RU2739938C1 - Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой - Google Patents

Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой Download PDF

Info

Publication number
RU2739938C1
RU2739938C1 RU2020113799A RU2020113799A RU2739938C1 RU 2739938 C1 RU2739938 C1 RU 2739938C1 RU 2020113799 A RU2020113799 A RU 2020113799A RU 2020113799 A RU2020113799 A RU 2020113799A RU 2739938 C1 RU2739938 C1 RU 2739938C1
Authority
RU
Russia
Prior art keywords
signal
reflected
signals
vector
radio
Prior art date
Application number
RU2020113799A
Other languages
English (en)
Inventor
Виктор Григорьевич Маркин
Владислав Викторович Кирюшкин
Владимир Андреевич Шуваев
Евгений Михайлович Красов
Original Assignee
Акционерное общество научно-внедренческое предприятие "ПРОТЕК"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество научно-внедренческое предприятие "ПРОТЕК" filed Critical Акционерное общество научно-внедренческое предприятие "ПРОТЕК"
Priority to RU2020113799A priority Critical patent/RU2739938C1/ru
Application granted granted Critical
Publication of RU2739938C1 publication Critical patent/RU2739938C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиолокации и предназначено для обнаружения сигнала, отраженного от воздушной цели, на фоне прямого зондирующего сигнала от радиопередатчика, и сигналов, отраженных от стационарных объектов. Техническим результатом изобретения является обеспечение высокой скорости адаптации и малой дисперсии остаточных помех при малых отношениях амплитуды сигнала, отраженного от цели, к амплитудам помеховых сигналов. В способе пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой применяют радиопередатчик, передающий зондирующий сигнал, и радиоприемник, содержащий адаптивную антенную решетку (ААР), состоящую из антенных элементов, диаграммообразующей схемы с весовыми коэффициентами, блока адаптивного управления диаграммой направленности и сумматора. Способ заключается в излучении радиопередатчиком зондирующего сигнала, приеме радиоприемником сигнала, отраженного от воздушной цели, а также прямого зондирующего сигнала от радиопередатчика и сигналов, отраженных от стационарных объектов. На выходе сумматора с использованием рекурсивной оценки вектора весовых коэффициентов выдают сигнал
Figure 00000029
, где
Figure 00000029
- вектор комплексных сигналов xn(t), n=1, 2, …, N в каналах ААР, N - число антенных элементов,
Figure 00000029
- транспонированный и комплексно сопряженный вектор весовых коэффициентов w1, w2, … wN,
Figure 00000030
t - отсчеты времени, k - скалярный коэффициент усиления. При k<0 ААР обеспечивает минимизацию мощности, при k>0 – максимизацию. Обеспечение обнаружения слабого радиосигнала, отраженного от воздушной цели на фоне сильных мешающих сигналов, достигается применением изменяемого коэффициента усиления, определяемого в зависимости от градиента среднего квадрата выходного сигнала s(t). 4 ил.

Description

Изобретение относится к радиолокации и предназначено для обнаружения сигнала, отраженного от воздушной цели, на фоне прямого зондирующего сигнала от радиопередатчика, и сигналов, отраженных от стационарных объектов.
Известен обнаружитель с компенсатором помех [1], использующий широкополосные сигналы, манипулированные по фазе псевдослучайной последовательностью, в котором повышение вероятности обнаружения навигационного сигнала обеспечивается путем воспроизведения копии помехи с учетом времени задержки и последующей компенсацией помехи из входной смеси «сигнал-помеха».
Известно устройство компенсации прямого радиолокационного сигнала радиопередатчика в приемнике двухпозиционной радиолокационной системы [2], использующее в качестве сигнала подсвета воздушных целей зондирующий радиосигнал наземного передатчика.
Недостатком методов компенсации, используемых в данных устройствах, является то, что для их функционирования необходимо иметь копии компенсируемых помех, что не всегда представляется возможным. Кроме того, в этих устройствах компенсируется только одна помеха.
Для компенсации мешающих радиосигналов применяют пространственную селекцию полезных радиосигналов адаптивными антенными решетками (ААР) с управляемыми «нулями» диаграммы направленности, формируемыми в направлениях на источники мешающих сигналов.
Способы компенсации помех, используемые ААР, позволяют осуществлять управление диаграммой направленности в соответствии с изменяющейся сигнально-помеховой обстановкой и компенсировать несколько помех, приходящих с различных направлений. Однако для функционирования этих ААР требуются априорные сведения о временных характеристиках полезного сигнала [3, 4, 5], либо информация о направлении его прихода [6], что зачастую не представляется возможным.
От этих недостатков свободен метод оптимизации мощности, предложенный Комптоном [7]. Для работы ААР, использующей этот метод, не нужно знать временные характеристики полезного сигнала и направление его прихода. Достаточно иметь сведения о соотношении мощностей полезного и помеховых сигналов. В нашем случае эта информация заключается в том, что зондирующий сигнал и сигналы, отраженные от окружающих объектов, значительно превышают уровень сигнала, отраженного от цели.
Однако в методе Комптона при оценке вектора весовых коэффициентов присутствует константа - скалярный коэффициент усиления, характеризующий усиление контура адаптации, влияющий на устойчивость и скорость оптимизации.
Очевидно, что при фиксированном значении скалярного коэффициента усиления невозможно обеспечить одновременно высокую скорость адаптации и малую дисперсию остаточных помех. Для того чтобы удовлетворить этим двум противоречивым условиям, необходимо иметь большой скалярный коэффициент усиления в переходном режиме и относительно малый - в установившемся процессе адаптации.
Техническая задача изобретения состоит в обеспечении высокой скорости адаптации и малой дисперсии остаточных помех при малых отношениях амплитуды сигнала, отраженного от воздушной цели, к амплитудам помеховых сигналов.
Сущность изобретения поясняется рисунками. На фиг. 1 показана структурная схема бистатической радиолокационной системы, на фиг. 2 приведена структурная схема ААР, на фиг. 3 а) приведены отклики согласованного фильтра, подключенного к выходу сумматора ААР, на зондирующий сигнал u1 прямого распространения от радиопередатчика 1, на сигналы u2, u3, отраженные от стационарных объектов, и на сигнал uц, отраженный от воздушной цели, в отсутствии их компенсации, b) приведена диаграмма направленности ААР в исходном состоянии, выраженная в децибелах, на фиг. 4 а) приведены отклики согласованного фильтра, подключенного к выходу сумматора ААР после компенсации прямого зондирующего сигнала от радиопередатчика, сигналов отраженных от стационарных объектов и результат выделения сигнала uц, отраженного от воздушной цели, b) приведена диаграмма направленности ААР после компенсации, выраженная в децибелах.
Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели в бистатической радиолокационной системе, в котором участвуют радиопередатчик 1, передающий зондирующий сигнал, радиоприемник 2, содержащий ААР, состоящую из антенных элементов 2.1, диаграммообразующей схемы с весовыми коэффициентами 2.2, блока адаптивного управления диаграммой направленности 2.4 и сумматора 2.3, осуществляющий:
- излучение радиопередатчиком 1 зондирующего сигнала,
- прием радиоприемником 2 сигнала, отраженного от воздушной цели 3, а также прямого зондирующего сигнала от радиопередатчика 1 и сигналов, отраженных от стационарных объектов 4, выдачу сигнала на выходе сумматора в виде
Figure 00000001
с использованием рекурсивной оценки вектора весовых коэффициентов
Figure 00000002
и ограничений на норму вектора весовых коэффициентов
Figure 00000003
где
Figure 00000004
- оператор транспонирования и комплексного сопряжения,
t - отсчеты времени,
Figure 00000005
- вектор весовых коэффициентов w1, w2, …, wn,
k - скалярный коэффициент усиления,
Figure 00000006
- вектор комплексных сигналов xa(t), n=1, 2, …, N в каналах ААР, N - число антенных элементов,
Figure 00000007
- градиент среднего квадрата
Figure 00000008
выходного сигнала s(t), * - оператор комплексного сопряжения.
Если k<0, то адаптивная антенная решетка обеспечивает минимизацию мощности, при k>0 - максимизацию.
Вектор весовых коэффициентов оценивается в виде
Figure 00000009
с использованием ограничения на норму
Figure 00000010
где
Figure 00000011
Figure 00000012
- норма градиента,
Figure 00000013
- норма вектора весовых коэффициентов;
Figure 00000014
- коэффициент усиления,
0<α<1 - константа, обеспечивающая скорость изменения коэффициента усиления k(t).
Благодаря такой оценке:
- вектор весовых коэффициентов W(t) становится независимым от уровня помех в каналах ААР, чем обеспечивается устойчивость способа компенсации;
- коэффициент усиления k(t) увеличивается вдали от экстремума, а в окрестности экстремума экспоненциально уменьшается, что способствует обеспечению высокой скорости адаптации и малого уровня остаточных помех в установившемся режиме.
Результаты моделирования позволяют наглядно показать эффективность предлагаемого способа.
Для примера рассмотрим результаты ослабления прямого зондирующего сигнала от радиопередатчика 1 и двух отраженных сигналов от стационарных объектов 4, при приеме сигнала, отраженного от воздушной цели 3 адаптивной антенной решеткой предлагаемым способом пространственной компенсации. Адаптивная антенная решетка кольцевая, радиусом 0,6 м, содержит семь антенных элементов 2.1, с круговой диаграммой направленности, расположенных равномерно на окружности.
В качестве зондирующего сигнала, излучаемого радиопередатчиком 1 используем фазоманипулированный сигнал с расширением спектра М-последовательностью длиной 1023 дискрета с 10 цифровыми отсчетами на дискрете.
Несущая частота сигнала составляет 300 МГц. Амплитуда сигнала прямого распространения от радиопередатчика 1 на входе ААР равна 1000. Амплитуды двух сигналов, отраженных от стационарных объектов 4.1 и 4.2 равны 500 и 150 соответственно. Амплитуда сигнала, отраженного от воздушной цели 3, равна 20, что в 50 раз меньше амплитуды сигнала прямого распространения от передатчика 1 и меньше амплитуд сигналов, отраженных от стационарных объектов 4. Среднеквадратическое значение аддитивного шума в каналах ААР равно 20, т.е. уровень шума сравним с уровнем сигнала, отраженного от воздушной цели 3.
Направления прихода сигналов составляют: 30° - направление прихода прямого зондирующего сигнала от радиопередатчика 1, 60° и 90° - направления прихода сигналов, отраженных от стационарных объектов 4, 120° - направление прихода сигнала от воздушной цели 3.
Отраженный от воздушной цели 3 сигнал задержан относительно зондирующего сигнала прямого распространения от радиопередатчика 1 на 5870 отсчетов. Отраженные от стационарных объектов 4 сигналы задержаны относительно прямого зондирующего сигнала от радиопередатчика 1 на 1170 и 3130 отсчетов.
На фиг. 3 а) приведены отклики согласованного фильтра, подключенного к выходу сумматора 2.3 ААР, на зондирующий сигнал u1 прямого распространения от радиопередатчика 1, на сигналы u2, u3, отраженные от стационарных объектов 4 и на радиолокационный сигнал uц, отраженный от воздушной цели 3, в отсутствии их компенсации. На фиг. 3 b) приведена диаграмма направленности ААР до компенсации, выраженная в децибелах. Эта диаграмма имеет круговую форму на уровне около 9 дБ.
На фиг. 4 а) приведены отклики согласованного фильтра, подключенного к выходу сумматора 2.3 ААР после компенсации прямого зондирующего радиолокационного сигнала от радиопередатчика 1, отраженных сигналов от стационарных объектов 4 и результат выделения сигнала uц, отраженного от воздушной цели 3. На фиг. 4 b) приведена диаграмма направленности ААР после компенсации, выраженная в децибелах. При этом константа α, обеспечивающая скорость изменения коэффициента k(t), была равна α=0.15.
Из фиг. 4 b) видно, что в диаграмме направленности в направлениях на сигнал прямого распространения от радиопередатчика 1 и сигналы, отраженные от стационарных объектов 4 сформировались глубокие, около 50 дБ, провалы. В направлении на сигнал uц (120°), отраженный от воздушной цели, уровень диаграммы направленности, равен около 2 дБ. При этом процесс адаптации завершается в течение времени приема первой М-последовательности сигнала.
Таким образом, предлагаемый способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели в бистатической радиолокационной системе позволяет:
- компенсировать прямой зондирующий сигнал радиопередатчика 1 и сигналы, отраженные от стационарных объектов 4, значительно превышающие уровень сигнала, отраженного от воздушной цели 3;
- выделить полезный, отраженный от воздушной цели, сигнал.
Список источников
1. Патент 2574860 РФ, МПК Н04В 1/10. Обнаружитель с компенсатором помех / А.В. Журавлев и др. (РФ). Открытое акционерное общество научно-производственное предприятие «ПРОТЕК» (РФ). - №2014152662/07; заявлено 24.12.2014; опублик. 10.02.2016, Бюл 4. - 6 с.: 1 ил.
2. Патент 2716154 РФ, МПК G01S 5/06. Устройство компенсации прямого радиолокационного сигнала радиопередатчика в приемнике двухпозиционной радиолокационной системы / А.В. Журавлев и др. (РФ). - №2014152662/07; заявлено 09.09.2019; опублик. 06.03.2020 Бюл. 7. - 11 с.: 6 ил.
3. Уидроу Б., Стирнз С. Адаптивная обработка сигналов. / Пер. с англ. М: Радио и связь, 1989, 440 с.
4. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки. Введение в теорию / Пер. с англ._М:Радио и связь, 1986. - 448 с.
5. Гриффите Л. Простой адаптивный алгоритм для обработки сигналов антенных решеток в реальном времени // ТИИЭР. - 1969 - Т. 57. - №10, с. 6-14.
6. Фрост III. Алгоритм линейно-ограниченной обработки сигналов в адаптивной решетке. - ТИИЭР, 1972, т. 60. №8, с. 5-14.
7. Compton R.T. Power optimization in adaptive arrays: a technique for interference protection // IEEE Trans. Antennas and Propag. - 1980. - Vol. 28. - №1. p. 70-83.

Claims (14)

  1. Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой, в котором участвуют радиопередатчик, передающий зондирующий сигнал, радиоприемник, содержащий адаптивную антенную решетку, состоящую из антенных элементов, диаграммообразующей схемы с весовыми коэффициентами, блока адаптивного управления диаграммой направленности и сумматора, осуществляющий
  2. - излучение радиопередатчиком зондирующего сигнала,
  3. - прием радиоприемником сигнала, отраженного от воздушной цели, а также прямого зондирующего сигнала от радиопередатчика и сигналов, отраженных от стационарных объектов, и выдачу сигнала на выходе сумматора в виде
  4. Figure 00000015
  5. с использованием рекурсивной оценки вектора весовых коэффициентов
  6. Figure 00000016
  7. и ограничений на норму вектора весовых коэффициентов
    Figure 00000017
    где
    Figure 00000018
    - оператор транспонирования и комплексного сопряжения, t - отсчеты времени,
  8. Figure 00000019
    - вектор весовых коэффициентов w1, w2, …, wN, k - скалярный коэффициент усиления,
  9. Figure 00000020
    - вектор комплексных сигналов xn(t), n=1, 2, …, N в каналах ААР, N - число антенных элементов,
    Figure 00000021
    - градиент среднего квадрата
    Figure 00000022
    выходного сигнала s(t), * - оператор комплексного сопряжения, если k<0, то адаптивная антенная решетка обеспечивает минимизацию мощности, при k>0 - максимизацию,
  10. отличающийся тем, что с целью обеспечения обнаружения слабого радиосигнала, отраженного от воздушной цели на фоне сильных мешающих сигналов вектор весовых коэффициентов оценивается в виде
  11. Figure 00000023
  12. с использованием ограничения на норму
  13. Figure 00000024
  14. где
    Figure 00000025
    Figure 00000026
    - норма градиента,
    Figure 00000027
    - норма вектора весовых коэффициентов;
    Figure 00000028
    - коэффициент усиления, 0<α<1 - константа, обеспечивающая скорость изменения коэффициента усиления k(t).
RU2020113799A 2020-04-03 2020-04-03 Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой RU2739938C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020113799A RU2739938C1 (ru) 2020-04-03 2020-04-03 Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020113799A RU2739938C1 (ru) 2020-04-03 2020-04-03 Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой

Publications (1)

Publication Number Publication Date
RU2739938C1 true RU2739938C1 (ru) 2020-12-30

Family

ID=74106383

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020113799A RU2739938C1 (ru) 2020-04-03 2020-04-03 Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой

Country Status (1)

Country Link
RU (1) RU2739938C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819001C1 (ru) * 2022-12-22 2024-05-08 Акционерное общество "Научно-исследовательский институт точных приборов" Способ оптимальной первичной пространственно-временной обработки принимаемого сигнала в радиолокационной станции, работающей при наличии множества мешающих сигналов переотражения, и устройство для его осуществления

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823174B1 (en) * 1999-10-11 2004-11-23 Ditrans Ip, Inc. Digital modular adaptive antenna and method
JP3727857B2 (ja) * 2001-03-05 2005-12-21 株式会社国際電気通信基礎技術研究所 アレーアンテナの制御装置及び制御方法
US7539273B2 (en) * 2002-08-29 2009-05-26 Bae Systems Information And Electronic Systems Integration Inc. Method for separating interfering signals and computing arrival angles
RU2444756C1 (ru) * 2010-07-29 2012-03-10 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и локализации воздушных объектов
RU2524401C1 (ru) * 2013-05-13 2014-07-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и пространственной локализации подвижных объектов
RU2677931C1 (ru) * 2018-02-26 2019-01-22 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство пространственной селекции сигналов с компенсацией преднамеренных помех
RU2683140C1 (ru) * 2018-05-31 2019-03-26 Артем Николаевич Новиков Адаптивная антенная решетка
RU2716154C1 (ru) * 2019-09-09 2020-03-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство компенсации прямого радиолокационного сигнала радиопередатчика в приемнике двухпозиционной радиолокационной системы
RU2717351C1 (ru) * 2019-07-03 2020-03-23 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ компенсации искажений амплитудно-фазового распределения поля в раскрыве адаптивной антенной решетки, обусловленных влиянием климатических факторов

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823174B1 (en) * 1999-10-11 2004-11-23 Ditrans Ip, Inc. Digital modular adaptive antenna and method
JP3727857B2 (ja) * 2001-03-05 2005-12-21 株式会社国際電気通信基礎技術研究所 アレーアンテナの制御装置及び制御方法
US7539273B2 (en) * 2002-08-29 2009-05-26 Bae Systems Information And Electronic Systems Integration Inc. Method for separating interfering signals and computing arrival angles
RU2444756C1 (ru) * 2010-07-29 2012-03-10 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и локализации воздушных объектов
RU2524401C1 (ru) * 2013-05-13 2014-07-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и пространственной локализации подвижных объектов
RU2677931C1 (ru) * 2018-02-26 2019-01-22 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство пространственной селекции сигналов с компенсацией преднамеренных помех
RU2683140C1 (ru) * 2018-05-31 2019-03-26 Артем Николаевич Новиков Адаптивная антенная решетка
RU2717351C1 (ru) * 2019-07-03 2020-03-23 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ компенсации искажений амплитудно-фазового распределения поля в раскрыве адаптивной антенной решетки, обусловленных влиянием климатических факторов
RU2716154C1 (ru) * 2019-09-09 2020-03-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Устройство компенсации прямого радиолокационного сигнала радиопередатчика в приемнике двухпозиционной радиолокационной системы

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COMPTON R. Power optimization in adaptive arrays: A technique for interference protection // IEEE Transactions on Antennas and Propagation. Vol. 28, N 1, 01.1980, pp. 79-85. *
S. A. Kurbatsky, A. V. Novikov, and D. A. Khomyakov Algorithm for calculating the vector of weight coefficients in an adaptive antenna array // Journal of Bulletin of the Tula State University. Technical science. 2012 no. 11. Part 1. Ss. 261-267. *
КУРБАТСКИЙ С.А., НОВИКОВ А.В., ХОМЯКОВ Д.А. Алгоритм вычисления вектора весовых коэффициентов в адаптивной антенной решетке // Журнал Известия Тульского государственного университета. Технические науки. 2012 г. Вып. 11. Ч.1. Сс. 261-267. COMPTON R. Power optimization in adaptive arrays: A technique for interference protection // IEEE Transactions on Antennas and Propagation. Vol. 28, N 1, 01.1980, сс.79-85. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819001C1 (ru) * 2022-12-22 2024-05-08 Акционерное общество "Научно-исследовательский институт точных приборов" Способ оптимальной первичной пространственно-временной обработки принимаемого сигнала в радиолокационной станции, работающей при наличии множества мешающих сигналов переотражения, и устройство для его осуществления

Similar Documents

Publication Publication Date Title
AU2008243179B2 (en) Surface wave radar
Fante et al. Wideband cancellation of interference in a GPS receive array
US8026839B2 (en) Selective-sampling receiver
US7295145B2 (en) Selective-sampling receiver
CN106772254A (zh) 改进的基于数字自适应干扰对消的收发隔离方法
WO2006078314A2 (en) Selective-sampling receiver
RU2739938C1 (ru) Способ пространственной компенсации прямого и отраженных сигналов при обнаружении отраженного сигнала от воздушной цели бистатической радиолокационной системой
US20140159955A1 (en) Adaptive sidelobe suppression of radar transmit antenna pattern
RU2731875C1 (ru) Адаптивная антенная решетка для бистатической радиолокационной системы
Chen et al. A strong interference suppressor for satellite signals in GNSS receivers
Sheikhi et al. Coherent detection for MIMO radars
Wan et al. A range-Doppler-angle estimation method for passive bistatic radar
Qin et al. Robust adaptive beamforming using multi-snapshot direct data domain approach
Zainuddin et al. Performance of MIMO FMCW radar in detecting small vessels
Raab Signal processing for through-the-earth electromagnetic systems
Gentile et al. A comprehensive evaluation of joint range and angle estimation in indoor ultrawideband location systems
Brookner Cognitive adaptive array processing (Caap)-Adaptivity made easy
Ozdemir et al. GPS jamming mitigation through Taguchi's optimization method
Du et al. A space-frequency anti-jamming algorithm based on sub-band energy detection
Yang et al. Analysis of the Effect Jammer Types on GNSS Receiver Measurements
Chan et al. Combined use of various passive radar techniques and angle of arrival using music for the detection of ground moving objects
Haimovich et al. Training and signal cancellation in adaptive radar
Berin et al. Signal cancellation effects in adaptive radar mountaintop data-set
Worms et al. Matched Correlation of linear and non-linear frequency-modulated waveforms for far-field TDOA-DoA in the context of MFRFS
Li et al. An ultra-wideband MIMO ground-penetrating imaging system