RU2757176C1 - Method for manufacturing a semiconductor device with multilayer conductors - Google Patents

Method for manufacturing a semiconductor device with multilayer conductors Download PDF

Info

Publication number
RU2757176C1
RU2757176C1 RU2021108857A RU2021108857A RU2757176C1 RU 2757176 C1 RU2757176 C1 RU 2757176C1 RU 2021108857 A RU2021108857 A RU 2021108857A RU 2021108857 A RU2021108857 A RU 2021108857A RU 2757176 C1 RU2757176 C1 RU 2757176C1
Authority
RU
Russia
Prior art keywords
deposition
thickness
pressure
manufacturing
film
Prior art date
Application number
RU2021108857A
Other languages
Russian (ru)
Inventor
Гасан Абакарович Мустафаев
Арслан Гасанович Мустафаев
Асламбек Идрисович Хасанов
Наталья Васильевна Черкесова
Абдулла Гасанович Мустафаев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет"
Priority to RU2021108857A priority Critical patent/RU2757176C1/en
Application granted granted Critical
Publication of RU2757176C1 publication Critical patent/RU2757176C1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/2807Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being Si or Ge or C and their alloys except Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

FIELD: semiconductors production.
SUBSTANCE: invention relates to the field of technology for the production of semiconductor devices, in particular to the technology of manufacturing multilayer conductors with a reduced value of contact resistance. According to the invention, a multilayer Au/Pd/Ni/Ge contact is formed by sequential deposition of a Ge film with a thickness of 20 nm at a pressure of 1*10-5 Pa, with a deposition rate of 3 nm/s, a nickel Ni film with a thickness of 15 nm at a pressure of 1*10-5 Pa, with a growth rate of 1 nm/s, followed by deposition of a Pd layer 50 nm thick at a pressure of 1*10-5 Pa, with a deposition rate of 0.5 nm/s, and Au with a thickness of 100 nm, and heat treatment at a temperature of 450°С in for 2.5 min in a forming gas atmosphere.
EFFECT: invention provides a decrease in contact resistance, an improvement in the parameters of devices and an increase in manufacturability.
1 cl, 1 tbl

Description

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления многослойных проводников с пониженным значением контактного сопротивления.The invention relates to the field of technology for the production of semiconductor devices, in particular to the technology of manufacturing multilayer conductors with a reduced value of contact resistance.

Известен способ изготовления контакта [Пат. 5317187 США, МКИ H01L 49/00] между проводящими элементами, расположенными на различных уровнях. В диэлектрическом слое создают сквозное окно. Затем проводят последовательное нанесение слоев Ti/TiN/Ti. Далее осуществляют термообработку структуры, в результате чего на границе раздела металл/полупроводник образуется силицид титана. Для снижения сопротивления контакта поверх Ti наносят слой Al. В таких приборах из-за не технологичности формирования в диэлектрическом слое сквозного окна образуется большое количество дефектов, которые ухудшают электрические параметры приборов.A known method of making a contact [US Pat. 5317187 USA, MKI H01L 49/00] between conductive elements located at different levels. A through window is created in the dielectric layer. Then, sequential Ti / TiN / Ti layers are deposited. Next, the structure is heat treated, as a result of which titanium silicide is formed at the metal / semiconductor interface. To reduce the contact resistance, an Al layer is applied on top of the Ti. In such devices, due to the non-manufacturability of formation in the dielectric layer of the through window, a large number of defects are formed, which worsen the electrical parameters of the devices.

Известен способ изготовления полупроводникового прибора с многослойными проводниками [Пат. 5345108 США, МКИ H01L 23/48], где слои AlSiCu чередуются со слоями TiN. На границах раздела слоев происходит взаимодействие Ti с Al и образуются интерметаллические соединения, которые очень тонким слоем обволакивают металлические зерна и разделяют структурные слои проводников.A known method of manufacturing a semiconductor device with multilayer conductors [US Pat. 5345108 USA, MKI H01L 23/48], where AlSiCu layers alternate with TiN layers. At the interfaces between the layers, Ti interacts with Al and intermetallic compounds are formed, which envelop the metal grains in a very thin layer and separate the structural layers of the conductors.

Недостатками этого способа являются:The disadvantages of this method are:

- высокие значения контактного сопротивления;- high values of contact resistance;

- высокая дефектность;- high defectiveness;

- низкая технологичность.- low manufacturability.

Задача, решаемая изобретением: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.The problem solved by the invention: reducing the contact resistance, ensuring manufacturability, improving the parameters of devices, improving the quality and increasing the percentage of yield.

Задача решается формированием контактов Au/Pd/Ni/Ge путем последовательного осаждения пленки Ge толщиной 20 нм при давлении 1*10-5 Па, скоростью осаждения 3 нм/с, пленки никеля Ni толщиной 15 нм в вакууме 1*10-5 Па, со скоростью роста 1 нм/с, последующим осаждением слоя Pd толщиной 50 нм при давлении 1*10-5 Па, скоростью осаждения 0,5 нм/с, и Au толщиной 100 нм, термообработкой при температуре 450°С в течение 2,5 мин, в атмосфере форминг газе.The problem is solved by forming Au / Pd / Ni / Ge contacts by sequential deposition of a Ge film with a thickness of 20 nm at a pressure of 1 * 10 -5 Pa, a deposition rate of 3 nm / s, a nickel Ni film with a thickness of 15 nm in a vacuum of 1 * 10 -5 Pa, with a growth rate of 1 nm / s, followed by deposition of a 50 nm thick Pd layer at a pressure of 1 * 10 -5 Pa, a deposition rate of 0.5 nm / s, and Au with a thickness of 100 nm, heat treatment at 450 ° C for 2.5 min, in a forming gas atmosphere.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.According to the proposed method, semiconductor devices were manufactured and investigated. The processing results are presented in the table.

Figure 00000001
Figure 00000001

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 23,1%.Experimental studies have shown that the yield of suitable structures for batches of plates formed in the optimal mode increased by 23.1%.

Технический результат: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.EFFECT: lowering contact resistance, ensuring manufacturability, improving the parameters of devices, improving quality and increasing the percentage of yield.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.The stability of the parameters over the entire operating temperature range was normal and met the requirements.

Предложенный способ изготовления полупроводникового прибора с многослойными проводниками формированием контактов Au/Pd/Ni/Ge путем последовательного осаждения пленки Ge толщиной 20 нм при давлении 1*10-5 Па, скоростью осаждения 3 нм/с, пленки никеля Ni толщиной 15 нм в вакууме 1*10-5 Па, со скоростью роста 1 нм/с, последующим осаждением слоя Pd толщиной 50 нм при давлении 1*10-5 Па, скоростью осаждения 0,5 нм/с, и Au толщиной 100 нм, термообработкой при температуре 450°С в течение 2,5 мин, в атмосфере форминг газа, позволяет повысит процент выхода годных приборов и улучшит их надежность.The proposed method for manufacturing a semiconductor device with multilayer conductors by forming Au / Pd / Ni / Ge contacts by sequential deposition of a Ge film with a thickness of 20 nm at a pressure of 1 * 10 -5 Pa, a deposition rate of 3 nm / s, a nickel Ni film with a thickness of 15 nm in vacuum 1 * 10 -5 Pa, with a growth rate of 1 nm / s, followed by deposition of a Pd layer 50 nm thick at a pressure of 1 * 10 -5 Pa, a deposition rate of 0.5 nm / s, and Au with a thickness of 100 nm, heat treatment at 450 ° With for 2.5 minutes, in a gas forming atmosphere, it will increase the yield of suitable devices and improve their reliability.

Claims (1)

Способ изготовления полупроводникового прибора с многослойными проводниками, включающий процессы формирования активных областей прибора и контакты к ним, отличающийся тем, что контакты Au/Pd/Ni/Ge формируют путем последовательного осаждения пленки Ge толщиной 20 нм при давлении 1*10-5 Па, скоростью осаждения 3 нм/с, пленки никеля Ni толщиной 15 нм в вакууме 1*10-5 Па, со скоростью роста 1 нм/с, последующим осаждением слоя Pd толщиной 50 нм при давлении 1*10-5 Па, скоростью осаждения 0,5 нм/с, и Au толщиной 100 нм, термообработкой при температуре 450°С в течение 2,5 мин в атмосфере форминг газа.A method of manufacturing a semiconductor device with multilayer conductors, including the processes of forming the active regions of the device and contacts to them, characterized in that the Au / Pd / Ni / Ge contacts are formed by sequential deposition of a Ge film with a thickness of 20 nm at a pressure of 1 * 10 -5 Pa, a speed deposition 3 nm / s, nickel Ni films with a thickness of 15 nm in a vacuum of 1 * 10 -5 Pa, with a growth rate of 1 nm / s, followed by deposition of a Pd layer 50 nm thick at a pressure of 1 * 10 -5 Pa, a deposition rate of 0.5 nm / s, and Au with a thickness of 100 nm, by heat treatment at a temperature of 450 ° C for 2.5 min in a forming gas atmosphere.
RU2021108857A 2021-03-31 2021-03-31 Method for manufacturing a semiconductor device with multilayer conductors RU2757176C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021108857A RU2757176C1 (en) 2021-03-31 2021-03-31 Method for manufacturing a semiconductor device with multilayer conductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021108857A RU2757176C1 (en) 2021-03-31 2021-03-31 Method for manufacturing a semiconductor device with multilayer conductors

Publications (1)

Publication Number Publication Date
RU2757176C1 true RU2757176C1 (en) 2021-10-11

Family

ID=78286396

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021108857A RU2757176C1 (en) 2021-03-31 2021-03-31 Method for manufacturing a semiconductor device with multilayer conductors

Country Status (1)

Country Link
RU (1) RU2757176C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791442C1 (en) * 2022-11-11 2023-03-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method for manufacturing of a semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192994A (en) * 1989-08-30 1993-03-09 Mitsubishi Kasei Polytec Co. Au-ge-ni ohmic contact for ga-al-as compound semiconductor
US5317187A (en) * 1992-05-05 1994-05-31 Zilog, Inc. Ti/TiN/Ti contact metallization
US5345108A (en) * 1991-02-26 1994-09-06 Nec Corporation Semiconductor device having multi-layer electrode wiring
US5367195A (en) * 1993-01-08 1994-11-22 International Business Machines Corporation Structure and method for a superbarrier to prevent diffusion between a noble and a non-noble metal
RU2407104C1 (en) * 2009-08-03 2010-12-20 Закрытое акционерное общество "Научно-производственная фирма Микран" METHOD OF MAKING MULTILAYER OHMIC CONTACT TO n-GaAs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192994A (en) * 1989-08-30 1993-03-09 Mitsubishi Kasei Polytec Co. Au-ge-ni ohmic contact for ga-al-as compound semiconductor
US5345108A (en) * 1991-02-26 1994-09-06 Nec Corporation Semiconductor device having multi-layer electrode wiring
US5317187A (en) * 1992-05-05 1994-05-31 Zilog, Inc. Ti/TiN/Ti contact metallization
US5367195A (en) * 1993-01-08 1994-11-22 International Business Machines Corporation Structure and method for a superbarrier to prevent diffusion between a noble and a non-noble metal
RU2407104C1 (en) * 2009-08-03 2010-12-20 Закрытое акционерное общество "Научно-производственная фирма Микран" METHOD OF MAKING MULTILAYER OHMIC CONTACT TO n-GaAs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791442C1 (en) * 2022-11-11 2023-03-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method for manufacturing of a semiconductor device

Similar Documents

Publication Publication Date Title
JP6350713B2 (en) Semiconductor device and manufacturing method of semiconductor device
EP0243024B1 (en) Metallized semiconductor device including an interface layer
US20160079066A1 (en) Semiconductor device and manufacturing method thereof
US11923203B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN106206501A (en) Semiconductor device and the manufacture method of semiconductor device
WO2021093127A1 (en) Algan/gan ohmic contact electrode and preparation method therefor, and method for reducing ohmic contact
RU2757176C1 (en) Method for manufacturing a semiconductor device with multilayer conductors
JP3819793B2 (en) Film-forming method and semiconductor device manufacturing method
TWI611463B (en) Semiconductor structure and methods for crystallizing metal oxide semiconductor layer
US8940359B2 (en) Method of producing a microacoustic component
RU2677500C1 (en) Method for making semiconductor device
RU2745589C1 (en) Semiconductor device manufacturing method
RU2674413C1 (en) Method for making semiconductor device
RU2698540C1 (en) Method of contact-barrier metallization production
RU2734094C1 (en) Semiconductor device manufacturing method
KR20060033456A (en) Multilayer having an excellent adhesion and a methof for fabricating method the same
RU2791268C1 (en) Method for forming field-effect transistors
RU2550586C1 (en) Fabrication of contact-barrier metallisation
RU2767154C1 (en) Method of making metal interconnections
RU2734095C1 (en) Method of making nickel silicide
RU2688874C1 (en) Semiconductor device manufacturing method
RU2757177C1 (en) Method for manufacturing silicide contacts from tungsten
RU2772556C1 (en) Method for manufacturing contacts
RU2824474C1 (en) Method of making contacts
RU2786689C1 (en) Method for formation of silicide