RU2753150C1 - Способ скалярной калибровки блока акселерометров - Google Patents

Способ скалярной калибровки блока акселерометров Download PDF

Info

Publication number
RU2753150C1
RU2753150C1 RU2020139186A RU2020139186A RU2753150C1 RU 2753150 C1 RU2753150 C1 RU 2753150C1 RU 2020139186 A RU2020139186 A RU 2020139186A RU 2020139186 A RU2020139186 A RU 2020139186A RU 2753150 C1 RU2753150 C1 RU 2753150C1
Authority
RU
Russia
Prior art keywords
calibration
vector
block
accelerometers
parameters
Prior art date
Application number
RU2020139186A
Other languages
English (en)
Inventor
Михаил Дмитриевич Гребенкин
Original Assignee
Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") filed Critical Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП")
Priority to RU2020139186A priority Critical patent/RU2753150C1/ru
Application granted granted Critical
Publication of RU2753150C1 publication Critical patent/RU2753150C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к области приборостроения и может быть использовано при тестировании и проверке работоспособности чувствительных элементов инерциальных систем навигации. Способ скалярной калибровки блока акселерометров дополнительно содержит этапы, на которых перед калибровкой определяют оптимальные угловые положения блока для измерений путем минимизации углового функционала так, чтобы минимизировать влияние неучитываемых погрешностей в условиях проведения калибровки. Технический результат – повышение точности калибровки блока акселерометров.

Description

Изобретение относится к области приборостроения и может быть использовано при тестировании и проверке работоспособности чувствительных элементов инерциальных систем навигации.
Известны способы скалярной калибровки и векторной калибровки, описанные соответственно в статьях «О скалярной калибровке блока акселерометров и гироскопов» В.В. Аврутов, Вестник НТУУ «КПИ», 2010, серия «ПРИКЛАДОБОРУДОВАНИЕ», вып.40, с. 10-17 (принято за прототип изобретения), и «Сравнение методов оценки параметров погрешностей блока акселерометров трехосной гиростабилизированной платформы» Гребенкин М.Д., Труды ФГУП "НПЦАП". Системы и приборы управления, 2017, No 4, с. 22-31 (принято за аналог изобретения).
В них рассматривается калибровка набора из трех взаимно ортогональных акселерометров. В качестве оцениваемых при калибровке параметров модели ошибок акселерометров рассматриваются отклонения масштабных коэффициентов, нулей и угловые параметры, описывающие ошибку выставки оси чувствительности датчика в приборной системе координат (по одному или по два угловых параметра на каждый из датчиков, соответственно для прототипа или аналога). Блок акселерометров последовательно устанавливают в угловые положения на неподвижном стенде, снимая измерения. В аналоге получают измерения каждого акселерометра в отдельности и сравнивают с ожидаемыми в данном положении и географической точке. В прототипе для каждого момента измерения вычисляется модуль измеренного кажущегося ускорения и результат сравнивается с модулем вектора ускорения силы тяжести в данной географической точке. В обоих методах предполагается, что разности (невязки) между измеренными и ожидаемыми величинами обусловлены отклонениями рассматриваемых параметров модели погрешности датчиков. С помощью ряда Тейлора невязки измерений линейно связываются с отклонениями оцениваемых параметров от их номинальных величин. После проведения достаточного количества измерений, получают несовместную систему линейных уравнений, которую можно решить приближенно. Результатом калибровки является получаемое приближенное решение, т.е. коррекция для рассматриваемого набора параметров.
Недостатком аналога является сильное влияние на точность оценки ошибок при выставке калибруемого блока в калибровочные угловые положения. Недостатком прототипа является ненаблюдаемость всех параметров модели погрешностей, описывающих ошибки выставки осей чувствительности акселерометров в приборной системе координат. Следствием этого является необходимость принимать положение оси чувствительности одного из акселерометров идеальным, то есть безошибочно совпадающим с одной из осей приборной системы координат. Это в свою очередь приводит к ошибке в привязке блока акселерометров к системе отсчета объекта управления и формированию дополнительных погрешностей в навигационных данных.
Задачей изобретения является повышение точности калибровки блока акселерометров за счет повышения устойчивости оценки к неучтенным погрешностям в калибровочных измерениях.
Для решения задачи в способе скалярной калибровки блока акселерометров заключающемся в том, что проводят измерения кажущегося ускорения, обусловленного силой тяжести, акселерометрами в различных угловых положениях блока и рассчитывают квадраты модуля вектора ускорения силы тяжести в этих положениях, определяют невязку между ожидаемыми и рассчитанными в различных угловых положениях блока квадратами модуля вектора ускорения силы тяжести, массив невязок линейно связывают с вектором отклонений параметров акселерометров, формируя калибровочную матрицу системы уравнений, решением системы уравнений методом наименьших квадратов или с помощью фильтра Калмана для стационарной системы оценивают вектор коррекции параметров модели акселерометров, и выполняют калибровку акселерометров, согласно изобретению, перед калибровкой определяют оптимальные угловые положения блока для измерений путем минимизации углового функционала так, чтобы минимизировать влияние неучитываемых погрешностей в условиях проведения калибровки.
Углы α, β описывают положение кажущегося вектора ускорения в полярной системе координат, привязанной к калибруемому блоку. Угловой функционал PDi(α, β), описывает модуль проекции вектора-строки Di(α, β), линейно связывающего вектор отклонений искомых параметров с невязкой, полученной на i-том измерении, на матрицу Di калибровочной системы уравнений, сформированной к моменту проведения i-того измерения. Таким образом, функционал PDi(α, β) зависит от углового положения блока в базовой системе координат. Улучшение устойчивости метода к неучитываемым погрешностям в условиях калибровки достигается последовательным выбором 8 угловых положений (что вместе с изначальным соответствует количеству оцениваемых параметров) таких, что для каждого положения i=2…9 функционал PDi(α, β) принимает минимальное значение.
Линейная связь отклонений искомых параметров от номинальных значений с невязкой (разностью) полученных измерений и ожидаемых значений имеет вид линейного уравнения, описываемого выражением:
Figure 00000001
где
δр - вектор отклонений искомых параметров;
D - матрица системы линейных уравнений;
z - вектор полученных невязок.
Задачей калибровки является оценка (
Figure 00000002
) вектора δр путем решения обратной задачи:
Figure 00000003
Если условия калибровки выполнены с погрешностями, к величинам невязок добавляются неизвестные величины δz, что приводит к ошибке в получаемой оценке:
Figure 00000004
(е - вектор погрешности
Figure 00000005
)
Влияние величины вектора δz на величину вектора е определяется числом обусловленности обращаемой части выражения (2) μ=cond(DT⋅D):
Figure 00000006
Матрица D определяется угловыми положениями, в которых проводились измерения. Таким образом, выбор угловых положений задает влияние погрешностей в условиях калибровки на итоговую точность оценки.
Выбирая для каждого измерения такие угловые положения, что функционал PDi(α, β) имеет минимальное значение, можно получить матрицу D, максимально близкую к ортогональной. Следовательно матрица DT⋅D будет максимально близка к диагональной, что приведет к минимизации числа обусловленности μ и тем самым обеспечит устойчивость получаемой оценки вектора δр к неизвестным возмущениям в векторе невязок z.
Функционал PDi(α, β) для угловой ориентации i описывает модуль проекции вектора-строки на матрицу Di калибровочной системы уравнений, сформированной к моменту проведения i-того измерения.
Figure 00000007
Здесь gПСК(α, β) это вектор кажущегося ускорения (ускорения силы тяжести) в полярной приборной системе координат, привязанной к блоку. gПСК(α, β) имеет вид:
Figure 00000008
где g - модуль вектора кажущегося ускорения.
Вид вектора-строки Di(α, β) зависит от номинальной конфигурации тройки акселерометров и предполагается известным.
Необходимо выбрать минимум 9 угловых положений блока для проведения измерений (включая первоначальное), то есть 9 пар {α, β}. Первое положение выбирается произвольно, оставшиеся выбираются последовательно так, чтобы достигался минимум PDi(α, β), i=2…9. Одна пара {α, β} целиком описывает угловое положение блока, следовательно может быть преобразована в соответствующие углы приведения подвесов калибровочного стенда. Полученные в найденных положениях измерения, а также измерения, сделанные в промежуточных положениях, используются для вычисления вектора невязок z. После этого вектор коррекции параметров модели погрешностей блока δр оценивается путем приближенного решения системы калибровочных уравнений методом наименьших квадратов или алгоритмом фильтра Калмана для случая стационарного оцениваемого вектора. Скорректированный вектор параметров модели является результатом калибровки.
Таким образом, заявлен способ скалярной калибровки блока акселерометров заключающийся в том, что проводят измерения кажущегося ускорения, обусловленного силой тяжести, акселерометрами в различных угловых положениях блока и рассчитывают квадраты модуля вектора ускорения силы тяжести в этих положениях, определяют невязку между ожидаемыми и рассчитанными в различных угловых положениях блока квадратами модуля вектора ускорения силы тяжести, массив невязок линейно связывают с вектором отклонений параметров акселерометров, формируя калибровочную матрицу системы уравнений, решением системы уравнений методом наименьших квадратов или с помощью фильтра Калмана оценивают вектор коррекции параметров модели акселерометров, и выполняют калибровку акселерометров. Отличительная особенность способа заключается в том, что перед калибровкой определяют оптимальные угловые положения блока для измерений путем минимизации углового функционала так, чтобы минимизировать влияние неучитываемых погрешностей в условиях проведения калибровки.
Техническим результатом изобретения является повышение точности калибровки блока акселерометров за счет повышения устойчивости оценки к неучтенным погрешностям в калибровочных измерениях.

Claims (1)

  1. Способ скалярной калибровки блока акселерометров, заключающийся в том, что проводят измерения кажущегося ускорения, обусловленного силой тяжести, акселерометрами в различных угловых положениях блока и рассчитывают квадраты модуля вектора ускорения силы тяжести в этих положениях, определяют невязку между ожидаемыми и рассчитанными в различных угловых положениях блока квадратами модуля вектора ускорения силы тяжести, массив невязок линейно связывают с вектором отклонений параметров акселерометров, формируя калибровочную матрицу системы уравнений, решением системы уравнений методом наименьших квадратов или с помощью фильтра Калмана оценивают вектор коррекции параметров модели акселерометров и выполняют калибровку акселерометров, отличающийся тем, что перед калибровкой определяют оптимальные угловые положения блока для измерений путем минимизации углового функционала так, чтобы минимизировать влияние неучитываемых погрешностей в условиях проведения калибровки.
RU2020139186A 2020-11-27 2020-11-27 Способ скалярной калибровки блока акселерометров RU2753150C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020139186A RU2753150C1 (ru) 2020-11-27 2020-11-27 Способ скалярной калибровки блока акселерометров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020139186A RU2753150C1 (ru) 2020-11-27 2020-11-27 Способ скалярной калибровки блока акселерометров

Publications (1)

Publication Number Publication Date
RU2753150C1 true RU2753150C1 (ru) 2021-08-12

Family

ID=77349117

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020139186A RU2753150C1 (ru) 2020-11-27 2020-11-27 Способ скалярной калибровки блока акселерометров

Country Status (1)

Country Link
RU (1) RU2753150C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2249793C2 (ru) * 2002-08-06 2005-04-10 Открытое акционерное общество Пермская научно-производственная приборостроительная компания Способ калибровки акселерометров
RU2626288C1 (ru) * 2016-03-21 2017-07-25 Акционерное общество "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" Способ определения погрешностей основных характеристик блока инерциальных измерителей
CN108593965A (zh) * 2018-05-02 2018-09-28 福州大学 一种基于比力模和惯性稳定的加速度计系泊状态标定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2249793C2 (ru) * 2002-08-06 2005-04-10 Открытое акционерное общество Пермская научно-производственная приборостроительная компания Способ калибровки акселерометров
RU2626288C1 (ru) * 2016-03-21 2017-07-25 Акционерное общество "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" Способ определения погрешностей основных характеристик блока инерциальных измерителей
CN108593965A (zh) * 2018-05-02 2018-09-28 福州大学 一种基于比力模和惯性稳定的加速度计系泊状态标定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Аврутов В.В. "О скалярной калибровке блока акселерометров и гироскопов". Теорія та практика навігаційних приладів і систем. Вісник НТУУ "КПІ". Серія ПРИЛАДОБУДУВАННЯ. - 2010. - Вип. 40. Стр. 10-17. *

Similar Documents

Publication Publication Date Title
US7467536B2 (en) Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith
US20040007064A1 (en) Acceleration measuring apparatus with calibration function
CN109791048A (zh) 使用场景捕获数据校准惯性测量单元(imu)的组件的方法和系统
US5166882A (en) System for calibrating a gyro navigator
CN107356387B (zh) 一种模态试验中多传感器附加质量消除方法
CN100398274C (zh) 基于平板测量的机器人工具中心点三分量校准法
KR101698682B1 (ko) 지자기 센서의 출력값을 보정하는 방법 및 장치
US8566057B2 (en) Method for self-adjustment of a triaxial acceleration sensor during operation, and sensor system having a three-dimensional acceleration sensor
KR20110085495A (ko) 센서오차의 작동 중 자동교정 방법과 이를 이용한 관성항법장치
KR101250257B1 (ko) 관성 측정기의 교정 장치 및 그 방법
RU2683144C1 (ru) Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе
US7446883B2 (en) Method and apparatus for tilt corrected lateral shear in a lateral shear plus rotational shear absolute flat test
RU2753150C1 (ru) Способ скалярной калибровки блока акселерометров
CN107356786B (zh) 加速度计的校准方法和装置、计算机可读存储介质
RU2577806C1 (ru) Способ калибровки акселерометрического трехосевого инклинометра
RU2717566C1 (ru) Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе
RU2626288C1 (ru) Способ определения погрешностей основных характеристик блока инерциальных измерителей
EP2363708B1 (en) Apparatus and methods for imbalance compensation
RU2758891C1 (ru) Способ комбинированной калибровки блока акселерометров
CN114624789A (zh) 一种磁通门经纬仪仪器差的测量模型及不确定度评定方法
US11371848B2 (en) Method for characterising an inertial measurement unit
RU2718142C1 (ru) Способ повышения точности калибровки масштабных коэффициентов и углов неортогональности осей чувствительности блока датчиков ДУС
Tomaszewski et al. Analysis of the noise parameters and attitude alignment accuracy of INS conducted with the use of MEMS-based integrated navigation system
Belyaev et al. Error Calculation for Accelerometer Calibration by Broadband Random Vibration Analysis
RU2727344C1 (ru) Способ повышения точности калибровки блока микромеханических датчиков угловой скорости

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20220325