RU2749736C1 - Способ получения нанокристаллического диоксида титана со структурой анатаз - Google Patents

Способ получения нанокристаллического диоксида титана со структурой анатаз Download PDF

Info

Publication number
RU2749736C1
RU2749736C1 RU2020139526A RU2020139526A RU2749736C1 RU 2749736 C1 RU2749736 C1 RU 2749736C1 RU 2020139526 A RU2020139526 A RU 2020139526A RU 2020139526 A RU2020139526 A RU 2020139526A RU 2749736 C1 RU2749736 C1 RU 2749736C1
Authority
RU
Russia
Prior art keywords
titanium
chamber
plasma
titanium dioxide
barrel
Prior art date
Application number
RU2020139526A
Other languages
English (en)
Inventor
Александр Анатольевич Сивков
Юлия Николаевна Вымпина
Дмитрий Сергеевич Никитин
Иван Игоревич Шаненков
Ильяс Аминович Рахматуллин
Артур Ринатович Насырбаев
Юлия Леонидовна Шаненкова
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» filed Critical федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»
Priority to RU2020139526A priority Critical patent/RU2749736C1/ru
Application granted granted Critical
Publication of RU2749736C1 publication Critical patent/RU2749736C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению диоксида титана, который может быть использован в водородной энергетике и технологиях очистки воды. Способ включает генерирование титановой электроразрядной плазмы в первую камеру 19, предварительно вакуумированную и наполненную газовой смесью аргона и кислорода в соотношении парциальных давлений Ar:O2 1:4 при нормальном атмосферном давлении и комнатной температуре, с помощью коаксиального магнитоплазменного ускорителя с титановым стволом 1 и с составным центральным электродом из наконечника из титана 2 и хвостовика из стали 3, с электрически плавкой перемычкой из вазелина 4 массой от 0,10 до 0,25 г, размещенной между титановым стволом 1 и наконечником 2, при емкости конденсаторной батареи 18, равной 14,4 мФ, и зарядном напряжении 2,8 кВ, затем перемещают нанокристаллическую составляющую синтезированного продукта во вторую, предварительно вакуумированную, камеру 27, открывая перепускной клапан 28 между камерами 19 и 27 через 10 с после генерации электроразрядной плазмы, после чего собирают с внутренних стенок второй камеры 27 полученный диоксид титана со структурой анатаза. Технический результат: получение продукта с содержанием нанокристаллического анатаза от 83,2 до 85,7 мас.% со средним размером частиц до 100 нм и низким содержанием примесных фаз. 3 ил., 1 табл.

Description

Изобретение относится к области материаловедения и нанотехнологий а именно к получению диоксида титана, который может быть использован в водородной энергетике и технологиях очистки воды.
Известен способ получения нанокристаллического диоксида титана со структурой анатаз [Padmanabhan P.V. A. et al. Nano-crystalline titanium dioxide formed by reactive plasma synthesis // Vacuum. - 2006. - V. 80. - No. 11-12. - P. 1252-1255] путем плазмохимического синтеза. С использованием плазмотрона зажигают дуговой разряд в смеси газов Ar/N2, в который затем с помощью податчика перемещают порошок Ti2H в струе газа-носителя (аргона) и обеспечивают доступ сжатого воздуха из компрессора. Отбор синтезированного материала с содержанием анатаза более 70 мас. % в виде наноразмерных частиц размером до 30 нм производят со стенок реактора.
Данный способ характеризуется низким массовым выходом анатаза в составе синтезированного продукта.
Известен способ получения нанокристаллического диоксида титана со структурой анатаз [RU 2575026 С1, МПК C01G 23/053 (2006.01), B01J 21/06 (2006.01), B82B 3/00 (2006.01), опубл. 10.02.2016], заключающийся в том, что готовят исходный раствор тетрахлорида титана и проводят гидролиз раствором гидроксида аммония. Полученный после гидролиза в термостатируемом реакторе при pH 7-10, температуре 20-25°C и механическом перемешивании 1000 об/мин осадок сушат и прокаливают при температуре 700-800°C в течение 1-5 мин в присутствии стабилизатора - хлорида аммония, образующийся в результате побочной реакции гидролиза. Этим способом получают чистый порошок анатаза с размером частиц 10-50 нм.
Такой способ требует реализации нескольких стадий и использования токсичного тетрахлорида титана.
Известен способ получения нанокристаллического диоксида титана со структурой анатаз [Sivkov A. A., Ivashutenko A. S., Rakhmatullin I. A., Shanenkova Y. L., Vympina Y. N. Possibility of obtaining TiO2 material by plasma dynamic method into an air atmosphere // Journal of Physics: Conference Series. - IOP Publishing, 2019. - V. 1393. - No. 1. - P. 012136], принятый за прототип, включающий генерирование титановой электроразрядной плазмы в предварительно вакуумированную и наполненную воздухом камеру, с помощью коаксиального магнитоплазменного ускорителя с титановым стволом и с составным центральным электродом из наконечника из титана и хвостовика из стали, с электрически плавкой перемычкой из углерода, размещенной между титановым стволом и наконечником, при емкости 14,4 мФ и зарядном напряжении конденсаторной батареи 2,5 кВ. Образующаяся электроразрядная плазма ускоряется до ~5 км/с и является средой для плазмохимической реакции. Происходит распыление титана, электроэрозионным путем наработанного с внутренней поверхности электрода-ствола и вступающего в реакцию с кислородом воздуха камеры.
Этот способ позволяет получать продукт с содержанием анатаза до 30,0 мас. % со средним размером частиц 50,21 нм, однако приводит к образованию в продукте большого количества фазы рутила.
Техническим результатом предложенного изобретения является создание способа получения нанокристаллического диоксида титана со структурой анатаз, в составе продукта с низким содержанием примесных фаз.
Предложенный способ получения нанокристаллического диоксида титана со структурой анатаз, также как в прототипе, включает генерирование титановой электроразрядной плазмы в камеру, предварительно вакуумированную и наполненную кислородсодержащей смесью газов при нормальном атмосферном давлении и комнатной температуре, с помощью коаксиального магнитоплазменного ускорителя с титановым стволом и с составным центральным электродом из наконечника из титана и хвостовика из стали, с электрически плавкой перемычкой, размещенной между титановым стволом и наконечником, при емкости конденсаторной батареи 14,4 мФ.
Согласно изобретению, генерируют электроразрядную титановую плазму с помощью коаксиального магнитоплазменного ускорителя с электрически плавкой перемычкой из вазелина массой от 0,10 г до 0,25 г, производя распыление плазмы в первую камеру, заполненную газовой смесью аргона и кислорода в соотношении парциальных давлений Ar:O2 1:4 при зарядном напряжении 2,8 кВ конденсаторной батареи, перемещают нанокристаллическую составляющую синтезированного продукта во вторую, предварительно ваккумированную, камеру, открывая перепускной клапан между камерами через 10 секунд после генерации электроразрядной плазмы, после чего собирают с внутренних стенок второй камеры полученный диоксид титана со структурой анатаз.
При разрядке емкостного накопителя энергии между титановым наконечником центрального электрода и титановым стволом ускорителя происходит инициирование дугового разряда, вследствие чего электрически плавкая перемычка из вазелина переходит в плазменное состояние. В процессе горения дугового разряда происходит электроэрозионная наработка титансодержащего прекурсора с внутренней поверхности цилиндрического электропроводящего титанового ствола. Плазменный поток ускоряется до гиперзвуковых скоростей, и эродированный титан участвует в плазмохимической реакции с кислородом первой камеры, что обеспечивает образование нанокристаллического диоксида титана со структурой анатаз. Отделение синтезированного нанокристаллического анатаза от крупнодисперсного рутила обеспечивается путем открытия перепускного клапана и сбором продукта из второй камеры. Преимуществом такого способа является использование водородсодержащей электрически плавкой перемычки, поскольку вазелин, помимо минерального масла, содержит твердые парафиновые углеводороды. Перемычка из вазелина разогревается, плавится, и содержащийся в ее составе водород выделяется и способствует увеличению скорости течения плазменной струи.
Увеличение массы вазелина в составе электрически плавкой перемычки более 0,25 г приводит к чрезмерному уменьшению температуры плазменного потока за счет высокой теплоёмкости водорода, что отрицательно влияет на конечный выход анатаза, а уменьшение массы вазелина менее 0,10 г не обеспечивает необходимое ускорение плазменного потока для формирования достаточно высокого содержания анатаза в составе продукта.
Предложенный способ позволил получить продукты с содержанием нанокристаллического анатаза от 83,2 до 85,7 мас. % со средним размером частиц до 100 нм.
На фиг. 1 показана установка для синтеза нанокристаллического анатаза.
На фиг. 2 представлена рентгеновская дифрактограмма продукта плазмодинамического синтеза для примера 1.
На фиг. 3 представлен снимок просвечивающей электронной микроскопии продукта плазмодинамического синтеза для примера 1.
В таблице 1 представлены результаты рентгеноструктурного анализа продуктов плазмодинамического синтеза, полученных при разных значениях массы вазелина, используемого в качестве электрически плавкой перемычки.
Получение нанокристаллического диоксида титана со структурой анатаз было реализовано с использованием установки (фиг. 1), содержащей коаксиальный магнитоплазменный ускоритель, в котором цилиндрический электропроводящий ствол 1 выполнен из титана, а центральный электрод состоит из титанового наконечника 2 и хвостовика 3 из стали. Ствол и центральный электрод соединены электрически плавкой перемычкой 4 из технического вазелина (марка ВТВ-1), помещенной поверх токопроводящего углеродного слоя, нанесенного на поверхность изолятора 5, отделяющего электропроводящий ствол от центрального электрода. Корпус 6 выполнен из магнитного материала, сопряжен с внешним металлическим цилиндром 1 и перекрывает зону размещения плавкой перемычки 4. Длина части, перекрывающей зону размещения плавкой перемычки 4, составляет 40÷50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 7 выполнен за одно целое с фланцем 8 и цилиндрической частью 9, в которой размещен корпус 6 и укреплен резьбовой заглушкой 10. Соленоид 7 укреплен прочным стеклопластиковым корпусом 11 и стянут мощными токопроводящими шпильками 12 между фланцем 8 и стеклопластиковым упорным кольцом 13. Токопроводящие шпильки 12 электрически соединены токопроводящим кольцом 14, а к токопроводящим шпилькам 12 присоединен первый шинопровод 15 внешней схемы электропитания. Второй шинопровод 16 схемы электропитания присоединен к хвостовику 3. Ко второму шинопроводу 16 последовательно присоединены ключ 17 и конденсаторная батарея 18, связанная с первым шинопроводом 15.
Свободный конец ствола ускорителя вставлен в первую камеру 19 через осевое отверстие в первой металлической боковой крышке 20 и герметично зафиксирован с помощью уплотнительных колец 21, расположенных между фланцем 8 и боковой крышкой 20, и шпилек 22, соединяющих кольцо 23, упирающееся во фланец 8, и первую боковую крышку 20. Первая камера 19 через первый вентиль 24 соединена с баллоном, наполненным кислородом и снабженным манометром. Первая камера 19 через второй вентиль 25 соединена с баллоном, наполненным аргоном и снабженным манометром. Объем первой камеры 19 ограничен двумя металлическими боковыми крышками 20 и 26, которые прикреплены к ней болтовыми соединениями. Первая камера 19 герметично соединена со второй камерой 27 через нормально открытый перепускной клапан 28, соединяющий вторую 26 и третью металлические боковые крышки 29 так, что вторая и первая камеры образуют замкнутый объём. Вторая камера 27 через третий вентиль 30 соединена с форвакуумным насосом. Объем второй камеры 27 ограничен двумя металлическими боковыми крышками - третьей 29 и четвертой крышкой 31, которые прикреплены к ней болтовыми соединениями.
Способ состоит в следующем. Между цилиндрическим электропроводящим стволом 1 ускорителя и титановым наконечником центрального электрода 2 помещают электрически плавкую перемычку 4, выполненную из технического вазелина (марка ВТВ-1). Электрически плавкую перемычку 4 закладывают поверх токопроводящего углеродного слоя, предварительно нанесенного на поверхность изолятора 5 путем распыления углеродного спрея марки Graphit 33. Ускоритель плотно состыковывают с внешней стороной первой крышкой 20 с помощью кольца 23 и уплотнительных колец 21. Первую крышку 21 с зафиксированным на ней ускорителем плотно состыковывают с помощью болтовых соединений с первой камерой 19. Противоположную сторону первой камеры 19 закрывают второй крышкой 26. Внешнюю сторону второй крышки 26 герметично соединяют с перепускным клапаном 28. Нормально открытый перепускной клапан 28 герметично соединяют с внешней стороной третьей крышки 29. Третью крышку 29 плотно состыковывают с помощью болтовых соединений со второй камерой 27. Противоположную сторону второй камеры 27 закрывают четвертой крышкой 31. После этого первую 19 и вторую 27 камеры вакуумируют через третий вентиль 30, после чего механически закрывают нормально открытый вентиль 28. Через первый вентиль 24 первую камеру заполняют кислородом до давления 0,8⋅105 Па при комнатной температуре. Через второй вентиль 25 первую камеру заполняют аргоном до давления 1,0⋅105 Па при комнатной температуре.
Конденсаторную батарею 18 емкостью 14,4 мФ емкостного накопителя энергии заряжают до величины зарядного напряжения 2,8 кВ. Ключ 17 замыкают, после чего в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 18 по шинопроводу 15, токопроводящему кольцу 14, шпилькам 12, фланцу 8, виткам соленоида 7, корпусу 6, цилиндрическому электропроводящему стволу 1, плавкой перемычке 4, титановому наконечнику 2, хвостовику 3, второму шинопроводу 16. При этом плавкая перемычка 4 разогревается, плавится, и ее материал переходит в плазменное состояние с образованием дугового разряда. Конфигурация плазменной структуры типа Z-пинч с круговой плазменной перемычкой задается формой плавкой перемычки 4 и наличием цилиндрического канала в изоляторе 5. Далее плазма разряда сжимается магнитным полем собственного тока и аксиальным полем соленоида 7 и существует в стволе 1 в виде удлиняющегося Z-пинча с круговой плазменной перемычкой на конце, через которую ток переходит на внутреннюю поверхность ствола 1 в процессе ускорения плазменной перемычки под действием силы Лоренца. Ускорение плазменного потока сопровождается электроэрозионной наработкой титансодержащего прекурсора за счет высокой температуры (104 К) и выделением водорода, способствующему увеличению скорости плазменного потока. Эродированный материал поступает в плазменный поток, где начинает протекать плазмохимическая реакция с участием эродированного титана и кислорода первой камеры 19. Плазменный поток истекает из цилиндрического электропроводящего ствола 1 в камеру 19, заполненную газовой смесью аргона и кислорода, и распыляется со свободной границы головной ударной волны. Спустя 10 секунд после замыкания ключа 17 производят механическое открытие перепускного клапана 28. При этом за счет разницы давлений в первой 19 и второй 27 камерах происходит перемещение синтезированного нанокристаллического анатаза во вторую камеру 27. После осаждения синтезированного нанокристаллического анатаза на внутренней поверхности второй камеры 27, открывают крышку 31 и производят сбор продукта плазмодинамического синтеза.
Результаты получения нанокристаллического анатаза при использовании вышеуказанного способа приведены в таблице 1.
Полученный продукт плазмодинамического синтеза исследовали с помощью методов рентгеновской дифрактометрии, просвечивающей электронной микроскопии. Рентгеновская дифрактограмма полученного продукта (фиг. 2), результаты количественного рентгеноструктурного анализа (таблица 1) и микроснимок (фиг. 3) показали преимущественное содержание нанокристаллического анатаза от 83,2 до 85,7 мас. % со средним размером частиц до 100 нм при минимальном содержании побочных фаз рутила от 16,8 до 14,3 мас. %.
Figure 00000001

Claims (1)

  1. Способ получения нанокристаллического диоксида титана со структурой анатаз, включающий генерирование титановой электроразрядной плазмы в камеру, предварительно вакуумированную и наполненную кислородсодержащей смесью газов при нормальном атмосферном давлении и комнатной температуре, с помощью коаксиального магнитоплазменного ускорителя с титановым стволом и с составным центральным электродом из наконечника из титана и хвостовика из стали, с электрически плавкой перемычкой, размещенной между титановым стволом и наконечником, при емкости конденсаторной батареи 14,4 мФ, отличающийся тем, что генерируют электроразрядную титановую плазму с помощью коаксиального магнитоплазменного ускорителя с электрически плавкой перемычкой из вазелина массой от 0,10 до 0,25 г, производя распыление плазмы в первую камеру, заполненную газовой смесью аргона и кислорода в соотношении парциальных давлений Ar:O2 1:4 при зарядном напряжении 2,8 кВ конденсаторной батареи, перемещают нанокристаллическую составляющую синтезированного продукта во вторую, предварительно вакуумированную, камеру, открывая перепускной клапан между камерами через 10 с после генерации электроразрядной плазмы, после чего собирают с внутренних стенок второй камеры полученный диоксид титана со структурой анатаз.
RU2020139526A 2020-12-02 2020-12-02 Способ получения нанокристаллического диоксида титана со структурой анатаз RU2749736C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020139526A RU2749736C1 (ru) 2020-12-02 2020-12-02 Способ получения нанокристаллического диоксида титана со структурой анатаз

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020139526A RU2749736C1 (ru) 2020-12-02 2020-12-02 Способ получения нанокристаллического диоксида титана со структурой анатаз

Publications (1)

Publication Number Publication Date
RU2749736C1 true RU2749736C1 (ru) 2021-06-16

Family

ID=76377359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020139526A RU2749736C1 (ru) 2020-12-02 2020-12-02 Способ получения нанокристаллического диоксида титана со структурой анатаз

Country Status (1)

Country Link
RU (1) RU2749736C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818709A (zh) * 2022-12-06 2023-03-21 吉林大学 一种控制二氧化钛分散性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2588536C1 (ru) * 2014-12-15 2016-06-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ синтеза наночастиц диоксида титана

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2588536C1 (ru) * 2014-12-15 2016-06-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ синтеза наночастиц диоксида титана

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PADMANABHAN P.V.A. et al. Nano-crystalline titanium dioxide formed by reactive plasma synthesis, "Vacuum", 2006, Vol.80, No.11-12, pp.1252-1255. *
SIVKOV A.A. et al. Possibility of obtaining TiO2 material by plasma dynamic method into an air atmosphere, "Journal of Physics: Conference Series", 2019, Vol.1393, No.1, article id. 012136. *
SIVKOV A.A. et al. Possibility of obtaining TiO2 material by plasma dynamic method into an air atmosphere, "Journal of Physics: Conference Series", 2019, Vol.1393, No.1, article id. 012136. PADMANABHAN P.V.A. et al. Nano-crystalline titanium dioxide formed by reactive plasma synthesis, "Vacuum", 2006, Vol.80, No.11-12, pp.1252-1255. *
V. V. Bubnov Development of a plasmodynamic method for the synthesis of ultrafine titanium dioxide TiO2, which has photocatalytic properties of hydrogen production. Master's thesis, Tomsk, 2019, pp. 29-30, 37-41, 47-49, fig. 2.4, 2.5 *
БУБНОВ В.В. Разработка плазмодинамического метода синтеза ультрадисперсного диоксида титана TiO2, обладающего фотокаталитическими свойствами получения водорода. Магистерская диссертация, Томск, 2019, стр.29-30, 37-41, 47-49, рис.2.4, 2.5. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818709A (zh) * 2022-12-06 2023-03-21 吉林大学 一种控制二氧化钛分散性的方法

Similar Documents

Publication Publication Date Title
US20240010499A1 (en) Apparatus and method for plasma synthesis of graphitic products including graphene
EP0711606B1 (en) Method for milling a powder
KR101907912B1 (ko) SiOx-플러렌 복합체, 이의 제조방법, 제조장치 및 용도
RU2749736C1 (ru) Способ получения нанокристаллического диоксида титана со структурой анатаз
JP2018501099A (ja) 粉体の高エネルギー球入破砕における冷プラズマ放電支援の応用方法および装置
JPH026339A (ja) タングステンもしくは酸化タングステン超微粒子の製造方法
Yun et al. Preparation of carbon blacks by liquid phase plasma (LPP) process
RU2759314C1 (ru) Устройство для получения нанокристаллического диоксида титана со структурой анатаза
RU2730461C1 (ru) Способ получения нанокристаллического кубического карбида вольфрама
Nava-Avendaño et al. Plasma processes in the preparation of lithium-ion battery electrodes and separators
Zou et al. Nanopowder production by gas-embedded electrical explosion of wire
WO2014026194A1 (en) System and process for functionalizing graphene
RU2707673C1 (ru) Способ формирования покрытия из кубического карбида вольфрама
CN116262610B (zh) 一种钠离子硬碳负极材料制备和改性方法及成套装置
JP2023502851A (ja) 充電式電池用のナノシリコン粒子/ワイヤーのアーク炉による製造
RU2747329C1 (ru) Способ получения порошка, содержащего нанокристаллический кубический карбид вольфрама
RU2752330C1 (ru) Способ получения нанокристаллической эпсилон-фазы оксида железа
RU2806562C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЭНТРОПИЙНОГО КАРБИДА TiNbZrHfTaC5
RU2807261C1 (ru) Способ получения порошкового металломатричного композита из меди и карбида кремния
JP5075899B2 (ja) カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置
RU2795776C1 (ru) Способ получения магнетита
RU2753182C1 (ru) Устройство для получения нанокристаллической эпсилон фазы оксида железа
Shaker et al. Synthesis and characterization of aluminum oxide nanoparticles prepared by two different cold plasma jet methods
RU2341451C1 (ru) Способ производства фуллеренсодержащей сажи и устройство для его осуществления
Sivkov et al. Direct dynamic synthesis of nanodispersed powder material on titanium-base in pulsed electric-discharge plasma jet