RU2738135C1 - Способ двухэнергетической рентгенографии (варианты) - Google Patents

Способ двухэнергетической рентгенографии (варианты) Download PDF

Info

Publication number
RU2738135C1
RU2738135C1 RU2020106388A RU2020106388A RU2738135C1 RU 2738135 C1 RU2738135 C1 RU 2738135C1 RU 2020106388 A RU2020106388 A RU 2020106388A RU 2020106388 A RU2020106388 A RU 2020106388A RU 2738135 C1 RU2738135 C1 RU 2738135C1
Authority
RU
Russia
Prior art keywords
images
initial
displacement
ray
exposure interval
Prior art date
Application number
RU2020106388A
Other languages
English (en)
Inventor
Заурбек Викторович Булатов
Анатолий Рудольфович Дабагов
Игорь Сергеевич Кобылкин
Александр Валерьевич Прохоров
Владимир Игоревич Спорыш
Юрий Евгеньевич Шунков
Дмитрий Викторович Поздняков
Дмитрий Михайлович Касюк
Original Assignee
Общество с ограниченной ответственностью "Научно-технический центр "МТ" (ООО "НТЦ-МТ")
Акционерное общество "МЕДИЦИНСКИЕ ТЕХНОЛОГИИ Лтд" (АО "МТЛ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-технический центр "МТ" (ООО "НТЦ-МТ"), Акционерное общество "МЕДИЦИНСКИЕ ТЕХНОЛОГИИ Лтд" (АО "МТЛ") filed Critical Общество с ограниченной ответственностью "Научно-технический центр "МТ" (ООО "НТЦ-МТ")
Priority to RU2020106388A priority Critical patent/RU2738135C1/ru
Application granted granted Critical
Publication of RU2738135C1 publication Critical patent/RU2738135C1/ru
Priority to PCT/RU2021/000021 priority patent/WO2021162581A1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Заявленная группа изобретений относится к области медицинской рентгеновской техники и может быть использована при обследовании пациентов с различными заболеваниями, включая онкологические заболевания. Способ двухэнергетической рентгенографии включает в себя облучение пациента рентгеновским излучением в результате подачи на источник рентгеновского излучения двух импульсов напряжения различной величины, получение двух соответствующих исходных рентгеновских изображений и построение на их основе раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления. Не ранее середины первого интервала экспозиции подают импульс высокого напряжения, а по существу одновременно с началом второго интервала экспозиции подают импульс низкого напряжения. Перед построением раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, производят совмещение двух исходных изображений путем коррекции одного из них, для чего осуществляют последовательность сжатий исходных рентгеновских изображений в kp раз, где kp - текущий коэффициент сжатия вдоль каждого направления, выбираемый из: k1≥k2≥…>≥kp-1≥kp≥kp+1…kP, нахождений векторов смещений Δrp(i,j) каждого пикселя с координатами i,j, где i=1…Np, j=1…Mp, a Np×Mp - размер каждого из сжатых изображений. Согласно первому варианту осуществляют последовательность формирований из совокупности упомянутых векторов смещений ΔrР(i,j) карты смещений Δr в масштабе исходных изображений и получений текущего скорректированного изображения путем сдвига предыдущего скорректированного изображения соответственно текущей карте смещений вплоть до получения окончательного скорректированного изображения. Согласно второму варианту осуществляют формирование из совокупности упомянутых векторов смещений Δrp(i,j) карты смещений Δr в масштабе исходных изображений с ее последовательным уточнением вплоть до получения окончательной карты смещений и получение скорректированного изображения путем сдвига исходного изображения соответственно окончательной карте смещений. Группа изобретений обеспечивает редуцирование артефактов движения на получаемых раздельных изображениях, как за счет уменьшения влияния вероятного движения пациента во время диагностического исследования, так и за счет компенсации влияния остаточного эффекта такого движения на информативность этих изображений. 2 н.п. ф-лы, 2 ил.

Description

Заявленная группа изобретений относится к области медицинской рентгеновской техники и может быть использована при обследовании пациентов с различными заболеваниями, включая онкологические заболевания.
Известен способ двухэнергетической рентгенографии, включающий в себя облучение пациента рентгеновским излучением в результате подачи на источник рентгеновского излучения двух импульсов напряжения различной величины, первый из которых (низкого напряжения) подают в соответствующем первом интервале экспозиции, а второй (высокого напряжения) подают, по существу, одновременно с началом соответствующего второго интервала экспозиции, получение двух соответствующих исходных рентгеновских изображений и построение на их основе раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления (см. статью Tong Xu et al. Dynamic dual-energy chest radiography: a potential tool for lung, tissue motion monitoring and kinetic study, Phys Med Biol, 2011, February 21, 56 (4), pp. 1191-1205).
Недостаток известного способа состоит в проявлении на получаемых раздельных изображениях артефактов, обусловленных как естественным ритмичным движением пациента во время диагностического исследования (в результате дыхания и сердцебиения), так и возможными случайными изменениями положения его тела, что снижает точность интерпретации изображений.
Известный способ принят в качестве ближайшего аналога заявленного способа по обоим вариантам.
Техническая проблема, решаемая заявленной группой изобретений, состоит в создании способа двухэнергетической рентгенографии, обеспечивающего возможность точной интерпретации рентгеновских изображений, что повышает диагностическую ценность исследования.
При этом достигается технический результат, заключающийся в редуцировании артефактов движения на получаемых раздельных изображениях, как за счет уменьшения влияния вероятного движения пациента во время диагностического исследования, так и за счет компенсации влияния остаточного эффекта такого движения на информативность этих изображений.
Техническая проблема решается, а указанный технический результат достигается реализацией способа двухэнергетической рентгенографии, включающего в себя облучение пациента рентгеновским излучением в результате подачи на источник рентгеновского излучения двух импульсов напряжения различной величины, получение двух соответствующих исходных рентгеновских изображений и построение на их основе раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления. В заявленном способе не ранее середины первого интервала экспозиции подают импульс высокого напряжения, а, по существу, одновременно с началом второго интервала экспозиции подают импульс низкого напряжения. Перед построением раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, производят совмещение двух исходных изображений путем коррекции одного из них, для чего осуществляют последовательность сжатий исходных рентгеновских изображений в kp раз,
где kp - текущий коэффициент сжатия, выбираемый из условия:
k1≥k2≥…≥kp-1≥kp≥kp+1…kP, нахождений векторов смещений Δrp(i,j) каждого пикселя с координатами i,j,
где i=1…Np, j=1…Мр, a Np×Mp - размер каждого из сжатых изображений.
Согласно первому варианту реализации изобретения, осуществляют последовательность формирований из совокупности упомянутых векторов смещений ΔrP(у) карты смещений Δr в масштабе исходных изображений и получений текущего скорректированного изображения путем сдвига предыдущего скорректированного изображения соответственно текущей карте смещений вплоть до получения окончательного скорректированного изображения.
Согласно второму варианту реализации изобретения, осуществляют формирование из совокупности упомянутых векторов смещений Δrp(i,j) карты смещений Δr в масштабе исходных изображений с ее последовательным уточнением вплоть до получения окончательной карты смещений и получение скорректированного изображения путем сдвига исходного изображения соответственно окончательной карте смещений.
На фиг. 1 показана временная развертка импульсов, в соответствии с ближайшим аналогом, причем U1<U2.
На фиг. 2 показана временная развертка импульсов, в соответствии с настоящим изобретением по обоим вариантам, причем U2<U1.
Заявленный способ двухэнергетической рентгенографии реализуют следующим образом.
Производят облучение пациента рентгеновским излучением, подавая на источник рентгеновского излучения два импульса, высокого и низкого напряжения, соответственно, U1 и U2. Подачу импульсов осуществляют с помощью генератора напряжения, входящего в состав рентгеновского питающего устройства. Испущенное источником излучение опционально дополнительно фильтруют, пропуская через слой селективно поглощающего материала.
Прошедшее сквозь пациента излучение регистрируют с помощью приемника рентгеновского излучения, опционально комплектуемого растром, отфильтровывающим рассеянное излучение.
Импульс высокого напряжения U1 подают не ранее середины первого интервала экспозиции (обозначенного на фиг. 1 и 2 как t1÷t2), т.е. не ранее момента времени, обозначенного на фиг. 2 как (t1÷t2)/2). Подача импульса высокого напряжения U1 ранее упомянутого момента времени необоснованно увеличивает общую продолжительность экспозиции, обозначенную на фиг. 2 как τ2, т.к., благодаря высокой проникающей способности высокоэнергетического излучения с большой долей вероятности, многократно подтвержденной экспериментально, продолжительность импульса высокого напряжения U1 оказывается короче половины интервала экспозиции.
Импульс низкого напряжения U2 подают, по существу, одновременно с началом второго интервала экспозиции (обозначенного на фиг. 1 и 2 как t3÷t4).
Под «высоким напряжением», предпочтительно, понимается напряжение в диапазоне 100-150 кВ, под «низким напряжением» - напряжение в диапазоне 50-100 кВ. В интервалы, обозначенные на фиг. 1 и 2, как t2÷t3 и t4÷t5, производится считывание сигналов, накопленных приемником рентгеновского излучения за интервалы экспозиции t1÷t2 и t3÷t4, соответственно.
Заявленная последовательность подачи импульсов существенно сокращает общую продолжительность экспозиции (с величины r1 на фиг. 1 до величины r2 на фиг. 2), что, в свою очередь, приводит к уменьшению влияния вероятного движения пациента во время диагностического исследования, выражающемуся, в конечном счете, в редуцировании артефактов движения на получаемых раздельных изображениях.
Далее, получив два исходных рентгеновских изображения g и f, производят их совмещение путем коррекции одного из них, например, f.
Для этого, согласно первому варианту реализации, осуществляют следующую последовательность операций:
1) производят сжатие изображений g и f в k1 раз, в результате чего получают изображения g1 и f1;
2) находят вектор смещения Δr(i,j) каждого пиксела g1 относительно f1 (данная операция может быть реализована любым подходящим алгоритмом, в частности, одним из алгоритмов т.н. «оптического потока», раскрытым, например, в Beauchemin S.S., Barron J.L. «The computation of optical flow», ACM Journals, ACM Computing Surveys, Vol. 27, №3, September 1995), при этом совокупность всех найденных векторов Δr1(i,j) образует карту смещений Δr1;
3) осуществляют формирование карты смещений Δr в масштабе исходных изображений в результате того, что интерполяцией осуществляют изменение масштаба карты смещений от Δr1 к Δr;
4) получают последующее скорректированное изображение f, осуществляя сдвиг изображения f, согласно Δr;
5) операции 1-4 повторяют при последующих выбранных значениях kp (из последовательности k1, k2,…kP, подчиняющейся условию kp≥kp+1) выбор которых осуществляют предварительно (на этапе отладки заявленного алгоритма совмещения), исходя из требований к качеству раздельных изображений (более подробно с вопросом определения качества рентгеновского изображения можно ознакомиться, например, в Martin C.J. et al. «Measurement of image quality in diagnostic radiology», Appl Radiat Isot, 1999 Jan, 50 (1), pp. 21-38), получая окончательное скорректированное изображение f.
Согласно второму варианту реализации, осуществляют следующую последовательность операций.
1) производят сжатие изображений g и f в k1 раз, в результате чего получают изображения g1 и f1;
2) находят вектор смещения Δr1(i,j) каждого пиксела g1 относительно f1 (данная операция может быть реализована любым подходящим алгоритмом, в частности, одним из алгоритмов т.н. «оптического потока», раскрытым, например, в упомянутой выше статье Beauchemin S.S. et al.; при этом совокупность всех найденных векторов Δr1(i,j) образует карту смещений Δr1 и Δr;
3) осуществляют формирование карты смещений Δr в масштабе исходных изображений в результате того, что интерполяцией осуществляют изменение масштаба карты смещений от Δr1 к Δr;
4) сдвигают изображение f, согласно Δr, в результате чего получают промежуточное изображение f;
5) производят сжатие изображений g и f' в k2 раз (k2<k1), в результате чего получают изображения g2 и f2;
6) находят вектор смещения Δr2(i,j) каждого пиксела g2 относительно f2 (данная операция может быть реализована любым подходящим алгоритмом, в частности, одним из алгоритмов т.н. «оптического потока», раскрытым, например, в упомянутой выше статье Beauchemin S.S. et al.; при этом совокупность всех найденных векторов Δr2(i,j) образует карту смещений Δr2;
7) осуществляют формирование карты смещений Δ(Δr) в масштабе исходных изображений в результате того, что интерполяцией осуществляют изменение масштаба карты смещений от Δr2 к Δ(Δr);
8) уточняют карту смещений Δr путем уточнения каждого из векторов смещений Δri,j=Δri,j+Δ(Δri,j);
9) сдвигают изображение f, согласно Δr, в результате чего получают скорректированное изображение f;
10) повторяют операции 5-9 при последующих выбранных значениях к (из последовательности k1, k2, … kP, подчиняющейся условию kp≥kp+1) выбор которых осуществляют предварительно (на этапе отладки описанного алгоритма совмещения), исходя из требований к качеству раздельных изображений (раскрытым, например, в упомянутой выше статье Martin C.J. et al.), получая окончательную карту смещений Δr и соответствующее изображение f, которое принимают за окончательное скорректированное изображение.
На основе полученной пары изображений, состоящей из окончательного скорректированного изображения и исходного изображения, (f и g, соответственно - согласно первому варианту реализации, f и g, соответственно - согласно второму варианту реализации), осуществляют построение раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, путем применения любого подходящего алгоритма, например, раскрытого в упомянутой выше статье Tong Xu et al.
Описанная последовательность операций позволяет компенсировать влияние остаточного эффекта вероятного движения пациента во время диагностического исследования на информативность рентгеновских изображений, что также, в конечном счете, приводит к редуцированию артефактов движения на получаемых раздельных изображениях и, как следствие, повышению информативности рентгеновских изображений.

Claims (8)

1. Способ двухэнергетической рентгенографии, включающий в себя облучение пациента рентгеновским излучением в результате подачи на источник рентгеновского излучения двух импульсов напряжения различной величины, первый из которых подают в соответствующем первом интервале экспозиции, а второй подают по существу одновременно с началом соответствующего второго интервала экспозиции, получение двух соответствующих исходных рентгеновских изображений и построение на их основе раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, отличающийся тем, что не ранее середины первого интервала экспозиции подают импульс высокого напряжения, а по существу одновременно с началом второго интервала экспозиции подают импульс низкого напряжения, при этом перед построением раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, производят совмещение двух исходных изображений путем коррекции одного из них, для чего осуществляют последовательность сжатий исходных рентгеновских изображений в kp раз,
где kp - текущий коэффициент сжатия, выбираемый из:
k1≥k2≥…≥kp-1≥kp≥kp+1…kp, нахождений векторов смещений Δrp(i,j) каждого пикселя с координатами i,j,
где i=1…Np, j=1…Мр, a Np×Mp - размер каждого из сжатых изображений, формирований из них карты смещений в масштабе исходных изображений и получений текущего скорректированного изображения путем сдвига предыдущего скорректированного изображения соответственно текущей карте смещений вплоть до получения окончательного скорректированного изображения.
2. Способ двухэнергетической рентгенографии, включающий в себя облучение пациента рентгеновским излучением в результате подачи на источник рентгеновского излучения двух импульсов напряжения различной величины, первый из которых подают в соответствующем первом интервале экспозиции, а второй подают по существу одновременно с началом соответствующего второго интервала экспозиции, получение двух соответствующих исходных рентгеновских изображений и построение на их основе раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, отличающийся тем, что не ранее середины первого интервала экспозиции подают импульс высокого напряжения, а по существу одновременно с началом второго интервала экспозиции подают импульс низкого напряжения, при этом перед построением раздельных изображений тканей, имеющих разные коэффициенты линейного ослабления, производят совмещение двух исходных изображений путем коррекции одного из них, для чего осуществляют последовательность сжатий исходных рентгеновских изображений в kр раз,
где kp - текущий коэффициент сжатия, выбираемый из условия
k1≥k2≥...≥kp-1≥kp≥kp+1...kP, нахождений векторов смещений Δrp(i,j) каждого пикселя с координатами i, j,
где i=1...Np, j=1...Мр, a Np×Mp - размер каждого из сжатых изображений, формирование из них карты смещений в масштабе исходных изображений Δr с ее последовательным уточнением вплоть до получения окончательной карты смещений и получение окончательного скорректированного изображения путем сдвига исходного изображения соответственно окончательной карте смещений.
RU2020106388A 2020-02-11 2020-02-11 Способ двухэнергетической рентгенографии (варианты) RU2738135C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020106388A RU2738135C1 (ru) 2020-02-11 2020-02-11 Способ двухэнергетической рентгенографии (варианты)
PCT/RU2021/000021 WO2021162581A1 (ru) 2020-02-11 2021-01-20 Способ двухэнергетической рентгенографии (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020106388A RU2738135C1 (ru) 2020-02-11 2020-02-11 Способ двухэнергетической рентгенографии (варианты)

Publications (1)

Publication Number Publication Date
RU2738135C1 true RU2738135C1 (ru) 2020-12-08

Family

ID=73792431

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020106388A RU2738135C1 (ru) 2020-02-11 2020-02-11 Способ двухэнергетической рентгенографии (варианты)

Country Status (2)

Country Link
RU (1) RU2738135C1 (ru)
WO (1) WO2021162581A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816246C1 (ru) * 2023-09-17 2024-03-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ получения рентгеновских изображений высокой четкости на импульсном источнике

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2589383C2 (ru) * 2010-08-25 2016-07-10 Конинклейке Филипс Электроникс Н.В. Двухрежимное формирование изображения, включающее в себя метрики качества
US20180068464A1 (en) * 2015-03-18 2018-03-08 Prismatic Sensors Ab Image reconstruction based on energy-resolved image data from a photon-counting multi-bin detector
RU2694331C1 (ru) * 2018-10-26 2019-07-11 Акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (АО "НИИТФА") Способ двухэнергетической томографии в коническом пучке и схема устройства двухэнергетического детектора
US20190287276A1 (en) * 2016-10-31 2019-09-19 Oxford University Innovation Limited Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685536B (zh) * 2012-10-05 2018-11-06 皇家飞利浦有限公司 用于优化子图像视图的实时图像处理
KR20150099375A (ko) * 2014-02-21 2015-08-31 삼성전자주식회사 컴퓨터 단층 촬영 장치 및 그에 따른 ct 영상 복원 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2589383C2 (ru) * 2010-08-25 2016-07-10 Конинклейке Филипс Электроникс Н.В. Двухрежимное формирование изображения, включающее в себя метрики качества
US20180068464A1 (en) * 2015-03-18 2018-03-08 Prismatic Sensors Ab Image reconstruction based on energy-resolved image data from a photon-counting multi-bin detector
US20190287276A1 (en) * 2016-10-31 2019-09-19 Oxford University Innovation Limited Method
RU2694331C1 (ru) * 2018-10-26 2019-07-11 Акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (АО "НИИТФА") Способ двухэнергетической томографии в коническом пучке и схема устройства двухэнергетического детектора

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tong Xu et al. Dynamic dual-energy chest radiography: a potential tool for lung, tissue motion monitoring and kinetic study, Phys Med Biol, 2011, February 21, 56 (4), pp. 1191-1205. *
Мазуров А.И. Последние достижения в цифровой рентгенотехнике. ж.Медицинская техника, 2010, N5, с.10-13. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816246C1 (ru) * 2023-09-17 2024-03-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ получения рентгеновских изображений высокой четкости на импульсном источнике

Also Published As

Publication number Publication date
WO2021162581A1 (ru) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5604103B2 (ja) X線生成システムの電源
JP6230807B2 (ja) 放射線治療システム
JP2022169790A (ja) 医用データ処理装置、超音波診断装置及び学習済みモデル生成方法
DE102016207437B4 (de) Spektralunabhängige Ermittlung von Kalkablagerungen in Blutgefäßen
JP6667462B2 (ja) エネルギーサブトラクション処理装置、方法およびプログラム
CN110811660B (zh) 一种校正ct射线束硬化伪影的方法
CN101641589A (zh) 用于产生断层合成三维x射线图像的方法和装置
KR20060135560A (ko) X선 ct 장치
JP5031095B2 (ja) 放射線断層撮影方法および放射線治療装置制御装置
DE112016002991T5 (de) Elektrischer-strom-erzeugungsvorrichtung,steuerungsverfahren für elektrischer-strom-erzeugungsvorrichtung,echtzeit-verfolgungs- und bestrahlungssystem,röntgenstrahlbestrahlungsvorrichtung, und steuerungsverfahren für röntgenstrahlbestrahlungsvorrichtung
US10561390B2 (en) Dose-reduced CT scan using dynamic collimation
DE102012214472B4 (de) Verfahren zur Ermittlung von Dualenergie-Bilddatensätzen und eine Röntgeneinrichtung dazu
RU2738135C1 (ru) Способ двухэнергетической рентгенографии (варианты)
Baily et al. Electrofluoroplanigraphy
US20070053605A1 (en) Method for generation of 3-D x-ray image data of a subject
RU2740870C1 (ru) Способ мультиэнергетического рентгенологического исследования
DE102004006548B4 (de) Verfahren zur Planung der Strahlentherapie eines Patienten und CT-System hierzu und zur Erstellung von CT-Aufnahmen
DE102011076882B4 (de) Verfahren zur Steuerung eines medizinischen Gerätes, Einrichtung mit einem medizinischen Gerät und Datenträger
Meema et al. Correlations between peripheral and central skeletal mineral content in chronic renal failure patients and in osteoporotics
JP2008154669A (ja) X線ct装置
JP7431602B2 (ja) 画像処理装置及び画像処理方法
JP7425619B2 (ja) 画像処理装置及び画像処理方法
JP7373323B2 (ja) 画像処理装置、放射線撮像システム、画像処理方法及びプログラム
CN215994012U (zh) 三维dr成像系统和装置
WO2022181022A1 (ja) 画像処理装置及び方法、放射線撮像システム、プログラム