RU2752403C1 - Способ получения стойкого композиционного покрытия на металлических деталях - Google Patents

Способ получения стойкого композиционного покрытия на металлических деталях Download PDF

Info

Publication number
RU2752403C1
RU2752403C1 RU2020130409A RU2020130409A RU2752403C1 RU 2752403 C1 RU2752403 C1 RU 2752403C1 RU 2020130409 A RU2020130409 A RU 2020130409A RU 2020130409 A RU2020130409 A RU 2020130409A RU 2752403 C1 RU2752403 C1 RU 2752403C1
Authority
RU
Russia
Prior art keywords
coating
laser
surfacing
hardness
powder
Prior art date
Application number
RU2020130409A
Other languages
English (en)
Inventor
Сергей Петрович Оплеснин
Светлана Евгеньевна Крылова
Владимир Александрович Завьялов
Александр Васильевич Михайлов
Артем Олегович Стрижов
Алексей Юрьевич Плесовских
Иван Александрович Курноскин
Original Assignee
Общество с ограниченной ответственностью "Технология"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Технология" filed Critical Общество с ограниченной ответственностью "Технология"
Priority to RU2020130409A priority Critical patent/RU2752403C1/ru
Application granted granted Critical
Publication of RU2752403C1 publication Critical patent/RU2752403C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к способу получения стойкого композиционного покрытия на металлической поверхности и может быть использовано для восстановления и упрочнения деталей машин и инструмента. Способ включает внесение в зону лазерного воздействия порошковой композиции системы Fe-Ni-Cr-Si, легированной бором, ниобием и медью, дисперсностью 60-100 мкм и непрерывную наплавку в контролируемой газовой среде аргона с азотом при мощности лазера 1,8-2 кВт. Техническим результатом изобретения является повышение твердости поверхностного слоя до уровня ≥1400 HV при достижении прочности покрытия 650 МПа на глубину до 1,2 мм за счет формирования железо-никелевой металлической основы с равномерным распределением сложных карбидообразующих включений и устойчивых фаз, повышающих адгезию и твердость покрытия. 3 ил., 1 пр.

Description

Изобретение относится к области металлургии и машиностроения и может быть использовано для упрочнения поверхности новых деталей машин и инструмента, а также для восстановления поверхностей изношенных деталей.
Эффективным средством повышения долговечности и надежности различных деталей машин и инструмента является формирование на их поверхности высокопрочных, износостойких и коррозионностойких покрытий. Для поверхностного упрочнения деталей путем создания покрытий применяют самофлюсующиеся порошки сплавов для наплавки, в частности, системы Fe-Ni-Cr-Si.
Среди различных способов получения упрочненных покрытий очевидными преимуществами обладает лазерная наплавка, в процессе которой тонкий поверхностный слой основного металла оплавляется лазерным лучом совместно с присадочным материалом. Лазерную наплавку характеризует высокая скорость охлаждения за счет локальности нагрева и интенсивного теплоотвода вглубь детали, возможность выборочной наплавки области детали, непосредственно подвергающейся изнашиванию. Локальность и высокая скорость охлаждения наплавленного металла при лазерной наплавке являются существенными ее достоинствами, поскольку снижают коробление деталей. Кроме того, лазерная наплавка обеспечивает хорошее сцепление покрытия с основой.
Известен способ формирования поверхностного композиционного слоя в металлах, включающий нагрев поверхности лазером до температуры выше солидуса и введение в расплав легирующих элементов при одновременном воздействии ультразвуковых колебаний посредством ультразвукового преобразователя, отличающийся тем, что в зону расплава вводят упрочняющие частицы в виде порошка карбида вольфрама или карбида титана (патент RU 2718503, МПК B23K 26/342, опубликовано 08.04.2020). Такой способ не обеспечивает достаточной эксплуатационной стойкости деталей нефтегазодобывающей отрасли, подвергающихся одновременному воздействию агрессивной сероводородосодержащей среды и изнашиванию, при котором крупные карбиды вольфрама и титана неустойчивы, выкрашиваются и являются очагами коррозионного разрушения.
Наиболее близким по технической сущности решением, принятым за прототип, является Способ формирования на поверхности стальных изделий сверхтвердого износостойкого покрытия, включающий нанесение порошковой обмазки и последующее короткоимпульсное лазерное оплавление, при этом используют порошкообразную композицию с дисперсностью 1-10 мкм, содержащую, мас. %:
нитрид бора BN 0-60
графит ГИИ-А 0-20
карбид бора В4С основа,
которые наносят на подложку из стали, а короткоимпульсную лазерную обработку ведут в контролируемой газовой среде аргона с длительностью импульса не более 200 нс (патент RU 2718793, МПК B23K 26/342, опубликовано 14.04.2020). Такой способ обладает следующими недостатками.
Способ многостадийный и длительный, так как требуются определенные промежутки времени для формирования и просушивания каждого слоя обмазки. Кроме того, импульсное воздействие не подразумевает оплавление основного металла и формирование монолитной переходной зоны на кристаллическом уровне, обеспечивающей адгезионную стойкость. Состав порошковой композиции не позволяет получить слой, обладающий химическим сродством с основным металлом. Малая фракция порошковой композиции (в пределах от 1 до 10 мкм) очень редко встречается в порошковой металлургии, что требует применения дополнительного размалывающего оборудования, при этом часть ее, размером до 5 мкм, выгорает при лазерном воздействии.
Для решения указанной технической проблемы предлагается в известном способе, включающем внесение в зону лазерного воздействия порошковой композиции использовать порошковые материалы системы Fe-Ni-Cr-Si и микролегирование бором, ниобием и медью с дисперсностью порошковой композиции 60-100 мкм, лазерную наплавку проводить в контролируемой газовой среде аргона с азотом со скоростью 6,5-7,0 м/мин и мощностью лазера в диапазоне 1,8-2,0 кВт.
Подобный состав порошковой композиции обеспечивает формирование дисперсных высокотвердых фаз, состоящих из элементов основного материала и Cr23C6; Cr7C3; Me23(C,В)6; CrB; (Cr,Fe)7C3 что является фактором дополнительного увеличения износостойкости и коррозионной стойкости наплавленных покрытий.
Фракция 60-100 мкм является оптимальной, так как с увеличением размера наплавляемой фракции от 100 до 120 мкм высота единичного слоя увеличивается в 1,5-2 раза, что сопровождается преобладанием количества образующейся хрупкой эвтектики γ - Nb3B, γ - Me23C6 в наплавленной области.
Использование более мелкой фракции, менее 60 мкм приводит к выгоранию порошкового материала и образованию окалины на поверхности наплавки. Скорость в пределах 6,5-7,0 м/мин позволяет получить безпористый единичный наплавленный слой высотой 0,7 – 1 мм.
При мощности лазера больше 2 кВт формируется более грубая литая структура из-за увеличения скорости охлаждения, что требует последующей смягчающей термической обработки. При снижении мощности лазера менее 1,8 кВт, в наплавленном слое фиксируются неусвоенные твердые частицы порошковой композиции, выкрашивающиеся при последующей механической обработке (шлифовка и полировка).
Пример реализации способа:
Композиционный порошковый материал, на основе металлургических порошков марок ПР-20Х13Н2 (0,23% С;12,8 % Cr; 2.2 % Ni; 0.7% Si; 0.7 % Mn; Fe - основа) и ПР-16СР4МД3 (4,2% Fe; 0.5% C; 16,3 % Cr; 4.25% Si; 3.25 % B; 2.48 % Mo; 2.57 % Cu: Ni - основа) в соотношении (3:1) гранулометрического состава 60…100 мкм наплавляли на отработанное изделие - вал ротора, выполненный из стали 12Х18Н10Т.
Функциональное покрытие получали следующим образом:
Рабочую поверхность предварительно подвергали токарной обработке, обеспечивая шероховатость в пределах 3,2 Ra. Наплавку осуществляли иттербиевым волоконным лазером непрерывного действия в 2-3 прохода (в зависимости от глубины изношенной поверхности) при мощности излучения 1,8 - 2 кВт, линейной скорости вращения заготовки 8,28 мм/с, скорости подачи порошка 20 г/мин, при диаметре лазерного пятна 3,5 мм. Порошковая смесь транспортировалась в зону наплавки защитным газом, представляющим смесь Ar и N2 (аргона и азота), при расходе газовой смеси 6 л/мин. Наплавку производили до достижения толщины покрытия 2,0 - 2,5 мм, после чего подвергали токарной обработке и шлифованию на станке с интенсивным охлаждением.
Наряду с реализацией заявленного состава и способа наплавки, была проведена лазерная наплавка традиционного покрытия ПР-НХ15СР2 при заявленных параметрах процесса. Измерения микротвердости на поверхности покрытия определяли по методу Виккерса при нагрузке на индентор 0,98Н (HV0.1), твердость определяли по методу Роквелла при нагрузке 150Н. Фазовый состав покрытий различного состава определяли методом рентгеноструктурного анализа. Результаты исследования представлены в фигуре 1 - сравнительный анализ способов и свойств покрытий и 2 - состав покрытия ПР-30Х13:ПР-НХ16СР4МД3 по сечению и сопоставлены с результатами, получаемыми при реализации традиционного способа, а также результатами, представленными в патенте (RU2709550, МПК В23К 26/342 опубликовано 18.12.2019).
Из представленного сравнительного анализа способов и свойств покрытий видно, что обработка предлагаемым способом приводит к повышению микротвердости покрытия до 1400 HV0,1 при измерениях с нагрузками на индентор Виккерса 0,98 Н, по сравнению с наиболее близкими составами и способами (820-950 HV0.1). Из фигуры 1 следует, что предлагаемый способ получения покрытия способствует увеличению прочности покрытия до 650 МПа на глубину до 1,2 мм, что превышает значение показателей прочности покрытий, сформированных известными способами на 25-30%.
Кроме того, для предлагаемого способа характерно формирование качественной поверхности без наличия пор, трещин, очагов адгезионного схватывания и отслоении. Согласно данным фигуры 2 - состав покрытия ПР-30Х13:ПР-НХ16СР4МД3 по сечению и данным фигуры 3 - структурный анализ покрытия, заявляемый способ обеспечивает формирование смешанной металлической основы покрытия, состоящей из γ-твердого раствора на основе Fe и Ni с равномерным распределением сложных карбоборидов переменного состава, в которых часть атомов Fe заменена более устойчивыми элементами Cr, B, Mo, что обеспечивает повышение твердости поверхностного слоя покрытия системы Fe-Ni-Cr-Si до уровня ≥1400HV при одновременном обеспечении высокого качества восстанавливаемой поверхности.
Заявляемым способом можно получить покрытия на новых или восстанавливаемых деталях из сплавов на основе Fe и Ni, используемых в условиях интенсивного изнашивания, в том числе в агрессивных средах.

Claims (1)

  1. Способ получения стойкого композиционного покрытия на металлической детали, включающий нанесение порошковой композиции и одновременную ее лазерную наплавку в среде защитных газов, отличающийся тем, что используют порошковую композицию системы Fe-Ni-Cr-Si с микролегированием бором, ниобием и медью и дисперсностью 60-100 мкм, при этом используют смесь порошкового материала следующего состава, мас.%: 0,23 С; 12,8 Cr; 2,2 Ni; 0,7 Si; 0,7 Mn, Fe – основа, и порошкового материала следующего состава, мас.%: 4,2 Fe; 0,5 C; 16,3 Cr; 4,25Si; 3,25B; 2,48 Mo; 2,57 Cu; Ni – основа, в соотношении 3:1, причем лазерную наплавку осуществляют в контролируемой среде аргона с азотом со скоростью 6,5–7,0 м/мин и мощностью 1,8-2 кВт с обеспечением формирования устойчивых сложных карбидонитридных включений и фаз, повышающих адгезию и твердость покрытия.
RU2020130409A 2020-09-16 2020-09-16 Способ получения стойкого композиционного покрытия на металлических деталях RU2752403C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020130409A RU2752403C1 (ru) 2020-09-16 2020-09-16 Способ получения стойкого композиционного покрытия на металлических деталях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020130409A RU2752403C1 (ru) 2020-09-16 2020-09-16 Способ получения стойкого композиционного покрытия на металлических деталях

Publications (1)

Publication Number Publication Date
RU2752403C1 true RU2752403C1 (ru) 2021-07-27

Family

ID=76989389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020130409A RU2752403C1 (ru) 2020-09-16 2020-09-16 Способ получения стойкого композиционного покрытия на металлических деталях

Country Status (1)

Country Link
RU (1) RU2752403C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799193C1 (ru) * 2022-11-26 2023-07-04 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ГЕОФИЗИЧЕСКОЙ АППАРАТУРЫ "ЛУЧ" Способ лазерного аддитивного нанесения износостойкого немагнитного покрытия на защитные элементы корпуса роторных управляемых систем

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173249A (ja) * 1988-12-26 1990-07-04 Sumitomo Metal Ind Ltd 耐フレーキング性に優れた二層めっき鋼板
JPH1030139A (ja) * 1996-07-17 1998-02-03 Daido Steel Co Ltd 耐食・耐摩耗・耐割れ性に優れた合金およびその合金の製造方法ならびにその合金の製造用材料
RU2161211C1 (ru) * 2000-01-12 2000-12-27 Волгоградский государственный технический университет Способ обработки поверхностей трения
CN101667538A (zh) * 2004-08-23 2010-03-10 株式会社半导体能源研究所 半导体器件及其制造方法
RU2441100C2 (ru) * 2010-04-20 2012-01-27 Общество с ограниченной ответственностью "Производственное предприятие "Турбинаспецсервис" Способ получения жаростойкого покрытия на лопатках газовых турбин
RU2014148027A (ru) * 2012-05-30 2016-06-20 Акционерное Общество "Плазма Систем" Способ нанесения защитной облицовки, в частности, на герметичные топочные экраны энергетических котлов
RU2718793C1 (ru) * 2019-03-05 2020-04-14 Евгений Викторович Харанжевский Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173249A (ja) * 1988-12-26 1990-07-04 Sumitomo Metal Ind Ltd 耐フレーキング性に優れた二層めっき鋼板
JPH1030139A (ja) * 1996-07-17 1998-02-03 Daido Steel Co Ltd 耐食・耐摩耗・耐割れ性に優れた合金およびその合金の製造方法ならびにその合金の製造用材料
RU2161211C1 (ru) * 2000-01-12 2000-12-27 Волгоградский государственный технический университет Способ обработки поверхностей трения
CN101667538A (zh) * 2004-08-23 2010-03-10 株式会社半导体能源研究所 半导体器件及其制造方法
RU2441100C2 (ru) * 2010-04-20 2012-01-27 Общество с ограниченной ответственностью "Производственное предприятие "Турбинаспецсервис" Способ получения жаростойкого покрытия на лопатках газовых турбин
RU2014148027A (ru) * 2012-05-30 2016-06-20 Акционерное Общество "Плазма Систем" Способ нанесения защитной облицовки, в частности, на герметичные топочные экраны энергетических котлов
RU2718793C1 (ru) * 2019-03-05 2020-04-14 Евгений Викторович Харанжевский Способ получения сверхтвердых износостойких покрытий с низким коэффициентом трения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799193C1 (ru) * 2022-11-26 2023-07-04 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ ГЕОФИЗИЧЕСКОЙ АППАРАТУРЫ "ЛУЧ" Способ лазерного аддитивного нанесения износостойкого немагнитного покрытия на защитные элементы корпуса роторных управляемых систем

Similar Documents

Publication Publication Date Title
Song et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders
Yerramareddy et al. The effect of laser surface treatments on the tribological behavior of Ti-6Al-4V
Cheng et al. Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance
Haldar et al. Identifying defects and problems in laser cladding and suggestions of some remedies for the same
KR100939799B1 (ko) 티타늄 합금으로부터 마모-저항성 및 피로-저항성의엣지층을 생성하기 위한 방법, 및 그 생성된 구성요소
Reddy et al. Friction surfacing: novel technique for metal matrix composite coating on aluminium–silicon alloy
Sahoo et al. Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process
US6037287A (en) Laser clad pot roll sleeves and bushings for galvanizing baths
Jeyaprakash et al. Characterization and tribological evaluation of NiCrMoNb and NiCrBSiC laser cladding on near-α titanium alloy
Saroj et al. Geometrical assessment and mechanical characterization of single-line Inconel 825 layer fabricated on AISI 304 steel by TIG cladding method
Das et al. Tungsten inert gas (TIG) cladding of TiC-Fe metal matrix composite coating on AISI 1020 steel substrate
RU2752403C1 (ru) Способ получения стойкого композиционного покрытия на металлических деталях
Fatoba et al. The influence of laser parameters on the hardness studies and surface analyses of laser alloyed stellite-6 coatings on AA 1200 Alloy: a response surface model approach
Kalyankar et al. Comparative investigations on microstructure and slurry abrasive wear resistance of NICRBSI and NICRBSI-WC composite hardfacings deposited on 304 stainless steel
Vojtovych et al. Mechanical characteristics and wear resistance of the cladding layers obtained by melting of cored wires with simultaneous vibration of substrate
Mahmoud et al. Microstructure and wear behavior of TiC coating deposited on spheroidized graphite cast iron using laser surfacing
RU2709550C1 (ru) Способ получения упрочненного никельхромборкремниевого покрытия на металлических деталях
Thilipkumar et al. An investigation on the microstructure, wear rate and hardness of Surface alloying Ni-Hard 4 cast iron with Tungsten Using GTA
Astafeva et al. Evaluation of the Hardness and Wear Resistance of Alloyed Coatings From Fastening CuSn/CrxCy Mixture Hardened by Plasma and Laser
Majumdar et al. Laser composite surfacing of stainless steel with SiC
Duraiselvam et al. Laser clad WC reinforced Ni-based intermetallic-matrix composites to improve cavitation erosion resistance
Abdulrahman et al. Additive manufacturing: laser metal deposition and effect of preheating on properties of deposited Ti-4822-4 alloy
Bedfordt et al. Production of friction surfaced components using steel metal matrix composites produced by Osprey process
RU2205094C2 (ru) Способ электронно-лучевой наплавки
RU2803173C1 (ru) Композиционный состав порошкообразного материала для плазменного напыления