RU2744246C1 - Устройство для переключения мемристора - Google Patents

Устройство для переключения мемристора Download PDF

Info

Publication number
RU2744246C1
RU2744246C1 RU2019140967A RU2019140967A RU2744246C1 RU 2744246 C1 RU2744246 C1 RU 2744246C1 RU 2019140967 A RU2019140967 A RU 2019140967A RU 2019140967 A RU2019140967 A RU 2019140967A RU 2744246 C1 RU2744246 C1 RU 2744246C1
Authority
RU
Russia
Prior art keywords
memristor
resistance
voltage
switching
low
Prior art date
Application number
RU2019140967A
Other languages
English (en)
Inventor
Алексей Владимирович Сафонов
Николай Викторович Агудов
Александр Александрович Дубков
Олег Николаевич Горшков
Алексей Иванович Белов
Олег Александрович Морозов
Максим Олегович Шамшин
Бернардо Спаньоло
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2019140967A priority Critical patent/RU2744246C1/ru
Application granted granted Critical
Publication of RU2744246C1 publication Critical patent/RU2744246C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к технологии эксплуатации мемристора с диэлектрической структурой, расположенной между его двумя электродами, обладающей резистивной памятью и обеспечивающей филаментарный механизм переключения мемристора, и может быть использовано для стабильного переключения такого мемристора за счет автоматической подстройки формы и длительности импульсов напряжения, переключающих мемристор в высокоомное или низкоомное состояние. Предлагается устройство для переключения мемристора, содержащее два источника постоянного напряжения, с противоположной друг к другу полярностью, два реостата, два резистивных делителя и два дифференциальных усилителя напряжения, образующие по одному две группы элементов для переключения мемристора в высокоомное или низкоомное состояние. Причем в каждой указанной группе реостат соединен своим входом с источником постоянного напряжения, своим выходом с первым электродом мемристора и управляющим входом с выходом дифференциального усилителя напряжения, а резистивный делитель соединен своими первым входом с источником постоянного напряжения и вторым входом с землей и своим выходом с инвертирующим входом дифференциального усилителя. При этом ко второму электроду мемристора подсоединен резистор, образующий с мемристором, выполняющим функцию второго резистивного плеча, дополнительный резистивный делитель, выход которого подключен к неинвертирующим входам обоих дифференциальных усилителей в указанных группах, входящие в состав обоих резистивных делителей в указанных группах резисторы с их подключением к соответствующим источникам постоянного напряжения имеют сопротивления, равные сопротивлениям мемристора в высокоомном или низкоомном состоянии, а оба реостата имеют настройку своих граничных величин сопротивления больше величины сопротивления мемристора в высокоомном состоянии и меньше величины сопротивления мемристора в низкоомном состоянии. Изобретение обеспечивает формирование устройства для автоматического переключения мемристора, характеризующееся стабильным его переводом (независящим от напряжения питания и предыстории работы мемристора) в высокоомное или низкоомное состояние. 2 ил.

Description

Изобретение относится к технологии эксплуатации мемристора с диэлектрической структурой, расположенной между его двумя электродами, обладающей резистивной памятью и обеспечивающей филаментарный механизм переключения мемристора, и может быть использовано для стабильного переключения такого мемристора за счет автоматической подстройки формы и длительности импульсов напряжения, переключающих мемристор в высокоомное или низкоомное состояние.
Особенностью работы мемристоров в качестве элементов памяти, является резистивная стохастичность мемристора в высокоомном и низкоомном состояниях при переключении мемристора в данные состояния.
Так традиционное переключение мемристоров, например, на основе смешанного оксида металлов, осуществляется с помощью стандартной управляющей программы измерения вольтамперных характеристик мемристора и его переключения (см. патенты РФ №2472254, H01L 45/00, В82В 1/00, 2013 на изобретение «Мемристор на основе смешанного оксида металлов» и №2524415, H01L 45/00, В82В 1/00, 2014 на изобретение «Мемристор на основе смешанного оксида металлов»), сопровождаемого разбросом величин сопротивления мемристора в высокоомном и низкоомных состояниях, оцениваемым в информационных источниках на уровне ~20-50% (см. например, статью на англ. яз. автора Daniele lelmini «Resistive switching memories based on metal oxides: mechanisms, reliability and scaling» - Semicond. Sci. Technol. 2016, v. 31, №063002, p. 12, fig. 16).
Приведенный пример переключения мемристора в описаниях изобретений к двум указанным российским патентам свидетельствует о значительном резерве повышения его эффективности в связи с низкой технологичностью настройки переключения мемристора на основе предварительного усреднения сопротивлений мемристора в высокоомном и низкоомном состояниях и сохранением проблемы снижения резистивной стохастичности мемристора, проявляемой при его переключениях.
Известно устройство для регулирования импульсов переключения мемристора, выполняющее функцию переключения последнего и содержащее источник напряжения для подачи на мемристор, детектор напряжения для обнаружения напряжения мемристора, в котором напряжение мемристора основано на начальном сопротивлении мемристора и напряжении, подаваемом источником напряжения, компаратор для сравнения напряжения мемристора с контрольной величиной напряжения мемристора, причем последняя используется для регулирования импульса переключения мемристора, контур обратной связи для указания управляющему переключателю, когда напряжение мемристора по меньшей мере равно контрольной величине напряжения, и управляющий переключатель для автоматического отключения и отсоединения мемристора от источника напряжения, когда напряжение мемристора, по меньшей мере, равно контрольной величине напряжения (см. п. 1 формулы изобретения по патенту US 9837147, G11C 13/00, 2017 на изобретение "Regulating memristor switching puls").
В указанном аналоге осуществлено регулирование импульсов переключения мемристора, основанное на изменении заряда последовательно включенного с мемристором конденсатора (при подаче на мемристор постоянного напряжения), используемого в качестве детектора напряжения мемристора и одновременном сравнении снимаемого с помощью этого детектора изменяющегося по величине напряжения мемристора с контрольной величиной напряжения мемристора, которая должна соответствовать одному из переключаемых состояний мемристора, и ухудшающее управление стабильной работой мемристора в связи с низкой технологичностью определения нестабильной контрольной величины указанного напряжения мемристора на основе текущей статистики замеров напряжений мемристора из-за резистивной стохастичности последнего и зависимостью сопротивления мемристора в высокоомном и низкоомном состояниях от стабильности источника напряжения и времени переключения мемристора от быстродействия управляющего переключателя.
Изложенная специфика осуществления указанного аналога в связи с иным физическим механизмом детектирования текущего состояния мемристора (см. в конце настоящего описания группы изобретений обоснование разницы в физическом механизме переключения мемристора в заявляемом устройстве и устройстве по патенту US 9837147), основанным на текущем обнаружении изменяющегося напряжения мемристора, а так же из-за различий в системе управления процессом переключения мемристора из одного состояния в другое явилась причиной отказа от его использования в настоящем описании в качестве прототипа заявляемого устройства для переключения мемристора, поэтому выбрана форма раскрытия сущности предлагаемой группы изобретений - без прототипа.
Технический результат предлагаемой группы изобретений - разработка оптимального устройства для автоматического переключения мемристора, характеризующегося стабильным его переводом (независящем от напряжения питания и предыстории работы мемристора) в высокоомное или низкоомное состояние при сочетании повышенного по технологичности обеспечения измерения текущей величины сопротивления мемристора (в режиме отслеживания сопротивления сопротивления мемристора) и сравнения ее с задаваемыми аналоговыми величинами сопротивления мемристора в высокоомном или низкоомном состоянии, одновременной подачи импульса напряжения с изменяемой формой для переключения мемристора без зависимости от стабильности источника постоянного напряжения, от предыстории работы мемристора и от быстродействия системы обратной связи, состоящей из дифференциальных усилителей и реостатов, и упрощением схемотехнической реализации устройства для осуществления предлагаемого способа на основе снижения резистивной стохастичности мемристора при его переключениях.
Кроме того, предлагаемое изобретение расширяет актуальный арсенал эффективных контрольно-измерительных исполнительных средств, обеспечивающих стабильное переключение мемристоров.
Для достижения указанного технического результата предлагается устройство для переключения мемристора, содержащее два источника постоянного напряжения, с противоположной друг к другу полярностью, два реостата, два резистивных делителя и два дифференциальных усилителя напряжения, образующие по одному две группы элементов для переключения мемристора в высокоомное или низкоомное состояние.
Причем в каждой указанной группе реостат соединен своим входом с источником постоянного напряжения, своим выходом с первым электродом мемристора и управляющим входом с выходом дифференциального усилителя напряжения, а резистивный делитель соединен своими первым входом с источником постоянного напряжения и вторым входом с землей и своим выходом с инвертирующим входом дифференциального усилителя.
При этом ко второму электроду мемристора подсоединен резистор, образующий с мемристором, выполняющим функцию второго резистивного плеча, дополнительный резистивный делитель, выход которого подключен к неинвертирующим входам обоих дифференциальных усилителей в указанных группах, входящие в состав обоих резистивных делителей в указанных группах резисторы с их подключением к соответствующим источникам постоянного напряжения имеют сопротивления, равные сопротивлениям мемристора в высокоомном или низкоомном состоянии, а оба реостата имеют настройку своих граничных величин сопротивления больше величины сопротивления мемристора в высокоомном состоянии и меньше величины сопротивления мемристора в низкоомном состоянии.
На фиг. 1 показана блок-схема предлагаемого устройства для переключения мемристора; на фиг. 2 - преобразование формы переключающего импульса в процессе работы устройства на фиг. 1.
Устройство для переключения мемристора (см. фиг. 1) содержит два источника постоянного напряжения 1 и 2, с противоположной друг к другу полярностью, два реостата 3 и 4, два резистивных делителя 5 и 6, состоящих из резисторов 7, 8 и 9, 10 соответственно, и два дифференциальных усилителя 11 и 12, образующие по одному две группы элементов для переключения соответственно в низкоомное и высокоомное состояние мемристора 13, подключенного к резистору 14.
Причем в каждой указанной группе реостат 3 или 4 соединен своим входом с источником постоянного напряжения 1 или 2, своим выходом с первым электродом мемристора 13 и управляющим входом с выходом дифференциального усилителя напряжения 11 или 12, а резистивный делитель 5 или 6 соединен своими первым входом с источником постоянного напряжения 1 или 2 и вторым входом с землей и своим выходом с инвертирующим входом дифференциального усилителя 11 или 12.
При этом ко второму электроду мемристора 13 подсоединен резистор 14, образующий с мемристором 13, выполняющим функцию второго резистивного плеча, дополнительный резистивный делитель 15, выход которого подключен к неинвертирующим входам обоих дифференциальных усилителей 11 и 12 в указанных группах, входящие в состав резистивных делителей 5 и 6 в указанных группах резисторы 7 и 9 имеют сопротивления, равные сопротивлениям мемристора в низкоомном или высокоомном состоянии, а реостаты 3 и 4 имеют настройку своих граничных величин сопротивления больше величины сопротивления мемристора 13 в высокоомном состоянии и меньше величины сопротивления мемристора 13 в низкоомном состоянии.
Предлагаемое устройство для переключения мемристора работает следующим образом.
Пусть мемристор 13 находится в высокоомном состоянии и требуется перевести его в низкоомное состояние. Для этого включается источник 1 (источник 2 отключен), создающий прямоугольный импульс напряжения положительной полярности.
Сопротивления резисторов 8, 10 и 14 должны быть равны между собой, точное же значение их сопротивления не принципиально для работы схемы и может быть выбрано, как среднее арифметическое значение сопротивления резисторов 7 и 9. Поскольку изначально мемристор находится в высокоомном состоянии, его сопротивление выше сопротивления резистора 7, который задает сопротивление мемристора в низкоомном состоянии, следовательно, в начальный момент времени напряжение на выходе делителя напряжения 15 будет ниже, чем напряжение на выходе делителя напряжения 5. Таким образом, на вход дифференциального усилителя 11 будет подаваться отрицательная разность потенциалов. Будучи усиленным усилителем 11 отрицательный сигнал придет на управляющий вход реостата 3, сделав его электрическое сопротивление низким. В результате все напряжение, вырабатываемое источником 1, будет падать на делителе 15 и, в частности, на мемристоре 13, вызывая максимально быстрое (при заданном напряжении источника 1) уменьшение его сопротивления. По мере уменьшения сопротивления мемристора 13 напряжение на выходе делителя 15 будет расти, а разность потенциалов на входе дифференциального усилителя 11 будет уменьшаться по модулю, приводя к тому, что сопротивление реостата начнет увеличиваться. Поскольку с увеличением сопротивления реостата 3 все большая часть напряжения, вырабатываемого источником 1, будет падать на реостате 3, форма импульса напряжения, поступающего на вход делителя 15 (в состав которого входит мемристор 13) начнет все больше отличаться от прямоугольной (см. фиг 2, где пунктиром изображен прямоугольный импульс напряжения, вырабатываемый источником 1, а сплошной линией -преобразованный импульс напряжения, поступающий на вход делителя 15). Вслед за уменьшением напряжения на входе делителя 15 начнет уменьшаться и скорость изменения сопротивления мемристора, пропорциональная приложенному к мемристору напряжению. Это обстоятельство обеспечит более точную настройку сопротивления мемристора 13 в низкоомном состоянии, по сравнению с методом, описанном в патенте US 9837147, поскольку при быстрых, лавинообразных изменениях сопротивления мемристора возникают сложности с точным определением того момента, когда сопротивление мемристора достигает заданного значения, вызванные задержками, неизбежно возникающими в процессе переключения любого реального компаратора и размыкания любого реального ключа, использованных в группе изобретений по патенту US 9837147. Замедление же процесса изменения сопротивления мемристора 13 в предлагаемой схеме позволит снизить влияние быстродействия используемых элементов схемы (а так же задержек в них) на точность установки сопротивления мемристора 13 в требуемом состоянии. В тот момент времени, когда сопротивление мемристора 13 достигнет значения сопротивления 7, напряжения на выходах делителей 5 и 15 сравняются. Напряжение на выходе усилителя 11 в этот момент станет равным нулю, переведя сопротивление реостата в максимально возможное значение, много большее, чем сопротивление мемристора в высокоомном состоянии. При этом практически все напряжение, вырабатываемое источником 1, будет падать на реостате, закончив тем самым процесс изменения сопротивления мемристора 13, который будет переведен в низкоомное состояние со значением сопротивления, равным сопротивлению резистора 7.
Аналогичным образом происходит переключение мемристора 13 из низкоомного состояния в высокоомное, для чего на него подается отрицательное напряжение с помощью источника 2 (источник 1 при этом отключен). Поскольку теперь в начальный момент работы схемы мемристор 13 находится в низкоомном состоянии, напряжение на выходе делителя 15 будет ниже (с учетом знака), чем напряжение на выходе делителя 6. Таким образом, в начальный момент работы схемы на вход дифференциального усилителя 12 так же будет подаваться отрицательная разность потенциалов. Будучи усиленным усилителем 12 отрицательный сигнал придет на управляющий вход реостата 4, сделав его электрическое сопротивление низким. В результате все напряжение, вырабатываемое источником 2, будет падать на делителе 15 и, в частности, на мемристоре 13, вызывая максимально быстрое (при заданном напряжении источника 2) увеличение его сопротивления. По мере увеличения сопротивления мемристора 13 напряжение на выходе делителя 15 будет расти (уменьшаясь по модулю), а разность потенциалов на входе дифференциального усилителя 12 будет уменьшаться по модулю, приводя к тому, что сопротивление реостата начнет увеличиваться. При этом коэффициент усиления усилителя 12 должен быть выбран таким образом, чтобы скорость роста сопротивления реостата 4 была выше скорости роста сопротивления мемристора 13. Поскольку с увеличением сопротивления реостата 4 все большая часть напряжения, вырабатываемого источником 2, будет падать на реостате 4 (а не на мемристоре 13), скорость изменения сопротивления мемристора, пропорциональная приложенному к мемристору напряжению, начнет уменьшаться. В тот момент времени, когда сопротивление мемристора 13 достигнет значения сопротивления 9, напряжения на выходах делителей 6 и 15 сравняются. Напряжение на выходе усилителя 12 в этот момент станет равным нулю, переведя сопротивление реостата в максимально возможное значение, много большее, чем сопротивление мемристора в высокоомном состоянии. При этом практически все напряжение, вырабатываемое источником 2, будет падать на реостате, закончив тем самым процесс изменения сопротивления мемристора 13, который будет переведен в высокоомное состояние со значением сопротивления, равным сопротивлению резистора 9.
При этом стабильное переключение мемристора 13 с установкой повышенной по технологичности обеспечения заданной величины сопротивления мемристора 13 в высокоомном или низкоомном состоянии в сравнении с обеспечением контрольной величины напряжения мемристора в описании группы изобретений по патенту US 9837147 достигается в результате выбора в качестве контролируемой величины непосредственно сопротивления мемристора 13 (а не протекшего через мемристор по указанному американскому патенту заряда), а в качестве контрольных величин - сопротивлений резисторов 7 и 9. Такой выбор позволяет устранить зависимость сопротивления мемристора 13 в высокоомном и низкоомном состояниях от стабильности источника напряжения (вследствие независимости величин сопротивления резисторов 7 и 9 от поданного на них напряжения), а так же от предыстории работы мемристора 13 без необходимости проведения предварительных измерений зависимости сопротивления мемристора 13 от протекшего через него заряда (что исключает из состава устройства дополнительные блоки, требуемые для проведения таких измерений, повышая таким образом его технологичность), а так же без необходимости проведения подстройки контрольного напряжения при изменении напряжения импульсов, подаваемых для переключения мемристора 13 (что так же повышает технологичность устройства за счет исключения из него блоков подстройки контрольного напряжения).
А исключение необходимости использования измерительных приборов для получения информации о зависимости сопротивления мемристора от прошедшего через него заряда в описании группы изобретений по патенту US 9837147 упрощает схемотехническую реализацию устройства для осуществления предлагаемого способа.
Кроме того, использование дифференциальных усилителей, способных формировать на своем выходе аналоговое напряжение из некоторого диапазона, вместо компараторов, выдающих лишь одно из двух логических состояний, а так же использование реостатов с плавно изменяющимся сопротивлением вместо ключей, способных быть лишь в одном из двух возможных (замкнутое и разомкнутое) состояний, позволяет аналоговым образом контролировать форму напряжения, подающегося на мемристор, с целью изменения скорости его переключения.
В примере выполнения предлагаемого устройства для переключения мемристора 13, имеющего структуру Au/Ta (8 нм) / ZrO2 (12 мол. % Y2O3, 10 нм) / ТаОх (10 HM)/TiN/Ti, при х, имеющем величину от 2.0 до 2.5, проводилось математическое моделирование с использованием САПР Cadence измерение текущей величины мемристора 13 сопротивления, усиление сигнала, пропорционального разности текущего сопротивления мемристора и заданного сопротивления мемристора в высокоомном (100 КОм) или низкоомном (1 КОм) состоянии с помощью дифференциального усилителя 11 или 12 и одновременная подача от источников 1 или 2 прямоугольного импульса с амплитудой не менее 3 В, преобразуемого затем с помощью с помощью реостатов 3 или 4, управляемых дифференциальными усилителями 11 или 12 соответственно в импульс формой (см. фиг. 2), отличной от прямоугольной, и с полярностью, соответственно положительной или отрицательной и длительностью в пределах интервала величин от 10 не до 10 мс в зависимости от наступления момента, по меньшей мере, равенства измеряемого текущего сопротивления мемристора 13 с указанными величинами сопротивления мемристора 13 в высокоомном или низкоомном состоянии.
Сопротивление резисторов 8, 10 и 14 составляло в данном примере 50 КОм, а мемристор 13 переводился в состояние с низким сопротивлением, равным 1 КОм, и в состояние с высоким сопротивлением, равным 100 КОм, с ошибкой, не превосходящей 1%.
Сопротивления реостатов 1 и 2 в замкнутом состоянии составляло 100 Ом, в разомкнутом - 1 ГОм.
Обоснование разницы в физическом механизме переключения мемристора в заявляемой группе изобретений и группе изобретений по патенту US 9837147.
Впервые понятие мемристора ввел Леон Чуа в 1971 году в работе (L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory. 18, 507-519 (1971)). В соответствии с данным им определением электрическое сопротивление мемристора определяется зарядом q, прошедшим через мемристор. Если известно, какой ток I(t) (где t - это текущее время) протекал через мемристор в течение некоторого времени, то заряд, прошедший через мемристор к моменту времени Т, можно, по определению, записать как интеграл:
Figure 00000001
Таким образом, зная этот интеграл, можно определить величину электрического сопротивления мемристора. Но все это верно лишь для идеального мемристора, введенного Чуа. Реальные современные электронные компоненты, называемые мемристорами, в действительности являются так называемыми мемристивными системами, которым присущи некоторые (но не все) из свойств идеального мемристора (см., например, обзор на английском языке автора Daniele lelmini «Resistive switching memories based on metal oxides: mechanisms, reliability and scaling» - Semicond. Sci. Technol. 2016, v. 31, №063002). Для реальных электронных компонентов точный вид зависимости электрического сопротивления от прошедшего через них заряда неизвестен. Более того, электрическое сопротивление таких мемристивных систем зависит не только от заряда, но и от других факторов, и сам вид зависимости может меняться со временем.
В описании группы изобретений по патенту US 9837147 нет информации о том, как следует получать напряжение мемристора («memristor voltage»), это понятие введено без точного определения. Однако описан детектор - устройство для получения этого напряжения. Устройство представляет собой конденсатор, включенный последовательно с мемристором. Ток, протекающий через мемристор, заряжает конденсатор, напряжение на котором пропорционально заряду, накопленному на обкладках конденсатора. Этот заряд определяется по формуле (1). Таким образом, измеряя напряжение на конденсаторе, можно получить информацию о заряде, который накопился на его обкладках, пройдя сквозь мемристор. А зная заряд, прошедший через мемристор, можно узнать и сопротивление мемристора. Такова логика устройства, предложенного в патенте US 9837147. Использовать такое устройство на практике можно лишь при условии того, что известна точная зависимость сопротивления мемристора от прошедшего через него заряда. Однако, как уже было сказано выше, в общем случае такая зависимость неизвестна, более того, даже если ее предварительно измерить, это не решит проблему, поскольку зависимость эта меняется со временем. Поэтому в заявляемом изобретении отсутствует измерение заряда, прошедшего через мемристор 13, и вычисление сопротивления мемристора 13 по измеренной величине заряда, а происходит измерение сопротивления мемристора 13 напрямую. Измерение сопротивления основывается на определении сопротивления как величины, равной отношению падения напряжения на мемристоре 13 к току, протекающему через этот мемристор. При использовании в резистивных делителях 5, 6 и 15 одинаковых резисторов 8, 10 и 14, автоматически обеспечивается равенство токов, протекающих через делители 5 и 15 (или через делители 6 и 15 - в зависимости от того, происходит переключение мемристора 13 в низкоомное или в высокоомное состояние соответственно) в тот момент, когда сравниваются напряжения, подаваемые на вход дифференциального усилителя 11 (или 12 - для переключения в высокоомное состояние). Таким образом, в тот момент, когда напряжения, подаваемые на дифференциальный усилитель 11 (или 12), сравняются, будет известно, что электрическое сопротивление мемристора 13 стало равным электрическому сопротивлению резистора 7 (или резистора 9). Поскольку величина сопротивления резисторов 7 или 9 не зависит от напряжений, создаваемых источниками 1 или 2, не будет от этого напряжения зависеть и сопротивление мемристора 13, переведенного в высокоомное или низкоомное состояние.
Причем в основе патента US 9837147 лежит идея сравнения некого «напряжения мемристора» (memristor voltage), получаемого неуказанным в патенте способом, с целевым напряжением, метод определения которого в патенте так же не указан, и использование результата сравнения этих напряжений для отключения источника питания от мемристора. При использовании метода регулировки импульсов напряжения, подаваемых для переключения мемристора из одного состояния в другое, описанного в патенте US 9837147 необходимо:
1. разработать способ получения «напряжения мемристора», о котором известно лишь, что оно зависит от напряжения питания и начального состояния мемристора;
2. разработать способ задания целевого напряжения;
3. иметь информацию о конкретной зависимости состояния данного конкретного мемристора от напряжения, использующегося для сравнения с целевым напряжением, которое в общем случае зависит от заряда, прошедшего через мемристор.
Кроме того, переключение мемристора, предложенное в патенте US 2017/0062048 А1 предполагает регулировку длительности импульс напряжения прямоугольной формы, подаваемых на мемристор с целью его переключения. Одной из основных проблем, возникающих при использовании такого метода, является сильная зависимость скорости переключения мемристора от величины напряжения, подаваемого на него с целью переключения (см., например, статью авторов Gilberto Medeiros-Ribeiro, Frederick Perner, Richard Carter, Hisham Abdalla, Matthew D Pickett, R Stanley Williams на англ. языке Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution, Nanotechnology, 2011, v. 22, №095702). Поскольку время срабатывания любого компаратора напряжения конечно, задержка, возникающая при его переключении, будет приводить к ошибке установки сопротивления мемристора из-за того, что момент времени размыкания ключа будет отличаться от момента времени, когда «напряжение мемристора» сравняется с целевым значением. А поскольку в реальном приборе напряжение, подаваемое на мемристор для его переключения, будет флуктуировать со временем, вместе с ним будет изменяться и скорость переключения мемристора, а следовательно, ошибка установки сопротивления мемристора также будет меняться от одного акта переключения к другому. С целью преодоления указанной проблемы в предлагаемом нами методе вместо компаратора, имеющего только два возможных значения выходного сигнала, используется дифференциальный усилитель напряжения (11 или 12), на выходе которого может быть любое значение напряжения из рабочего диапазона выходных напряжений, определяемое коэффициентом усиления усилителя и разницей напряжения на его входах. На входы указанного усилителя подаются два напряжения: первое из них пропорционально текущему сопротивлению мемристора 13, второе - заданному значения сопротивления мемристора 13 в высокоомном или низкоомном состоянии. Чем больше разница этих напряжений, тем больше напряжение на выходе усилителя. Напряжение с выхода усилителя 11 или 12 подается на управляющий вход реостата 3 или 4, который используется в предлагаемом устройстве вместо ключа, который может быть либо замкнут, либо разомкнут.Низкое напряжение на управляющем входе реостата 3 или 4 соответствует низкому сопротивлению этого реостата, высокое напряжение на управляющем входе реостата 3 или 4 соответствует его высокому сопротивлению. Реостат 3 или 4 следует выбрать так, чтобы его низкое сопротивление было много меньше сопротивления мемристора 13 в низкоомном состоянии, а его высокое сопротивление было много больше сопротивления мемристора 13 в высокоомном состоянии. В качестве такого реостата может использоваться р-канальный полевой транзистор при подаче на мемристор 13 напряжения положительной полярности и n-канальный полевой транзистор при подаче на мемристор 13 напряжения отрицательной полярности.
Таким образом, в отличие от предложенного в патенте US 2017/0062048 А1 метода, в предлагаемом устройстве происходит детектирование электрического сопротивления мемристора 13. В случае если это сопротивление отличается от заданного значения сопротивления мемристора 13 в высоокоомном (или в низкоомном - в зависимости от того, в какое состояние мемристор 13 требуется переключить) состоянии, на управляющий вход реостата 3 или 4 подается низкое напряжение, что приводит к тому, что большая часть падения напряжения происходит на мемристоре 13. Это, в свою очередь, приводит к быстрому изменению значения сопротивления мемристора 13. Однако по мере того, как сопротивление мемристора 13 будет приближаться к заданном значению сопротивления мемристора 13 в высокоомном (или в низкоомном) состоянии, напряжение на выходе усилителя 11 или 12 будет увеличиваться. Вследствие этого будет возрастать сопротивление реостата 3 или 4, а падение напряжения на мемристоре 13 будет убывать, уменьшая таким образом скорость переключения мемристора 13. При уменьшении скорости переключения мемристора 13 возможные ошибки, связанные с конечной скоростью работы усилителя 11 или 12 будут оказывать меньшее влияние. Таким образом, результатом использования предлагаемого устройства является адаптивное изменение величины падения напряжения на мемристоре 13, увеличивающее скорость его переключения в начале процесса переключения и замедляющее скорость его переключения в конце процесса перелючения, когда высокое значение скорости переключения мемристора 13 приводит к повышению ошибки установки его сопротивления.
Кроме того, в отличие от метода регулирования в патенте US 9837147 метода, работа предлагаемого устройства не требует предварительного вычисления и задания целевого напряжения, а следовательно, не требует и информации о конкретном виде зависимости состояния мемристора 13 от прошедшего через него заряда. При использовании предлагаемого устройства задаются лишь значения сопротивления мемристора 13 в высокоомном и низкоомном состоянии.
Таким образом, в предлагаемом устройстве контролируется длительность и форма импульса напряжения с преобразуемой формой, подаваемого на мемристор 13, для перевода его в одно из двух логических состояний - с низким и с высоким сопротивлением. Такой контроль обеспечивает снижение разброса значений сопротивления мемристора 13 (по сравнению со случаем, когда для переключения мемристора 13 используется подача импульсов напряжения фиксированной длительности) за счет использования системы контроля текущего сопротивления мемристора 13, а также независимость получаемых значений сопротивления мемристора 13 в высокоомном и низкоомном состояниях от амплитуд подаваемых на него импульсов и от предыстории работы мемристора 13.

Claims (1)

  1. Устройство для переключения мемристора, содержащее два источника постоянного напряжения, с противоположной друг к другу полярностью, два реостата, два резистивных делителя и два дифференциальных усилителя напряжения, образующие по одному две группы элементов для переключения мемристора в высокоомное или низкоомное состояние, причем в каждой указанной группе реостат соединен своим входом с источником постоянного напряжения, своим выходом с первым электродом мемристора и управляющим входом с выходом дифференциального усилителя напряжения, а резистивный делитель соединен своими первым входом с источником постоянного напряжения и вторым входом с землей и своим выходом с инвертирующим входом дифференциального усилителя, при этом ко второму электроду мемристора подсоединен резистор, образующий с мемристором, выполняющим функцию второго резистивного плеча, дополнительный резистивный делитель, выход которого подключен к неинвертирующим входам обоих дифференциальных усилителей в указанных группах, входящие в состав обоих резистивных делителей в указанных группах резисторы с их подключением к соответствующим источникам постоянного напряжения имеют сопротивления, равные сопротивлениям мемристора в высокоомном или низкоомном состоянии, а оба реостата имеют настройку своих граничных величин сопротивления больше величины сопротивления мемристора в высокоомном состоянии и меньше величины сопротивления мемристора в низкоомном состоянии.
RU2019140967A 2019-12-10 2019-12-10 Устройство для переключения мемристора RU2744246C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019140967A RU2744246C1 (ru) 2019-12-10 2019-12-10 Устройство для переключения мемристора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019140967A RU2744246C1 (ru) 2019-12-10 2019-12-10 Устройство для переключения мемристора

Publications (1)

Publication Number Publication Date
RU2744246C1 true RU2744246C1 (ru) 2021-03-04

Family

ID=74857795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019140967A RU2744246C1 (ru) 2019-12-10 2019-12-10 Устройство для переключения мемристора

Country Status (1)

Country Link
RU (1) RU2744246C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795273C1 (ru) * 2022-12-21 2023-05-02 Федеральное государственное бюджетное учреждение высшего образования "Владимирский государственный университет им. Александра Григорьевича и Николая Григорьевича Столетовых" Устройство программирования резистивных состояний мемристорных элементов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573207C2 (ru) * 2010-06-18 2016-01-20 Сантр Насьональ Де Ля Решерш Сьянтифик Магнитоэлектрическое запоминающее устройство
US9343145B2 (en) * 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US9837147B2 (en) * 2014-04-30 2017-12-05 Hewlett Packard Enterprise Development Lp Regulating memristor switching pulses
US9847128B2 (en) * 2014-06-20 2017-12-19 Hewlett Packard Enterprise Development Lp Memristive memory cell resistance switch monitoring
RU2643650C1 (ru) * 2017-04-05 2018-02-02 федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" Логическая матрица на основе мемристорной коммутационной ячейки
RU2706197C1 (ru) * 2018-12-26 2019-11-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343145B2 (en) * 2008-01-15 2016-05-17 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
RU2573207C2 (ru) * 2010-06-18 2016-01-20 Сантр Насьональ Де Ля Решерш Сьянтифик Магнитоэлектрическое запоминающее устройство
US9837147B2 (en) * 2014-04-30 2017-12-05 Hewlett Packard Enterprise Development Lp Regulating memristor switching pulses
US9847128B2 (en) * 2014-06-20 2017-12-19 Hewlett Packard Enterprise Development Lp Memristive memory cell resistance switch monitoring
RU2643650C1 (ru) * 2017-04-05 2018-02-02 федеральное государственное автономное образовательное учреждение высшего образования "Тюменский государственный университет" Логическая матрица на основе мемристорной коммутационной ячейки
RU2706197C1 (ru) * 2018-12-26 2019-11-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795273C1 (ru) * 2022-12-21 2023-05-02 Федеральное государственное бюджетное учреждение высшего образования "Владимирский государственный университет им. Александра Григорьевича и Николая Григорьевича Столетовых" Устройство программирования резистивных состояний мемристорных элементов

Similar Documents

Publication Publication Date Title
US7082045B2 (en) Offset compensated sensing for magnetic random access memory
US4082998A (en) Dual slope integration circuit
US10261137B2 (en) Magnetic sensor
CN106981301B (zh) 半导体装置与其补偿方法
US20020125942A1 (en) Comparator circuit
CN108918980B (zh) 一种电容信号测量电路及测量方法
GB2029586A (en) Resistance compensation in electrochemical measurements
US3701909A (en) Peak and hold system
JP2020038504A (ja) ボルテージレギュレータ及びボルテージレギュレータの試験方法
RU2744246C1 (ru) Устройство для переключения мемристора
CN108475982B (zh) 一种开关电源电路及开关电源电流检测方法
CN210400650U (zh) 一种高精度温度检测电路
US5572118A (en) Charge rate electrometer including means for substantially eliminating leakage currents
US20030090299A1 (en) Comparator having reduced sensitivity to offset voltage and timing errors
TW443034B (en) Current control technique
RU2737794C1 (ru) Способ управления работой мемристора и устройство для его осуществления
KR100364428B1 (ko) 고전압 레귤레이션 회로
US10236041B2 (en) Determining a state of a memory cell
TW200532212A (en) Current/charge-voltage converter
CN112119592A (zh) 蓄电池充电及测量电路
JP2003028901A (ja) マルチソースmosを用いた電流検出回路
CN219609076U (zh) 电容补偿电路、电容检测电路、芯片和电子设备
US20200162071A1 (en) Switching Circuit
US11493390B2 (en) Temperature sensing circuit
EP1972898A1 (en) Temperature compensated inductance measurement