RU2749223C1 - Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока - Google Patents

Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока Download PDF

Info

Publication number
RU2749223C1
RU2749223C1 RU2020112613A RU2020112613A RU2749223C1 RU 2749223 C1 RU2749223 C1 RU 2749223C1 RU 2020112613 A RU2020112613 A RU 2020112613A RU 2020112613 A RU2020112613 A RU 2020112613A RU 2749223 C1 RU2749223 C1 RU 2749223C1
Authority
RU
Russia
Prior art keywords
marker
well
dispersion
markers
hydraulic fracturing
Prior art date
Application number
RU2020112613A
Other languages
English (en)
Inventor
Андрей Валерьевич Гурьянов
Павел Владимирович Бузин
Руслан Рашидович Газизов
Кирилл Андреевич Супранков
Евгений Медведев
Original Assignee
Общество с ограниченной ответственностью «ГеоСплит»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью «ГеоСплит» filed Critical Общество с ограниченной ответственностью «ГеоСплит»
Priority to RU2020112613A priority Critical patent/RU2749223C1/ru
Priority to PCT/RU2020/000347 priority patent/WO2021194373A1/ru
Priority to CN202010891790.2A priority patent/CN113513314A/zh
Application granted granted Critical
Publication of RU2749223C1 publication Critical patent/RU2749223C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Abstract

Изобретение относится к нефте- и газодобывающей промышленности и может быть использовано при контроле за разработкой продуктивного пласта. Способ включает получение флюоресцентного маркера в виде полимерных микросфер с приготовлением дисперсии смолы и люминесцирующих веществ, объединение полученного маркера с несущей средой, подаваемой в скважину. Введение маркера с указанной несущей средой в скважину. Отбор проб из скважины и их анализ с определением кодов и количества маркеров в пробах, представляющих собой полимерную мембрану, с использованием проточной цитофлюорометрии и определение на основе результатов указанных анализов внутрискважинных притоков газа. Получение маркера осуществляют с использованием люминесцирующего вещества, флюоресцирующего после воздействия УФ-излучения или видимого излучения с длиной волны от 320 до 760 нм в области длин волны 350-780 нм, как самостоятельного, так и в виде бинарных смесей указанных люминесцирующих веществ при их соотношении от 0,01:0,99 до 0,99:0,01, путем радикальной сополимеризации стирола с дивинилбензолом, или дисперсионной поликонденсации меламиноформальдегидной смолы или карбамидоформальдегидной смолы, или гидролитической поликонденсации тетраэтоксисилана, вводимых в виде 10-20%-ной их водной суспензии при его количестве в смеси 0,1-5,0% от массы отвержденной смолы, с получением дисперсии, содержащей 40-60 мас. % сухого остатка. В качестве несущей среды используют алюмосиликатный проппант и/или кварцевый песок, где указанный маркер размещен в полимерном покрытии, выполненном на основе эпоксидной смолы. Введение маркеров осуществляют в горизонтальную скважину, определение кодов и концентраций маркеров в пробах осуществляют с использованием проточной цитофлюорометрии, по полученным результатам которой осуществляют расчет притоков по соответствующим стадиям гидроразрыва. Размер полимерных микросфер составляет 0,2-50,0 мкм, а люминесцирующее вещество выбрано из группы, включающей селенид, сульфид, теллурид цинка или кадмия. Предложенное изобретение позволяет получать достоверные результаты определения внутрискважинных притоков газа при многофазном потоке пластового флюида. 2 з.п. ф-лы, 1 табл., 4 пр., 1 ил.

Description

Изобретение относится к нефте- и газодобывающей промышленности и может быть использовано при контроле за разработкой продуктивного пласта.
Основной задачей добычи нефте- и газодобывающей промышленности является повышение эффективности разработки продуктивного пласта и повышение отдачи добывающих скважин. Для оптимизации режима работы скважин необходимо обеспечение наличия достоверной информации об интенсивности поступления добываемого газа в том или ином интервале ствола скважины или продуктивного пласта. Эта информация позволяет уточнить гидродинамическое состояние залежи и оптимизировать добычу. Таким образом, актуальным является обеспечение достоверности количественного определения притока добываемого флюида в каждый отдельный интервал скважины.
Известны различные способы определения притока жидкости, в том числе с использованием трассеров - индикаторов, меток, идентифицируемых в добываемой жидкости, являющиеся наиболее прямыми и достоверными методам получения достоверной информации, основанными на использовании данных о перемещении трассеров вместе с жидкостью -носителем с учетом фильтрационно-емкостных параметров продуктивного пласта, изменения пластовых и забойных величин давления. В известных способах исследования трассеры вместе с нагнетаемой жидкостью вводятся в пласт, проходят через пласт и призабойную зону добывающей скважины, отбираются и анализируются в составе отбираемой из скважины скважинной жидкости. Однако, способы определения притоков газа в горизонтальных скважинах описаны слабо и малоинформативны.
Известен способ определения внутрискважинных притоков газа с использованием с использованием химических трассеров, которые вводятся непосредственно с жидкость ГРП и в дальнейшем непрерывно испаряется под действием температуры. Трассеры составляют значительный процент от самой жидкости ГРП. В качестве трассеров выступают гексафторид серы, дифтодибромметан, октафторбутан и т.д. Недостатком настоящего изобретения является высокая концентрация дорогостоящих трассеров в жидкости ГРП, высокая продолжительность отбора проб, при этом в качестве проб используется собственно отобранный газ. - CN 108825226 А, опубл. 16.11.2018.
Известен способ для измерения величины вклада в добычу газа каждого интервала газовой скважины. Индикаторы также добавляются в жидкости ГРП, в качестве которых используются перфторуглеродные соединения разной молекулярной массы: перфторалканы, перфторциклоалканы, перфторированные ароматические соединения, перфтор(мет)акрилаты и т.д. Анализ проб осуществляется методом газовой хроматографии. В качестве проб отбирается собственно газ из скважины. К недостаткам настоящего способа можно отнести высокую концентрацию трассеров в жидкости ГРП и работа с дорогостоящими химическими соединениями в качестве трассеров. - CN 107956470 А, опубл. 24.04.2018.
Известен способ определения дебитов воды, нефти и газа по каждому интервалу при МГРП. Согласно заявленному способу, для оценки притоков флюида используются контейнеры, представляющие собой конструктивные элементы компоновки закачивания, из которых трассерный материал селективно растворяется в соответствующей ему фазе пластового флюида. Так, например, водорастворимые матрицы могут быть сделаны из поливинилового спирта или другого водорастворимого материала.
Нефтерастворимые матрицы могут быть сделаны, в частности, из вязкого битума. Газовые матрицы могут начать истираться за счет абразовного действия твердых частиц, присутствующих в газе. Недостатком описываемого изобретения является зависимость перехода трассерного материала в газовую фазу за счет присутствия в газовом потоке механических примесей, которых может и не быть в потоке. Кроме того, абразивное разрушение зависит от размера механических примесей, которые сложно предсказать, а, соответственно, и сделать вывод о количественном определении притоков газа по каждому из интервалов скважины. В качестве индикаторов предлагается использовать различные флуоресцентные соединения, индикаторы радикального типа, вещества с высокой магнитной или диэлектрической проницаемостью, нерастворимые частицы размером от 1 до 100 мкм, например, металлические либо флуоресцентные и/или люминесцентные. - RU 2685601 С1, опубл. 22.04.2019.
Техническим результатом заявленного способа является получение достоверных результатов определения внутрискважинных притоков газа при многофазном потоке пластового флюида.
Указанный технический результат достигается тем, что в способе определения внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта, включающем получение флюоресцентного маркера в виде полимерных микросфер с приготовлением дисперсии смолы и люминесцирующих веществ, объединение полученного маркера с несущей средой, подаваемой в скважину, введение маркера с указанной несущей средой в скважину, отбор проб из скважины и их анализ с определением кодов и количества маркеров в пробах, представляющих собой полимерную мембрану, с использованием проточной цитофлюорометрии и определение на основе результатов указанных анализов внутрискважинных притоков газа, получение указанного маркера осуществляют с использованием люминесцирующего вещества, флюоресцирующего после воздействия УФ-излучения или видимого излучения с длиной волны от 320 до 760 нм в области длин волны 350-780 нм, как самостоятельного, так и в виде бинарных смесей указанных люминесцирующих веществ при их соотношении от 0,01:0,99 до 0,99:0,01, путем радикальной сополимеризации стирола с дивинилбензолом или дисперсионной поликонденсации меламиноформальдегидной смолы или карбамидоформальдегидной смолы, или гидролитической поликонденсации тетраэтоксисилана, вводимых в виде 10-20%-ной их водной суспензии при его количестве в смеси 0,1-5,0% от массы отвержденной смолы, с получением дисперсии, содержащей 40-60 мас. % сухого остатка, в качестве несущей среды используют алюмосиликатный проппант и/или кварцевый песок, где указанный маркер размещен в полимерном покрытии, выполненном на основе эпоксидной смолы, указанное введение осуществляют в горизонтальную скважину, указанное определение кодов и концентраций маркеров в пробах осуществляют с использованием проточной цитофлюорометрии, по полученным результатам которой осуществляют расчет притоков по соответствующим стадиям гидроразрыва. Причем, размер полимерных микросфер составляет 0,2-50,0 мкм, а люминесцирующее вещество выбрано из группы, включающей селенид, сульфид, теллурид цинка или кадмия.
Заявленный способ включает использование проппанта и/или кварцевого песка как носителя флюоресцирующих маркеров, в качестве которых используются монодисперсные полимерные микросферы, полученные указанным в заявленном способе путем и инкорпорированные в полимерную оболочку алюмосиликатного проппанта и/или кварцевого песка. При этом проппант и/или песок маркирован соответствующим кодом. Код задается использованием уникального сочетания флюорофоров в микросферах. В каждую стадию при многоступенчатом гидроразрыве пласта - МГРП закачивается соответствующий код, причем, количество кодов соответствует количеству стадий МГРП. Реализация данного подхода позволяет достоверно проводить количественное определение притоков газа по каждому интервалу. Анализ содержания кодированных микросфер каждого кода осуществляется методом проточной цитофлюорометрии, основным преимуществом которой является точное определение количества микросфер каждого кода. Далее концентрации маркеров каждого кода пересчитывают в притоки газа по каждой стадии МГРП. В качестве флюоресцирующих веществ могут быть использованы нильский синий, флюоресцеин натрия, флюоресцеин диацетат, дихлорфлюоресцеин диацетат, флюоресцеин изотиоцианат, кумарин, диэтиламинокумарин, флюорофоры группы родамина. Лучшие результаты обеспечиваются при использовании селенида, сульфида, теллурида цинка или кадмия.
В отличие от традиционной флюорометрии, где детектируется интегральная интенсивность флюоресценции для всех сортов частиц, цитофлюорометрия позволяет детектировать интенсивность флюоресценции с определенными длинами волн возбуждения и испускания (они называются «каналами») для каждой индивидуальной частицы. Число подобных каналов, как правило, велико, в нашем случае существует 15 каналов детектирования (2 канала светорассеяния и 13 каналов люминесценции). При этом каждый анализируемый маркер представляет собой точку в 15-ти мерном пространстве. Метод позволяет с заданной точностью классифицировать маркеры по интересующим параметрам внутри 15-ти мерного пространства. На основе полученной классификации в соответствии с информацией о кодировке маркеров устанавливаются количественные отношения каждого типа маркера в анализируемой смеси.
Примеры осуществления
Пример 1. Меламиноформальдегидные микросферы получают двухстадийной дисперсионной поликонденсацией 2 масс. ч. меламина и 3 масс. ч. формальдегида в 70 масс. ч. воды в присутствии 1 масс. ч. додецилсульфата натрия и 1 масс. ч. поливинилового спирта. На первой стадии при рН=9 получают метилольные производные меламина, при этом в качестве регулятора рН выступают водный раствор гидроксида калия. Длительность первой стадии составляет 45 мин. На второй стадии при рН=6 происходит получение полностью отвержденных микросфер, при этом в качестве регулятора рН выступает водный раствор ортофосфорной кислоты. Продолжительность второй стадии составляет 1 час. Добавление водной дисперсии люминофора с концентрацией 10% масс. (λϕ=480 нм - селенид кадмия), осуществляется на первой стадии, при этом количество дисперсии составляет примерно 5% (масс.). После окончания второй стадии дисперсию седиментацией концентрируют до содержания сухого остатка от 40 до 60% (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированными в них одним или двумя люминесцирующими веществами, и делят ее на две части. Первая часть дисперсии представляет собой дисперсию гидрофильных маркеров. Вторую часть дисперсии используют для получения дисперсии гидрофобных маркеров путем последовательной обработки водной дисперсии неполярным органическим растворителем, выбранным из ряда ароматических растворителей бензол, толуол, ксилол, затем амфифильным сополимером ряда акрилатов с последующим удалением воды, таким образом, вода замещается на неполярный органический растворитель, концентрация сухого остатка гидрофобных маркеров составляет от 40 до 60% (масс.). При этом маркеры становятся полностью олеофильными, то есть теряют способность диспергироваться в воде, одновременно с этим они легко диспергируются в неполярных ароматических растворителях.
Затем аналогичным путем получают дисперсии маркеров с другими флюорофорами в соответствии с таблицей 1.
Figure 00000001
Figure 00000002
Далее получают проппант с маркированным полимерным покрытием, причем в каждой партии проппанта используется 1 код маркеров. Таким образом, получается 63 кода проппанта. Проппант с маркированным полимерным покрытием получают следующим образом. Водную дисперсию гидрофильных маркеров в смесителе смешивают с проппантом, эпоксидной смолой, отвердителем и функциональным наполнителем. В качестве смолы используют эпоксидиановую смолу, отвердитель - аминный. Функциональным наполнителем выступает гидрофобное вещество.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код №1, во вторую - №2, в третью - №3 и т.д.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, приведенного на рисунке 1.
Устройство фильтрации устанавливают на байпасной линии, которая должна быть оснащена кранами, манометром, расходомером и соединительными элементами.
Устройство фильтрации содержит в себе отсек для фильтрующего патрона, который состоит из последовательно соединенных полимерных мембран. Для каждого отбора проб используется индивидуальный патрон. Полный пакет проб содержит 8 проб, отобранных при разных потоках и давлениях, а также времени накопления.
Затем полученные пробы подвергают анализу с использованием проточной цитофлюорометрии.
Анализ состоит из трех последовательных стадий: пробоподготовки, цитофлюорометрии и интерпретации данных анализа.
Пробоподготовка состоит в переводе маркеров с полимерной мембраны в раствор водной фазы с использованием поверхностно-активных веществ Водную фазу диспергируют на У3-диспергаторе и подают на анализ методом цитофлуорометрии. В результате получают спектральную картину в 15-ти мерном пространстве.
Интерпретацию проводят с помощью программного обеспечения на основе полученной классификации в соответствии с информацией о кодировке маркеров, при этом устанавливаются количественные отношения каждого типа маркера в анализируемой смеси.
Полученные данные о количественном соотношении каждого кода маркера в анализируемой смеси пересчитываются в профили притоков по каждой стадии МГРП с учетом известных закономерностей о влиянии на концентрацию соответствующих маркеров пластовой температуры, пластового давления и гидродинамических параметров скважины. Визуализация результатов расчета представляется в виде графиков притока по ступеням ГРП во времени и накопленных дебитах газа в каждой из ступеней. Критерием отбора проб для визуализации служит наличие данных по общему дебиту газа и режиму работы скважины, а также предполагаемом наличии УВ и воды.
Пример 2. Кремнеземные микросферы получают по методу Штёбера. Смешивают 70 масс. ч. этанола, 7 масс. ч. водного раствора аммиака, 3 масс. ч. воды, и водную дисперсию, представляющую собой смесь сульфида кадмия и селенида цинка в соотношении 1:1 (10% масс.водная дисперсия), при этом концентрация дисперсии составляет 10% (масс.). После этого добавляют 4 масс. ч. тетраэтоксисилана. Реакционную смесь перемешивают до прекращения изменения размеров частиц в течение 8 часов. Контроль за ростом частиц проводят с помощью проточного цитофлюорометра, оснащенного датчиками прямого и бокового светорассеяния. Таким образом получают спиртовую дисперсию микросфер. Затем добавляют водную дисперсию люминесцирующего вещества (квантовых точек - сульфид кадмия, 10% масс., при этом, количество дисперсии составляет примерно 7% (масс.). После этого дисперсию седиментацией концентрируют до содержания сухого остатка 50% (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированной в них смесью люминесцирующих веществ.
Далее получают кварцевый песок с маркированным полимерным покрытием, причем в каждой партии кварцевого песка используется 1 код маркеров. Таким образом, получается 63 кода песка. Кварцевый песок с маркированным полимерным покрытием получают следующим образом. Водную дисперсию гидрофильных маркеров в смесителе смешивают с кварцевым песком, эпоксидной смолой, отвердителем и функциональным наполнителем. В качестве смолы используют эпоксидиановую смолу, отвердитель - аминный. Функциональным наполнителем выступает гидрофобное вещество.
Далее кварцевый песок с нанесенным полимерным покрытием погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код №1, во вторую - №2, в третью - №3 и т.д.
Далее проводят действия как в примере 1.
Пример 3. Микросферы из сшитого полистирола получают методом трехмерной радикальной сополимеризации стирола и дивинилбензола в водной среде. В подготовленную воду (80 масс. ч.) после удаления кислорода добавляют 10 масс. ч. стирола, 0,2 масс. ч. дивинилбензола, 0,8 масс. ч. додецилсульфата натрия, 1 масс. ч. поливинилпирролидона и 0,2 масс. ч. инициатора - азобисизобутиронитрила. Доводят температуру до 70°С и проводят реакцию в течение 24 ч. После окончания процесса сополимеризации отгоняют остаточный стирол и добавляют 10%-ную водную дисперсию смеси люминесцирующих веществ - квантовых точек, представляющих собой смесь сульфида и селенида цинка (10% масс.), при этом количество дисперсии составляет примерно 10% (масс.). После этого дисперсию седиментацией концентрируют до содержания сухого остатка 60% (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированными в них смесевыми квантовыми точками.
Полимернопокрытй проппант получают как в примере 1.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код №1, во вторую - №2, в третью - №3 и т.д.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, таким же как в примере 1.
Устройство фильтрации устанавливают на линии сброса, которая должна быть оснащена краном, манометром, расходомером и соединительными элементами.
Далее проводят действия как в примере 1.
Пример 4. Микросферы, маркеры и полимернопокрытй проппант получают как в примере 1.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код №1, во вторую - №2, в третью - №3 и т.д.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, как в примере 1.
Параллельно производится отбор проб пластового флюида. Пробоподготовка состоит в разделении образца пластового флюида на углеводородную и (при наличии) водную фазы с использованием деэмульгаторов. Водную фазу центрифугируют при нагрузке 1200 g, удаляют остатки обратной микроэмульсии, диспергируют на У3-диспергаторе и подают на анализ методом цитофлуорометрии. Углеводородную фазу пластового флюида последовательно обрабатывают органическими растворителями с постепенно увеличивающимися значениями диэлектрической проницаемости, при этом последним растворителем является вода. Полученную водную фазу центрифугируют при нагрузке 1200 g, удаляют остатки обратной микроэмульсии, диспергируют на У3-диспергаторе и подают на анализ методом цитофлюорометрии. На этой стадии проводят также определение обводненности каждой пробы пластового флюида и его вязкость.
Цитофлюорометрию образцов проводят отдельно для водной и углеводородной, инвертированной в водную, фаз пластового флюида. В результате получают спектральную картину в 15-ти мерном пространстве.
Далее проводят действия как в примере 1.
Заявленный способ обеспечивает получение достоверных результатов определения внутрискважинных притоков газа при многофазном потоке пластового флюида.

Claims (3)

1. Способ количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока, включающий получение флюоресцентного маркера в виде полимерных микросфер с приготовлением дисперсии смолы и люминесцирующих веществ, объединение полученного маркера с несущей средой, подаваемой в скважину, введение маркера с указанной несущей средой в скважину, отбор проб из скважины осуществляют при помощи устройства фильтрации, которое представляет собой патрон с полимерными мембранами, установленного на байпасной линии, затем проводят анализ с определением кодов и концентраций маркеров в пробах с использованием проточной цитофлюорометрии и определение на основе результатов указанных анализов внутрискважинных притоков газа, получение указанного маркера осуществляют с использованием люминесцирующего вещества, флюоресцирующего после воздействия УФ-излучения или видимого излучения с длиной волны от 320 до 760 нм в области длин волны 350-780 нм, как самостоятельного, так и в виде бинарных смесей указанных люминесцирующих веществ при их соотношении от 0,01:0,99 до 0,99:0,01, путем радикальной сополимеризации стирола с дивинилбензолом, или дисперсионной поликонденсации меламиноформальдегидной смолы или карбамидоформальдегидной смолы, или гидролитической поликонденсации тетраэтоксисилана, вводимых в виде 10-19%-ной их водной суспензии при его количестве в смеси 0,1-5,0% от массы отвержденной смолы, с получением дисперсии, содержащей 40-60 мас. % сухого остатка, в качестве несущей среды используют алюмосиликатный проппант и/или кварцевый песок, где указанный маркер размещен в полимерном покрытии, выполненном на основе эпоксидной смолы, указанное введение осуществляют в горизонтальную скважину, указанное определение кодов и концентраций маркеров в пробах осуществляют с использованием проточной цитофлюорометрии, по полученным результатам которой осуществляют расчет притоков по соответствующим стадиям гидроразрыва.
2. Способ по п. 1, отличающийся тем, что размер полимерных микросфер составляет 0,2-50,0 мкм.
3. Способ по п. 1 или 2, отличающийся тем, что люминесцирующее вещество выбрано из группы, включающей селенид, сульфид, теллурид цинка или кадмия.
RU2020112613A 2020-03-27 2020-03-27 Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока RU2749223C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2020112613A RU2749223C1 (ru) 2020-03-27 2020-03-27 Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока
PCT/RU2020/000347 WO2021194373A1 (ru) 2020-03-27 2020-07-16 Способ оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта
CN202010891790.2A CN113513314A (zh) 2020-03-27 2020-08-28 在多级水力压裂后多相流中产气的定量和定性评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020112613A RU2749223C1 (ru) 2020-03-27 2020-03-27 Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока

Publications (1)

Publication Number Publication Date
RU2749223C1 true RU2749223C1 (ru) 2021-06-07

Family

ID=76301268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020112613A RU2749223C1 (ru) 2020-03-27 2020-03-27 Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока

Country Status (3)

Country Link
CN (1) CN113513314A (ru)
RU (1) RU2749223C1 (ru)
WO (1) WO2021194373A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194663A3 (en) * 2021-12-10 2023-08-30 Chevron U.S.A. Inc. Surveillance using particulate tracers
CN114837656A (zh) * 2022-05-23 2022-08-02 河南省科学院同位素研究所有限责任公司 密度可控同位素载体制备方法
CN115197358B (zh) * 2022-08-04 2024-02-02 西安交通大学 适用于深层气藏水平井返排示踪的微球的制备方法及应用
CN117234091B (zh) * 2023-11-14 2024-01-23 四川省威沃敦石油科技股份有限公司 一种油气井测试量子点投放系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201171265A1 (ru) * 2009-04-22 2012-05-30 Шлюмбергер Текнолоджи Б.В. Обнаружение газообразных соединений для анализа скважинных текучих сред с использованием микрофлюидных устройств и реагента с оптической регистрацией
WO2012091599A1 (en) * 2010-12-30 2012-07-05 Schlumberger Holdings Limited Method for tracking a treatment fluid in a subterranean formation
RU2667536C1 (ru) * 2014-12-31 2018-09-21 Аркема Франс Состав флюида для интенсификации добычи в области добычи нефти и газа
RU2685600C1 (ru) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Способ определения внутрискважинных притоков флюида при многоступенчатом гидроразрыве пласта
RU2685601C1 (ru) * 2018-06-26 2019-04-22 Общество с ограниченной ответственностью "ВОРМХОЛС Внедрение" Способ определения дебитов воды, нефти, газа
RU2707621C2 (ru) * 2011-08-16 2019-11-28 Гушор Инк. Способ для анализа проб

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989765A (ja) * 1995-09-21 1997-04-04 Fisher & Paykel Ltd 赤外線ガス分析器
FR2815120B1 (fr) * 2000-10-09 2002-12-13 Inst Francais Du Petrole Methode et dispositif de prelevement d'une emulsion en circulation dans une conduite
US20050250209A1 (en) * 2004-04-21 2005-11-10 Petroleum Habitats, Llc Determining metal content of source rock during well logging
US20080047370A1 (en) * 2006-08-07 2008-02-28 Vickery James H Jr Sampling apparatus for constituents in natural gas lines
PT1914015T (pt) * 2006-10-19 2016-11-22 Societa' Italiana Acetilene E Derivati S I A D S P A In Abbreviated Form Siad S P A Método baseado na utilização de uma mistura de gases para dimensionamento de sistemas de difusão de gás em água subterrânea e avaliação da contaminação de aquíferos
US8109157B2 (en) * 2008-06-30 2012-02-07 Schlumberger Technology Corporation Methods and apparatus of downhole fluids analysis
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US10501353B2 (en) * 2011-06-22 2019-12-10 Bl Technologies, Inc. Monitoring and control of unit operations for generating steam from produced water
CN104500047B (zh) * 2014-12-31 2017-12-01 中国石油天然气股份有限公司 分析多段压裂液返排液中示踪物质以评价压裂效果的方法
CN106398683B (zh) * 2016-08-29 2018-09-11 上海交通大学 一种制备三色编码微球组合物的方法
CN108825226A (zh) * 2018-07-02 2018-11-16 四川圣诺油气工程技术服务有限公司 一种采用化学示踪剂评估压后产气量的方法及装置
CN110805432A (zh) * 2019-11-06 2020-02-18 陕西海默油田服务有限公司 一种采用量子点示踪剂测试水平井产液剖面的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201171265A1 (ru) * 2009-04-22 2012-05-30 Шлюмбергер Текнолоджи Б.В. Обнаружение газообразных соединений для анализа скважинных текучих сред с использованием микрофлюидных устройств и реагента с оптической регистрацией
EA021134B1 (ru) * 2009-04-22 2015-04-30 Шлюмбергер Текнолоджи Б.В. Обнаружение газообразных соединений для анализа скважинных текучих сред с использованием микрофлюидных устройств и реагента с оптической регистрацией
WO2012091599A1 (en) * 2010-12-30 2012-07-05 Schlumberger Holdings Limited Method for tracking a treatment fluid in a subterranean formation
RU2707621C2 (ru) * 2011-08-16 2019-11-28 Гушор Инк. Способ для анализа проб
RU2667536C1 (ru) * 2014-12-31 2018-09-21 Аркема Франс Состав флюида для интенсификации добычи в области добычи нефти и газа
RU2685601C1 (ru) * 2018-06-26 2019-04-22 Общество с ограниченной ответственностью "ВОРМХОЛС Внедрение" Способ определения дебитов воды, нефти, газа
RU2685600C1 (ru) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Способ определения внутрискважинных притоков флюида при многоступенчатом гидроразрыве пласта

Also Published As

Publication number Publication date
CN113513314A (zh) 2021-10-19
WO2021194373A1 (ru) 2021-09-30

Similar Documents

Publication Publication Date Title
RU2749223C1 (ru) Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока
RU2685600C1 (ru) Способ определения внутрискважинных притоков флюида при многоступенчатом гидроразрыве пласта
Dudek et al. Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production
RU2315180C2 (ru) Способ определения химического состава флюида в процессе бурения и добычи
US5716855A (en) Fluorescent latex containing at least two fluorochromes, process for producing it and application thereof
EP1868725B1 (en) Use of microfluidic device for identification, quantification, and authentication of latent markers
EP0794433A1 (en) API estimate using multiple fluorescence measurements
NO20120680A1 (no) Anvendelse av nanopartikler for merking av injeksjonsvann for oljebronner
EA021134B1 (ru) Обнаружение газообразных соединений для анализа скважинных текучих сред с использованием микрофлюидных устройств и реагента с оптической регистрацией
CN101233405A (zh) 用于测定使用中的润滑剂的铁含量的方法和测试工具箱
US8354069B2 (en) Plug flow system for identification and authentication of markers
CN111472745A (zh) 一种水平井覆膜支撑剂分段压裂产量测试方法
CN108329904A (zh) 一种半胱胺修饰铜纳米团簇溶液荧光探针及制备与应用
Sieben et al. Asphaltenes yield curve measurements on a microfluidic platform
RU164347U1 (ru) Устройство с индикатором в ампуле для трассерного исследования горизонтальной скважины с разделёнными пакерами интервалами и поинтервальными гидроразрывами пласта
EP3298100A1 (fr) Procede d'exploitation d'une formation souterraine par injection d'un fluide comprenant un additif marque par un nano-cristal semi-conducteur luminescent
US2431487A (en) Oil detection in drilling muds
WO2014091144A2 (fr) Traceurs fluorescents pour le marquage d'eaux d'injection de champs petroliers
US11414979B2 (en) Well injection program including an evaluation of sandface plugging
WO2020044013A1 (en) Method of monitoring a fluid and use of a tracer for monitoring a fluid
WO2022173323A1 (ru) Способ определения профиля притоков нефте- и газодобывающих скважин
Dulkarnaev et al. The First comprehensive study of tracer-based technologies in reservoir conditions
RU2810391C2 (ru) Способ определения профиля притоков нефте- и газодобывающих скважин методом маркерной диагностики
RU2809594C1 (ru) Способ подбора кислотного состава для интенсификации добычи нефти
CN111380826B (zh) 钻井液性能的检测方法及装置