RU2626288C1 - Способ определения погрешностей основных характеристик блока инерциальных измерителей - Google Patents
Способ определения погрешностей основных характеристик блока инерциальных измерителей Download PDFInfo
- Publication number
- RU2626288C1 RU2626288C1 RU2016110376A RU2016110376A RU2626288C1 RU 2626288 C1 RU2626288 C1 RU 2626288C1 RU 2016110376 A RU2016110376 A RU 2016110376A RU 2016110376 A RU2016110376 A RU 2016110376A RU 2626288 C1 RU2626288 C1 RU 2626288C1
- Authority
- RU
- Russia
- Prior art keywords
- inertial
- measuring device
- device unit
- inertial measuring
- measurement information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
Abstract
Изобретение относится к навигационному приборостроению и предназначено для оценки основных характеристик блока инерциальных измерителей инерциальной навигационной системы (как платформенной, так и бесплатформенной), содержащего по меньшей мере три однотипных инерциальных измерителя с некомпланарными осями чувствительности, по измерительной информации, полученной в любых допустимых условиях функционирования, в том числе по результатам лабораторных, заводских и приемосдаточных испытаний. Технический результат – расширение функциональных возможностей на основе повышения точности оценки параметров математической модели погрешности блока инерциальных измерителей, упрощения и ускорения процесса оценки параметров математической модели погрешности блока инерциальных измерителей, снижения ограничений по выставляемым характерным положениям и разворотам блока инерциальных измерителей, что позволяет проводить оценку параметров математической модели погрешности в условиях ограниченной подвижности блока инерциальных измерителей. При этом предлагаемый способ заключается в осуществлении поворотов блока инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией и обработкой измерительной информации. При последующей обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации. 1 ил.
Description
Изобретение относится к навигационному приборостроению и предназначено для оценки основных характеристик блока инерциальных измерителей инерциальной навигационной системы (как платформенной, так и бесплатформенной), содержащего по меньшей мере три однотипных инерциальных измерителя с некомпланарными осями чувствительности, по измерительной информации, полученной в любых допустимых условиях функционирования, в том числе по результатам лабораторных, заводских и приемосдаточных испытаний.
Известен способ калибровки гироскопических измерителей угловой скорости из патента РФ №2156959 с датой приоритета 01.06.1999 г., сущность которого состоит в последовательном принудительном вращении инерциальной курсовертикали с жестко закрепленными на ней гироскопическими измерителями угловой скорости и акселерометрами по трем строительным осям объекта без использования гироскопической стабилизации. Измеряют абсолютные угловые скорости вращения курсовертикали с помощью гироскопов и по представленной модели калибровки определяют дрейфы гироскопов, ошибки масштабных коэффициентов, ошибки асимметрии масштабных коэффициентов и перекосы осей чувствительности гироскопов.
Недостатком известного способа калибровки гироскопических измерителей угловой скорости является его сложность, поскольку необходимо обеспечить вращение объекта по трем ортогональным осям, что накладывает ограничения на условия проведения калибровки. Также для осуществления вышеуказанного способа требуется предварительная калибровка блока акселерометров, так как в процессе калибровки гироскопов необходимо использовать измерительную информацию акселерометров, а возможность одновременной калибровки акселерометров и гироскопов отсутствует.
Известен способ калибровки инерциального измерительного модуля по каналу акселерометров из патента РФ №2477864 с датой приоритета 30.11.2011 г., включающий оценку параметров математической модели погрешностей при задании различных ориентаций модуля относительно вектора ускорения свободного падения на грубом поворотном столе. При этом определяют нулевые сигналы и матрицу, описывающую относительное расположение измерительных осей, перекрестные связи, масштабные коэффициенты акселерометров, затем проводят привязку матрицы, описывающей относительное расположение измерительных осей, перекрестные связи, масштабные коэффициенты акселерометров к осям инерциального измерительного модуля, для чего точно определяют ориентацию модуля в двух различных положениях относительно вектора ускорения свободного падения, за исключением положений, получающихся путем разворота инерциального измерительного модуля на 180° вокруг любой оси.
Недостатком способа калибровки инерциального измерительного модуля по каналу акселерометров является его сложность, поскольку необходимо обеспечить вращение объекта по трем ортогональным осям, что накладывает ограничения на условия проведения калибровки. Также недостатком способа калибровки является отсутствие возможности калибровки гироскопов, входящих в инерциальный измерительный модуль наряду с акселерометрами.
В качестве прототипа принят способ калибровки бесплатформенных инерциальных навигационных систем (патент РФ №2406973 с датой приоритета 05.02.2009 г.), посредством которого возможно производить оценку основных характеристик измерительных каналов бесплатформенных инерциальных навигационных систем (далее - БИНС).
Способ основан на оценке калибровочных коэффициентов математической модели погрешностей при установке БИНС в определенные характерные положения. Причем калибровочные коэффициенты инерциальных измерителей навигационной системы определяются в два этапа: на первом этапе по составляющим вектора ошибок системы, полученным по показаниям системы, показаниям калибровочного стола и значениям широты места установки калибровочного стола, определяются входные сигналы модели ошибок навигационной системы, являющиеся функциями калибровочных коэффициентов, на втором этапе по входным сигналам модели ошибок системы вычисляются калибровочные коэффициенты инерциальных измерителей.
Недостатками рассматриваемого в качестве прототипа способа калибровки бесплатформенных инерциальных навигационных систем являются узкая область применения, сложность и большая длительность калибровки. Способ применим только к нерезервированной трехосной ортогональной кинематической схеме, что исключает возможность использования данного способа для калибровки блока инерциальных измерителей БИНС с избыточным набором чувствительных элементов. Кроме того, для осуществления способа калибровки бесплатформенных инерциальных навигационных систем необходимо выставлять БИНС в характерные положения с высокой точностью, что усложняет процесс и увеличивает длительность калибровки.
Технической задачей изобретения является получение оценок параметров математической модели погрешностей блока инерциальных измерителей в условиях ограниченного объема фактически имеющейся измерительной информации.
Технические результаты заявляемого способа определения погрешностей основных характеристик блока инерциальных измерителей заключаются:
- в повышении точности оценки параметров математической модели погрешностей блока инерциальных измерителей (даже в условиях ограниченного объема фактически имеющейся измерительной информации);
- в упрощении и ускорении процесса оценки параметров математической модели погрешностей блока инерциальных измерителей;
- в снижении требований по выставляемым характерным положениям и разворотам блока инерциальных измерителей, что позволяет проводить оценку параметров математической модели погрешностей в условиях ограниченной подвижности блока инерциальных измерителей.
Данные технические результаты достигаются за счет того, что способ определения погрешностей основных характеристик блока инерциальных измерителей заключается в осуществлении поворотов блока чувствительных элементов инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией измерительной информации в фиксированных положениях и обработкой. При обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.
Регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.
При обработке результатов измерений осуществляется численное решение системы уравнений, составленной в соответствии с математической моделью погрешностей блока чувствительных элементов инерциальных измерителей. Сформированная при этом нелинейная система уравнений является избыточной относительно оцениваемых параметров математической модели погрешностей. Для ее решения используется многопараметрическая минимизация целевой функции, представленной в виде суммы квадратов разности левой и правой частей уравнений, посредством одного из методов многопараметрической оптимизации.
На фиг. 1 представлена последовательность действий для определения погрешностей основных характеристик блока инерциальных измерителей.
Рассмотрим реализацию предлагаемого способа на примере оценки составляющих математической модели погрешностей блока инерциальных измерителей, состоящего из четырех акселерометров, оси чувствительности которых расположены на конусе.
Решение данной задачи осуществляется в три этапа.
На первом этапе для оценки составляющих математической модели погрешностей блока акселерометров используется измерительная информация блока акселерометров, регистрируемая в нескольких различных фиксированных пространственных положениях. Регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.
Полученные значения выходного кода по каждому акселерометру усредняются на интервале записи tИНТ измерительной информации в каждом фиксированном положении, и рассчитывается проекция вектора, действующего на прибор ускорения на ось чувствительности акселерометра в соответствии с формулой (1).
где ΔWAi - приращение интеграла проекции кажущегося ускорения на ось чувствительности i-го акселерометра за такт опроса (i=1, 2, 3, 4), м/с;
Mi - значение масштабного коэффициента i-го акселерометра, м/с;
ΔNi- - приращение выходного кода i-го акселерометра, ед. кода;
τi - смещение нулевого сигнала i-го акселерометрического канала (i=1, 2, 3, 4), м/с2;
tИНТ - длительность интервала опроса, с.
На втором этапе формируются рабочие тройки некомпланарных векторов по показаниям наборов троек акселерометров (исходя из наличия четырех акселерометров).
Предположим, что в рамках рассматриваемой математической модели погрешностей блока инерциальных измерителей БИНС никакие три оси чувствительности акселерометров не лежат в одной плоскости, тогда, используя любую тройку (из четырех возможных) измерителей, можно оценить величину ускорения, действующего на блок инерциальных измерителей БИНС.
С помощью математической модели погрешностей блока инерциальных измерителей для каждой рабочей тройки рассчитываются проекции в прямоугольную систему координат. По этим проекциям рассчитывается общее значение действующего ускорения на блок инерциальных измерителей БИНС по данным с рассматриваемой рабочей тройки. Переход от проекций на оси чувствительности акселерометров к проекциям на оси прямоугольной системы координат происходит с помощью матрицы перехода МА (2), которая содержит углы, характеризующие погрешность ориентации оси чувствительности i-го акселерометра по отношению к ее номинальному положению (углы αi=1..4, βi=1..4):
где МА - матрица, связывающая оси чувствительности акселерометров с осями прямоугольной системы координат;
ΔWin - проекция кажущегося ускорения на оси прямоугольной системы координат (i=X, Y, Z).
Таким образом, для каждой рабочей тройки по каждому выставляемому положению записывается уравнение, где в левой части располагаются уточняемые характеристики математической модели погрешностей блока инерциальных измерителей, а в правой - модуль вектора ускорения, действующего на инерциальные измерители.
Для варианта с четырьмя акселерометрами записывается четыре таких уравнения:
Предполагается, что модуль вектора кажущегося ускорения, действующего на блок инерциальных измерителей БИНС, известен с точностью, достаточной для проведения испытаний. Набор ориентаций блока инерциальных измерителей рассматривается исходя из того, чтобы количество уравнений системы (3) по всем ориентациям было избыточным по отношению к количеству уточняемых характеристик блока инерциальных измерителей БИНС.
На третьем этапе в каждом уравнении минимизируется разность между оценкой модуля вектора кажущегося ускорения, действующего на блок инерциальных измерителей БИНС, и соответствующим эталонным значением (4). При этом варьирование оцениваемых параметров математической модели погрешностей БИНС приводит к их уточнению.
где f - модуль вектора действующего на блок инерциальных измерителей ускорения, рассчитанного с использованием оцениваемых параметров;
Пi - оцениваемые параметры (i=1, 2, …n).
Для решения системы (4) составляется функция рассогласования (5):
Оптимизация функции рассогласования осуществляется посредством многопараметрической оптимизации, например метода покоординатного спуска. Также вместо метода покоординатного спуска может быть использован другой метод оптимизации, в том числе один из градиентных методов, в зависимости от особенностей оцениваемой математической модели погрешностей.
Повышение точности оценки параметров математической модели погрешностей блока инерциальных измерителей, упрощение и ускорение процесса оценки параметров математической модели погрешностей блока инерциальных измерителей и снижение требований по выставляемым характерным положениям и разворотам блока инерциальных измерителей достигается за счет осуществления поворотов блока инерциальных измерителей, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с последующей регистрацией и обработкой измерительной информации. При последующей обработке измерительной информации на первом этапе выполняют пересчет измерительной информации из выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей. На втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения. На третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.
При этом регистрация измерительной информации производится в течение временного интервала, обеспечивающего определение измеряемой величины с необходимой точностью.
При обработке результатов измерений осуществляется численное решение системы уравнений, составленной в соответствии с математической моделью погрешностей блока инерциальных измерителей. Сформированная при этом нелинейная система уравнений является избыточной относительно оцениваемых параметров математической модели погрешностей. Для ее решения используется многопараметрическая минимизация целевой функции, представленной в виде суммы квадратов разности левой и правой частей уравнений, посредством одного из методов многопараметрической оптимизации.
Claims (1)
- Способ определения погрешностей основных характеристик блока инерциальных измерителей, заключающийся в осуществлении поворотов блока чувствительных элементов, содержащего как минимум три однотипных инерциальных измерителя с некомпланарными осями чувствительности, с регистрацией измерительной информации в фиксированных положениях и последующей ее обработкой, отличающийся тем, что на первом этапе обработки измерительной информации выполняют пересчет выходного кода по каждой некомпланарной тройке измерителей в абсолютное значение физической характеристики, действующей на прибор, с помощью параметров математической модели погрешностей блока инерциальных измерителей, на втором этапе обработки измерительной информации составляют функцию рассогласования, определяющую суммарное отклонение величины физической характеристики, полученной с использованием значений основных характеристик блока инерциальных измерителей по выходному коду, от эталонного значения, на третьем этапе обработки измерительной информации уточняют параметры математической модели погрешностей блока инерциальных измерителей путем минимизации полученной функции рассогласования посредством многопараметрической оптимизации.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016110376A RU2626288C1 (ru) | 2016-03-21 | 2016-03-21 | Способ определения погрешностей основных характеристик блока инерциальных измерителей |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016110376A RU2626288C1 (ru) | 2016-03-21 | 2016-03-21 | Способ определения погрешностей основных характеристик блока инерциальных измерителей |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2626288C1 true RU2626288C1 (ru) | 2017-07-25 |
Family
ID=59495829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016110376A RU2626288C1 (ru) | 2016-03-21 | 2016-03-21 | Способ определения погрешностей основных характеристик блока инерциальных измерителей |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2626288C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2717566C1 (ru) * | 2019-08-15 | 2020-03-24 | Акционерное общество "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" | Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе |
RU2753150C1 (ru) * | 2020-11-27 | 2021-08-12 | Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") | Способ скалярной калибровки блока акселерометров |
RU2758891C1 (ru) * | 2020-11-27 | 2021-11-02 | Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") | Способ комбинированной калибровки блока акселерометров |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1747905A1 (ru) * | 1990-10-31 | 1992-07-15 | Botuz Sergej P | Способ многоканальной регистрации результатов измерений и устройство дл его осуществлени |
EP0763714A2 (en) * | 1995-08-22 | 1997-03-19 | The Boeing Company | Cursor controlled navigation system for aircraft |
RU2406973C2 (ru) * | 2009-02-05 | 2010-12-20 | Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" | Способ калибровки бесплатформенных инерциальных навигационных систем |
RU2477864C1 (ru) * | 2011-11-30 | 2013-03-20 | Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" | Способ калибровки инерциального измерительного модуля по каналу акселерометров |
-
2016
- 2016-03-21 RU RU2016110376A patent/RU2626288C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1747905A1 (ru) * | 1990-10-31 | 1992-07-15 | Botuz Sergej P | Способ многоканальной регистрации результатов измерений и устройство дл его осуществлени |
EP0763714A2 (en) * | 1995-08-22 | 1997-03-19 | The Boeing Company | Cursor controlled navigation system for aircraft |
RU2406973C2 (ru) * | 2009-02-05 | 2010-12-20 | Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" | Способ калибровки бесплатформенных инерциальных навигационных систем |
RU2477864C1 (ru) * | 2011-11-30 | 2013-03-20 | Открытое акционерное общество "Конструкторское Бюро Промышленной Автоматики" | Способ калибровки инерциального измерительного модуля по каналу акселерометров |
Non-Patent Citations (4)
Title |
---|
БИНДЕР Я.И., ПАДЕРИНА Т.В., АНУЧИН О.Н. Калибровка датчиков угловой скорости с механическим носителем вектора кинетического момента в составе бесплатформенных инерциальных измерительных модулей. Г. и Н. 2003. * |
НИКИТИН Н.Н. Курс теоретической механики. - М.: Высшая школа, 1990. с.245-263. * |
НИКИТИН Н.Н. Курс теоретической механики. - М.: Высшая школа, 1990. с.245-263. ПЕЛЬПОР Д.С. Гироскопические системы. Ч. 1. Теория гироскопов и гиростабилизаторов. - М.: Высшая школа, 1986. с.78-143. БИНДЕР Я.И., ПАДЕРИНА Т.В., АНУЧИН О.Н. Калибровка датчиков угловой скорости с механическим носителем вектора кинетического момента в составе бесплатформенных инерциальных измерительных модулей. Г. и Н. 2003. * |
ПЕЛЬПОР Д.С. Гироскопические системы. Ч. 1. Теория гироскопов и гиростабилизаторов. - М.: Высшая школа, 1986. с.78-143. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2717566C1 (ru) * | 2019-08-15 | 2020-03-24 | Акционерное общество "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" | Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе |
RU2753150C1 (ru) * | 2020-11-27 | 2021-08-12 | Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") | Способ скалярной калибровки блока акселерометров |
RU2758891C1 (ru) * | 2020-11-27 | 2021-11-02 | Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") | Способ комбинированной калибровки блока акселерометров |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6454763B2 (ja) | 慣性システムの自己較正 | |
CN103808349B (zh) | 矢量传感器的误差校正方法和装置 | |
RU2566427C1 (ru) | Способ определения температурных зависимостей масштабных коэффициентов, смещений нуля и матриц ориентации осей чувствительности лазерных гироскопов и маятниковых акселерометров в составе инерциального измерительного блока при стендовых испытаниях | |
CN105628976B (zh) | Mems加速度传感器性能参数标定方法、处理器及系统 | |
RU2626288C1 (ru) | Способ определения погрешностей основных характеристик блока инерциальных измерителей | |
JP2009505062A (ja) | リアルタイムバイアス推定器に基づく慣性機器のための自己較正 | |
CN113155114A (zh) | Mems惯性测量单元陀螺零位的温度补偿方法及装置 | |
Lv et al. | A method of low-cost IMU calibration and alignment | |
CN103983278A (zh) | 一种测量影响卫星姿态确定系统精度的方法 | |
EP2988095B1 (en) | Altitude detecting unit and altitude detecting method | |
CN108107233B (zh) | 加速度计标度因数的连续温度校正方法及系统 | |
Sohrabi et al. | Accuracy enhancement of MEMS accelerometer by determining its nonlinear coefficients using centrifuge test | |
CN103954288B (zh) | 一种卫星姿态确定系统精度响应关系确定方法 | |
RU2717566C1 (ru) | Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе | |
RU2619443C2 (ru) | Способ оценки погрешностей трехосного гироскопа | |
CN108803373B (zh) | 一种三轴转台的地速消除方法 | |
US20200363208A1 (en) | Factory-specific inertial measurement unit error model | |
CN109211266A (zh) | 一种船用格网惯性导航系统综合校正方法 | |
Wang et al. | A calibration procedure and testing of MEMS inertial sensors for an FPGA-based GPS/INS system | |
Rajchowski et al. | Research and Analysis of Accuracy of Location Estimation in Inertial Navigation System | |
RU2727344C1 (ru) | Способ повышения точности калибровки блока микромеханических датчиков угловой скорости | |
Ruizenaar et al. | Gyro bias estimation using a dual instrument configuration | |
RU2718142C1 (ru) | Способ повышения точности калибровки масштабных коэффициентов и углов неортогональности осей чувствительности блока датчиков ДУС | |
CN110987018A (zh) | 比力微分的位置法dvl误差标定方法及系统 | |
RU2629539C1 (ru) | Способ измерения магнитного курса подвижного объекта |