узел для подготовки воздуха через концентратор внутрь оптической камеры и выведения воздушного потока из оптической камеры, вне узла подготовки воздуха расположен источник излучения, направленный на воздушный поток внутри оптической камеры и испускающий пучок излучения для возбуждения частиц в воздушном потоке для создания излучения флуоресценции и излучения, рассеянного частицами, на выходе оптической камеры расположен делитель, на первом выходе делителя расположено первое измерительное средство для измерения излучения флуоресценции, испускаемой частицами, и для создания сигнала флуоресценции, описывающего излучение флуоресценции, на втором выходе делителя расположено второе измерительное средство для измерения излучения, рассеянного частицами, и для создания сигнала рассеивания, описывающего излучение, рассеянное частицами, устройство для аналого-цифрового преобразования сигналов, подключенное к выходам первого измерительного средства и второго измерительного средства для преобразования сигнала флуоресценции и сигнала рассеивания в виде цифровых значений, к выходу устройства для аналого-цифрового преобразования сигналов подключено аналитическое средство для анализа сигнала флуоресценции и сигнала рассеивания для обнаружения биопатогенов, отличающееся тем, что в устройство за концентратором до оптической камеры введен термостабилизирующий элемент воздушного потока, и, кроме того, до термостабилизирующего элемента введен узел охлаждения источника излучения, использующий поток воздуха, выводимый из концентратора, для отвода тепла от источника излучения.
RU2021115281A 2021-05-28 2021-05-28 Устройство обнаружения биопатогенов в воздухе RU2757266C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021115281A RU2757266C1 (ru) 2021-05-28 2021-05-28 Устройство обнаружения биопатогенов в воздухе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021115281A RU2757266C1 (ru) 2021-05-28 2021-05-28 Устройство обнаружения биопатогенов в воздухе

Publications (1)

Publication Number Publication Date
RU2757266C1 true RU2757266C1 (ru) 2021-10-12

Family

ID=78286580

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021115281A RU2757266C1 (ru) 2021-05-28 2021-05-28 Устройство обнаружения биопатогенов в воздухе

Country Status (1)

Country Link
RU (1) RU2757266C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672133B1 (en) * 2001-09-10 2004-01-06 The United States Of America As Represented By The Secretary Of The Army Biological classification system
US7060992B1 (en) * 2003-03-10 2006-06-13 Tiax Llc System and method for bioaerosol discrimination by time-resolved fluorescence
RU2337349C1 (ru) * 2007-04-11 2008-10-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова /Ленина/ (СпбГЭТУ) Способ определения биологического загрязнения воздуха и устройство для его осуществления
RU2559521C2 (ru) * 2010-06-07 2015-08-10 Энвироникс Ой Способ и устройство для обнаружения биологического материала

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672133B1 (en) * 2001-09-10 2004-01-06 The United States Of America As Represented By The Secretary Of The Army Biological classification system
US7060992B1 (en) * 2003-03-10 2006-06-13 Tiax Llc System and method for bioaerosol discrimination by time-resolved fluorescence
RU2337349C1 (ru) * 2007-04-11 2008-10-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова /Ленина/ (СпбГЭТУ) Способ определения биологического загрязнения воздуха и устройство для его осуществления
RU2559521C2 (ru) * 2010-06-07 2015-08-10 Энвироникс Ой Способ и устройство для обнаружения биологического материала

Similar Documents

Publication Publication Date Title
US9880097B2 (en) Apparatus and system for simultaneously measuring particle concentration and biocontaminants in an aerosol particle flow
US10018551B2 (en) Devices, systems and methods for detecting particles
EP3183555B1 (en) Devices, systems and methods for detecting particles
EP3150994B1 (en) Measurement device and measurement method
JP4871868B2 (ja) 病原体および微粒子検出システム及び検出方法
EP3150993B1 (en) Measurement device and measurement method
KR101623787B1 (ko) 휴대용 생물입자 실시간 검출장치
AU2002367966B2 (en) System and method for detecting and classifying biological particles
CN112639433B (zh) 研究气相中浓缩气溶胶颗粒的测量系统
EP2176640A2 (en) Method and apparatus for real-time analysis of chemical, biological and explosive substances in the air
US7375348B1 (en) Micro UV detector
US20090293646A1 (en) System and method for optical detection of aerosols
JP6858851B2 (ja) サイクロン捕集器
RU2757266C1 (ru) Устройство обнаружения биопатогенов в воздухе
CN114459965A (zh) 一种气溶胶监测系统及方法
CN1563950A (zh) 大气悬浮颗粒物的激光信号实时连续提取方法
US20110314937A1 (en) System and method for the optical detection of aerosols
WO2014141994A1 (ja) 粒子分析方法及び粒子分析装置
US6967338B1 (en) Micro UV particle detector
JP6508265B2 (ja) 粒子分取装置及び粒子分取方法
Wilson et al. Autofluorescence detection using UV diode laser simultaneous excitation of multiple wavelengths
JP2019132853A (ja) 粒子分取装置及び粒子分取方法