RU2732853C1 - Авиационный турбовинтовой двигатель, оснащенный электрической машиной - Google Patents
Авиационный турбовинтовой двигатель, оснащенный электрической машиной Download PDFInfo
- Publication number
- RU2732853C1 RU2732853C1 RU2019112750A RU2019112750A RU2732853C1 RU 2732853 C1 RU2732853 C1 RU 2732853C1 RU 2019112750 A RU2019112750 A RU 2019112750A RU 2019112750 A RU2019112750 A RU 2019112750A RU 2732853 C1 RU2732853 C1 RU 2732853C1
- Authority
- RU
- Russia
- Prior art keywords
- rotor
- machine
- stator
- winding
- turboprop engine
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 51
- 230000002441 reversible effect Effects 0.000 claims abstract description 6
- 230000009347 mechanical transmission Effects 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000006698 induction Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D15/00—De-icing or preventing icing on exterior surfaces of aircraft
- B64D15/12—De-icing or preventing icing on exterior surfaces of aircraft by electric heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/026—Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/20—Adaptations of gas-turbine plants for driving vehicles
- F02C6/206—Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/02—Machines with one stator and two or more rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/48—Generators with two or more outputs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/20—Structural association with auxiliary dynamo-electric machines, e.g. with electric starter motors or exciters
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/10—Aircraft characterised by the type or position of power plants of gas-turbine type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Synchronous Machinery (AREA)
Abstract
Изобретение относится к области электротехники. Технический результат – повышение эффективности и технологичности конструкции. Турбовинтовой двигатель содержит воздушный винт (2), вал (3) воздушного винта и электрическую машину (9, 29) вокруг вала воздушного винта. Электрическая машина включает в себя первую машину, выполненную на статоре (11, 31) и первом роторе (10, 32), и вторую машину, выполненную на статоре и втором роторе (3), который соответствует валу воздушного винта. При этом статор, первый ротор и второй ротор являются концентричными, а первой машиной и второй машиной управляют разные электрические цепи (23, 24, 37, 39). Первая машина является реверсивной. Вторая электрическая машина содержит обмотку (15, 30) индуктивности, установленную на втором роторе (3), работает за счет индукции между двумя обмотками и принадлежит к системе борьбы с обледенением воздушного винта. 2 н. и 7 з.п. ф-лы, 3 ил.
Description
Изобретение относится к авиационному турбовинтовому двигателю, оснащенному электрической машиной.
Турбовинтовой двигатель содержит воздушный винт, вал воздушного винта и газовую турбину, которая обычно соединена с валом воздушного винта для приведения его во вращение. В ходе стандартного полета летательный аппарат совершает пять режимов: движение на земле или «руление», взлет, полет, приземление, затем опять «руление». Во время полета летательный аппарат перемещается под действием воздушного винта, который приводится во вращение газовой турбиной. Однако существуют и другие способы приведения во вращение воздушного винта, один из которых осуществляют, когда газовая турбина не работает и, в частности, во время «руления». Этот способ перемещения с выключенной турбиной считается предпочтительным, так как способствует значительной экономии топлива. При этом для движения летательного аппарата используют электрический двигатель. Летательный аппарат требует также постоянного вырабатывания электричества для обеспечения различных функций, среди которых следует упомянуть борьбу с обледенением воздушного винта, которую можно осуществлять независимо от работы электрического двигателя. Известное решение (GB 584 563 A) относится к турбовинтовым двигателям, оснащенным электрическими машинами, расположенными вокруг вала воздушного винта либо для борьбы с обледенением, либо чтобы изменять угол установки лопастей воздушного винта, работая в качестве реверсивных генераторов электричества, которые в случае необходимости могут приводить во вращение воздушный винт. Распространенная конструкция (US 2 488 392 А) включает в себя две электрические машины, расположенные друг за другом вдоль вала воздушного винта, которые могут, таким образом, обеспечивать независимо эти две функции, но при этом отмечается, что конструкция является очень сложной и влечет за собой значительное увеличение массы и габаритного размера. Известные устройства борьбы с обледенением, основанные на применении щёточно-коллекторных узлов для передачи, как правило, постоянного тока на устройство, которое вращается, поскольку встроено в воздушный винт или в вал воздушного винта, сами по себе являются сложными и подвержены износу.
Основной задачей изобретения является создание электрической машины, которую можно легко интегрировать в конструкцию турбовинтового двигателя и которая может выполнять несколько функций производства энергии, среди которых можно указать борьбу с обледенением, имея при этом небольшие массу и габариты.
Изобретение относится к турбовинтовому двигателю, оснащенному электрической машиной, которая отвечает этим требованиям, и, в частности, объектом изобретения является турбовинтовой двигатель, содержащий воздушный винт, вал воздушного винта и электрическую машину вокруг вала воздушного винта, согласно изобретению, электрическая машина включает в себя первую машину, выполненную на статоре и первом роторе, и вторую машину, выполненную на статоре и втором роторе, который соответствует валу воздушного винта, при этом статор, первый ротор и второй ротор являются концентричными, при этом первой машиной и второй машиной управляют разные электрические цепи, причем первая машина является реверсивной, а вторая электрическая машина принадлежит к системе борьбы с обледенением воздушного винта, при этом на втором роторе установлена обмотка индуктивности, и первый ротор соединен со вторым ротором через механическую трансмиссию.
Таким образом, получают две электрические машины, работающие независимо друг от друга, но которые встроены одна в другую в виде простой и компактной конструкции, которая может занимать меньший объем и иметь меньшую массу в турбовинтовом двигателе и летательном аппарате: в частности, они имеют незначительный осевой габарит и содержат очень мало средств механического соединения между элементами машины и другими частями турбовинтового двигателя. Электрические соединения тоже могут быть несложными.
Таким образом, машина в соответствии с изобретением хорошо интегрирована в пространство турбовинтового двигателя. Обе машины работают независимо и при любом состоянии, вращения или покоя, вала воздушного винта.
Другим объектом изобретения является летательный аппарат, оснащенный таким турбовинтовым двигателем.
Другие аспекты, отличительные признаки и преимущества изобретения будут описаны ниже со ссылками на прилагаемые чертежи.
На фиг. 1 схематично показан турбовинтовой двигатель, снабженный заявленным изобретением;
на фиг. 2 показан вариант выполнения электрической машины;
на фиг. 3 показан другой вариант выполнения электрической машины.
На фиг. 1 показан заявленный турбовинтовой двигатель, содержащий газовую турбину 1, воздушный винт 2, вал 3 воздушного винта, который проходит к газовой турбине 1 и может быть соединен с валом 4 турбины, который расположен параллельно и на небольшом расстоянии от него, при помощи не показанной на фигуре известной трансмиссии. Вал 3 воздушного винта окружен защитным картером 5. Он поддерживается в картере 5 при помощи подшипников 6 и 7. Один из подшипников 6 расположен ближе к воздушному винту 2, а другой из подшипников 7 расположен смежно с зубчатым колесом 8 привода вала 3 воздушного винта, которое зацепляется с вышеупомянутой трансмиссией. Электрическая машина 9 в соответствии с изобретением расположена вокруг вала 3 воздушного винта между первым подшипником 6 и зубчатым колесом 8, будучи, в свою очередь, окружена картером 5. В рамках изобретения летательный аппарат остается без изменений и поэтому на фигурах не показан.
На фиг. 2 представлена электрическая машина 9.
В этом варианте осуществления вал 3 воздушного винта окружен концентричным ротором 10, который, в свою очередь, окружен венцом 11 статора, принадлежащим к картеру 5. Венец 11 статора оснащен главной обмоткой 13, которая может быть трехфазной, но обычно является многофазной. Ротор 10 оснащен венцом 14 магнитных полюсов. Наконец, вал 3 воздушного винта оснащен приемной обмоткой 15, слегка смещенной в осевом направлении от ротора 10 и венца 11 статора. Другими устройствами, показанными на фиг.2, являются зубчатый венец 12, который расположен на конце ротора 10 внутри и который соединяют с механической трансмиссией для передачи механической энергии на ротор 10 или, наоборот, для отбора этой энергии в зависимости от режима работы машины; магнитный мост 16, содержащий часть 17, соединенную со статором 11 и имеющую осевое цилиндрическое удлинение, и часть 18 с радиальным удлинением, проходящим от предыдущей части до ближнего конца вала 3 воздушного винта либо перед приемной обмоткой 15, либо сбоку таким образом, чтобы приемная обмотка 15 располагалась между этой частью 18 и ротором 10; и электрическое устройство 19, соединяющее главную обмотку 13 с шиной 20 постоянного тока и содержащее, в частности, начиная от этой шины, фильтры 21, главный преобразователь 22, главную цепь 23, состоящую из трех проводов, ведущих к фазам главной обмотки 13, и вспомогательную цепь 24, включающую в себя вспомогательный преобразователь 25 и проходящую к нейтрали главной обмотки 13.
Устройство работает следующим образом. Главная обмотка 13 и ротор 10, оснащенный венцом 14 магнитных полюсов, образуют первую электрическую машину, которая в зависимости от требования момента может обеспечивать летательный аппарат электрической энергией или, наоборот, выдавать механическую энергию для его движения, когда газовая турбина 1 выключена. Трансмиссия, через которую можно использовать механическую энергию ротора 10, может представлять собой планетарную зубчатую передачу 40, соединяющую зубчатый венец 12 с зубчатым венцом 41 вала 3 воздушного винта для его приведения во вращение через сателлиты 42, ось которых неподвижно соединена со статором (соединенным с картером 5). Трансмиссии этого типа обеспечивают реверсивную передачу мощности между ротором 10 и валом 3 воздушного винта.
Приемная обмотка 15 является обмоткой индуктивности, которая вместе с главной обмоткой 13 образует вторую электрическую машину, работающую только как генератор и предназначенную для использования в рамках борьбы с обледенением лопастей воздушного винта 2: для этого электрическая цепь 26, неподвижно соединенная с валом 3 воздушного винта, соединяет приемную обмотку 15 с термоэлектрическим нагревательным устройством 27, содержащемся в воздушном винте 2; оно может быть очень простым и состоять, в частности, из проводников. В целом, изобретение позволяет не прибегать к вращающимся с трением электрическим соединителям, поскольку связанные со статором обмотки зависят от устройств управления, неподвижно соединенных со статором, а обмотка, связанная с валом воздушного винта, обслуживает устройство, расположенное на этом валу или на соединенном с ним воздушном винте.
Можно отметить, что комбинированную электрическую машину можно легко интегрировать в турбовинтовой двигатель, и на практике она занимает полость картера 5, которая до этого была пустой, при этом ее выполнение требует небольшого количества деталей и незначительных изменений в существующей конструкции, поэтому ее масса и габариты являются небольшими. В частности, она позволяет избежать необходимости передачи электричества от неподвижного генератора на вал 2 воздушного винта через щёточно-коллекторный узел; размещение участка каждой машины на статоре 11 (и в данном случае в одной и той же главной обмотке 13) является очень экономичным; использование реверсивной машины предпочтительно позволяет комбинировать борьбу с обледенением и «руление» при помощи второй электрической машины.
Независимую работу двух электрических машин получают следующим образом. Первая электрическая машина работает классически, и ее работа основана на электромагнитном взаимодействии между главной обмоткой 13 и концентричными с ней магнитными полюсами 14. Электрическая энергия проходит через главную цепь 23. Вторая электрическая машина работает за счет индукции приемной обмотки 15 при помощи однополярного магнитного потока, производимого главной обмоткой 13. Однополярный поток имеет форму петли, проходящей через магнитный мост 16, вал 3 воздушного винта, внутренний ротор 10 и статор 11 и, следовательно, через приемную обмотку 15. Таким образом, приемная обмотка 15, которая находится на расстоянии от главного потока, возбуждается только в том случае, когда на главную обмотку 13 поступает эта однополярная составляющая, независимо от работы первой электрической машины в режиме двигателя или генератора. Ток, подаваемый на нагревательное устройство 27, может быть переменным или может быть постоянным после прохождения через выпрямитель. Наконец, скорость вращения (или состояние покоя) вала 3 воздушного винта не имеет никакого значения.
Однополярную составляющую потока может создавать независимый генератор переменного тока, подключенный между отрицательным полюсом первичного источника питания главного преобразователя 22 и нейтральной точкой главной обмотки 13, чтобы наложить на главные токи высокочастотную однополярную составляющую, создавая сдвиг фаз возбуждающей главной обмотки 13 путем изменения напряжения нейтрали через цепь 24 при монтаже фаз главной обмотки 13 звездочкой. Для получения этого дополнительного тока можно использовать вспомогательный преобразователь 25 или сам главный преобразователь 22, используя частоту срыва колебаний на его высокой частоте таким образом, чтобы намеренно разбалансировать моментальные токи обмотки 13, и их не равная нулю сумма образует таким образом однополярный ток; в этом случае можно отказаться от вспомогательного преобразователя 25.
Управление двумя электрическими машинами при помощи двух разных электрических цепей 23 и 24 обеспечивает независимость их работы. Для удобства говорят, что цепь «управляет» электрической машиной, даже если она работает в режиме двигателя.
Далее со ссылками на фиг. 3 следует описание другого варианта осуществления изобретения. Электрическая машина обозначена позицией 29. Вал 3 воздушного винта тоже содержит приемную обмотку 30 и окружен венцом статора 31 и ротором 32. Ротор 32 оснащен венцом 33 магнитных полюсов, как и в предыдущем варианте; однако в данном случае он окружает венец статора 31, который расположен, таким образом, между ним и валом 3 воздушного винта. На венце статора 31 находятся главная обмотка 34 и концентричная вспомогательная обмотка 35, при этом главная обмотка 34 расположена снаружи. Кроме того, приемная обмотка 30 расположена концентрично с вспомогательной обмоткой 35.
Трехфазной вспомогательной обмоткой 35 управляет вспомогательный преобразователь 36, с которым соединена трехпроводная электрическая цепь 37. Кроме того, вспомогательный преобразователь 36 соединен с шиной 20 постоянного тока через фильтры 21 аналогично главному преобразователю 22 в предыдущем варианте осуществления. Главной обмоткой 34 управляют аналогичные и независимые преобразователь 38 и электрическая цепь 39.
Первая электрическая машина этого устройства образована магнитными полюсами 33 ротора 32 и главной обмоткой 34; речь идет о реверсивной машине, которая работает так же, как и в предыдущем варианте.
Вторая электрическая машина образована вспомогательной обмоткой 35, которая является индуктором, и приемной обмоткой 30, в которой ток наводится предыдущей обмоткой. Индукция в данном случае не обязательно происходит при помощи однополярной составляющей, обеспечивающей магнитный поток специальной формы, и, как в предыдущем варианте, приемная обмотка 30 предназначена для борьбы с обледенением воздушного винта 2 при помощи нагревательного устройства.
Механическая трансмиссия 43, общее описание которой идентично вышеупомянутой механической трансмиссии 40, в данном случае тоже соединяет ротор 32 с картером 5 и позволяет им обмениваться механической мощностью в одном или другом направлении, используя, таким образом, реверсивность первой электрической машины.
Преимущества этого варианта осуществления идентичны преимуществам предыдущего варианта в плане интеграции комбинированной электрической машины в картер 5, ее компактности и ее простоты.
Согласно некоторым отличительным признакам:
- на статоре установлена по меньшей мере одна обмотка 13, 34, 35 машины;
- обмотка 13 на статоре соединена с каждой из электрических цепей;
- вторая машина расположена на втором роторе (вал 3 воздушного винта) либо напротив конца магнитного моста, смежного со вторым ротором, либо между указанным концом и участком второго ротора, окружающим статор;
- вторая электрическая машина соединена с термоэлектрическим нагревательным устройством.
Claims (9)
1. Турбовинтовой двигатель, содержащий воздушный винт (2), вал (3) воздушного винта и электрическую машину (9, 29) вокруг вала воздушного винта, отличающийся тем, что электрическая машина включает в себя первую машину, выполненную на статоре (11, 31) и первом роторе (10, 32), и вторую машину, выполненную на статоре и втором роторе (3), который соответствует валу воздушного винта, при этом статор, первый ротор и второй ротор являются концентричными, при этом первой машиной и второй машиной управляют разные электрические цепи (23, 24, 37, 39), при этом первая машина является реверсивной, а вторая электрическая машина принадлежит к системе борьбы с обледенением воздушного винта, при этом на втором роторе (3) установлена обмотка (15, 30) индуктивности и первый ротор соединен со вторым ротором через механическую трансмиссию.
2. Турбовинтовой двигатель по п. 1, отличающийся тем, что на статоре установлена по меньшей мере одна обмотка (13, 34, 35), при этом первый ротор содержит магнитные полюсы (14, 33).
3. Турбовинтовой двигатель по п. 2, отличающийся тем, что обмотка (13) на статоре является единственной и общей для первой и второй машин и соединена с каждой из электрических цепей.
4. Турбовинтовой двигатель по п. 3, отличающийся тем, что обмотка является многофазной, электрическая цепь (23) первой машины соединена с фазами обмотки (13) на статоре и электрическая цепь (24) второй машины соединена с нейтралью указанной обмотки (13).
5. Турбовинтовой двигатель по любому из пп. 1-4, отличающийся тем, что содержит магнитный мост (16) между статором (11) и вторым ротором (3), при этом вторая машина расположена на втором роторе, либо напротив конца магнитного моста, смежного со вторым ротором, либо между указанным концом и окружающим статор участком второго ротора.
6. Турбовинтовой двигатель по любому из пп. 1 или 2, отличающийся тем, что первый ротор (32) окружает статор (31) и первая машина и вторая машина содержат расположенные на статоре концентричные обмотки (34, 35).
7. Турбовинтовой двигатель по п. 6, отличающийся тем, что расположенная на статоре обмотка (35) второй машины является концентричной с расположенной на втором роторе обмоткой (30) индуктивности второй машины.
8. Турбовинтовой двигатель по любому из пп. 1-7, отличающийся тем, что вторая электрическая машина соединена с термоэлектрическим нагревательным устройством (27).
9. Летательный аппарат, отличающийся тем, что содержит турбовинтовой двигатель по любому из пп. 1-8.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1659513A FR3057120B1 (fr) | 2016-10-03 | 2016-10-03 | Machine electrique pour turbopropulseur d'aeronef |
FR1659513 | 2016-10-03 | ||
PCT/FR2017/052692 WO2018065709A1 (fr) | 2016-10-03 | 2017-10-02 | Turbopropulseur d'aeronef muni d'une machine electrique |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2732853C1 true RU2732853C1 (ru) | 2020-09-23 |
Family
ID=58009904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019112750A RU2732853C1 (ru) | 2016-10-03 | 2017-10-02 | Авиационный турбовинтовой двигатель, оснащенный электрической машиной |
Country Status (9)
Country | Link |
---|---|
US (1) | US10807724B2 (ru) |
EP (1) | EP3520209B1 (ru) |
JP (1) | JP2019531967A (ru) |
KR (1) | KR20190057140A (ru) |
CN (1) | CN109792199B (ru) |
CA (1) | CA3038303C (ru) |
FR (1) | FR3057120B1 (ru) |
RU (1) | RU2732853C1 (ru) |
WO (1) | WO2018065709A1 (ru) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3056555B1 (fr) * | 2016-09-29 | 2018-12-07 | Safran Helicopter Engines | Systeme propulsif hybride pour aeronef a voilure tournante multirotor comprenant des moyens ameliores de conversion dc/ac |
US10794216B2 (en) * | 2018-06-19 | 2020-10-06 | Raytheon Technologies Corporation | Fan drive gear system DC motor and generator |
US10815885B2 (en) * | 2018-07-26 | 2020-10-27 | Raytheon Technologies Corporation | Anti-ice systems for engine airfoils |
GB201814869D0 (en) | 2018-09-03 | 2018-10-31 | Rolls Royce Plc | Aircraft Propulsion System |
GB201814255D0 (en) | 2018-09-03 | 2018-10-17 | Rolls Royce Plc | Aircraft propulsion system |
US11624319B2 (en) * | 2020-05-15 | 2023-04-11 | Pratt & Whitney Canada Corp. | Reverse-flow gas turbine engine with electric motor |
US20220003128A1 (en) * | 2020-07-06 | 2022-01-06 | General Electric Company | Dual rotor electric machine |
FR3116303B1 (fr) | 2020-11-16 | 2022-10-14 | Safran Helicopter Engines | Turbomachine à propulsion hybride et aéronef comportant une telle turbomachine |
US11738875B2 (en) * | 2020-12-11 | 2023-08-29 | Launch Point Electric Propulsion Solutions, Inc. | Lightweight, high-efficiency, energy-dense, hybrid power system for reliable electric flight |
CN112977848B (zh) * | 2021-03-30 | 2021-10-12 | 上海尚实能源科技有限公司 | 一种混合动力型涡桨发动机的动力系统 |
FR3126016A1 (fr) | 2021-08-04 | 2023-02-10 | Safran Helicopter Engines | Turbopropulseur apte à fournir une fonction d’éolienne de secours et aéronef comportant un tel turbopropulseur |
CN114291270A (zh) * | 2021-12-10 | 2022-04-08 | 武汉航空仪表有限责任公司 | 一种用于桨叶防除冰的输电结构 |
FR3131276B1 (fr) * | 2021-12-23 | 2023-12-15 | Safran Aircraft Engines | Système de calage et dégivrage de pales d’une helice d’un aeronef |
FR3131271A1 (fr) * | 2021-12-23 | 2023-06-30 | Safran Aircraft Engines | Actionneur d’une piece montee mobile sur un support rotatif entraine par une turbomachine d’un aeronef |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2264812A (en) * | 1992-03-04 | 1993-09-08 | Dowty Defence & Air Syst | Electric power generators |
FR2708804A1 (fr) * | 1993-08-04 | 1995-02-10 | Labinal | Dispositif de démarrage de turbine, notamment de turbine à gaz. |
EP1096648A2 (en) * | 1999-10-27 | 2001-05-02 | Nissan Motor Co., Ltd. | Motor/generator having two rotors |
EP2688184A1 (fr) * | 2012-07-19 | 2014-01-22 | Eurocopter | Machine électrique réversible pour aéronef |
EP3007336A1 (en) * | 2014-10-07 | 2016-04-13 | C.R.F. Società Consortile per Azioni | Synchronous electric machine with two rotors |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB584563A (en) | 1945-01-01 | 1947-01-17 | British Thomson Houston Co Ltd | Improvements relating to the prevention of ice formation on the rotating parts of aircraft |
US2488392A (en) | 1945-08-21 | 1949-11-15 | Fairey Aviat Co Ltd | Electrical equipment on aircraft |
US3657514A (en) * | 1970-06-03 | 1972-04-18 | Goodrich Co B F | Electrical deicer for aircraft propeller |
GB2184609A (en) * | 1985-12-20 | 1987-06-24 | Rolls Royce | Power supply for gas turbine engine electronic control system |
JP3861610B2 (ja) * | 2001-02-28 | 2006-12-20 | 株式会社日立製作所 | 工作機械 |
JP3879412B2 (ja) * | 2001-02-28 | 2007-02-14 | 株式会社日立製作所 | 発電システム |
US7802757B2 (en) * | 2005-11-09 | 2010-09-28 | Pratt & Whitney Canada Corp. | Method and system for taxiing an aircraft |
JP2007267554A (ja) * | 2006-03-29 | 2007-10-11 | Shinko Electric Co Ltd | 磁石式ブラシレス発電機及び磁石式ブラシレススタータ |
DE102007055336A1 (de) * | 2007-01-15 | 2008-08-21 | GIF Gesellschaft für Industrieforschung mbH | Flugzeugpropellerantrieb, Verfahren zum Antreiben eines Flugzeugpropellers und Verwendung eines Lagers eines Flugzeugpropellerantriebs sowie Verwendung einer Elektromaschine |
US8232700B2 (en) * | 2008-12-19 | 2012-07-31 | Pratt & Whitney Canada Corp. | Multi-rotor electric machine |
US8375695B2 (en) * | 2009-06-30 | 2013-02-19 | General Electric Company | Aircraft gas turbine engine counter-rotatable generator |
FR2961176B1 (fr) * | 2010-06-15 | 2012-08-03 | Hispano Suiza Sa | Alimentation electrique des equipements portes par le rotor d'un moteur d'aeronef |
FR2962271B1 (fr) * | 2010-07-02 | 2012-08-17 | Hispano Suiza Sa | Alimentation electrique des equipements portes par un support rotatif |
FR2962404B1 (fr) * | 2010-07-08 | 2012-07-20 | Eurocopter France | Architecture electrique pour aeronef a voilure tournante a motorisation hybride |
US8742641B2 (en) * | 2010-11-23 | 2014-06-03 | Remy Technologies, L.L.C. | Concentric motor power generation and drive system |
JP2013055809A (ja) * | 2011-09-05 | 2013-03-21 | Denso Corp | 回転電機 |
FR2980770B1 (fr) * | 2011-10-03 | 2014-06-27 | Snecma | Turbomachine a helice(s) pour aeronef avec systeme pour changer le pas de l'helice. |
FR2993243B1 (fr) * | 2012-07-12 | 2014-07-11 | Eurocopter France | Architecture d'alimentation hybride en puissance mecanique d'un rotor, geree a partir du reseau de bord d'un giravion |
FR2997382B1 (fr) * | 2012-10-29 | 2014-11-21 | Eurocopter France | Procede de gestion d'une panne moteur sur un aeronef multimoteur muni d'une installation motrice hybride |
US10094293B2 (en) * | 2014-08-22 | 2018-10-09 | Pratt & Whitney Canada Corp. | In flight restart system and method for free turbine engine |
FR3029172B1 (fr) | 2014-11-27 | 2018-05-25 | Safran Helicopter Engines | Groupe propulseur a moyens d'accouplement selectif |
US10717539B2 (en) * | 2016-05-05 | 2020-07-21 | Pratt & Whitney Canada Corp. | Hybrid gas-electric turbine engine |
FR3056555B1 (fr) * | 2016-09-29 | 2018-12-07 | Safran Helicopter Engines | Systeme propulsif hybride pour aeronef a voilure tournante multirotor comprenant des moyens ameliores de conversion dc/ac |
US10378452B1 (en) * | 2018-02-26 | 2019-08-13 | The Boeing Company | Hybrid turbine jet engines and methods of operating the same |
US10968825B2 (en) * | 2018-04-19 | 2021-04-06 | The Boeing Company | Flow multiplier systems for aircraft |
US11053019B2 (en) * | 2018-04-19 | 2021-07-06 | The Boeing Company | Hybrid propulsion engines for aircraft |
US20190323426A1 (en) * | 2018-04-19 | 2019-10-24 | The Boeing Company | Supercharging systems for aircraft engines |
US11124304B2 (en) * | 2018-05-31 | 2021-09-21 | Beta Air, Llc | Selectively deployable heated propulsor system |
US11509201B2 (en) * | 2018-06-26 | 2022-11-22 | Pratt & Whitney Canada Corp. | Electric fan |
FR3084318B1 (fr) * | 2018-07-25 | 2020-06-26 | Airbus Helicopters | Procede et dispositif de gestion de l'energie d'une installation motrice hybride d'un aeronef multirotor |
US11338926B2 (en) * | 2018-08-10 | 2022-05-24 | Rolls-Royce North American Technologies Inc. | Aircraft with electric propulsor |
US11578667B2 (en) * | 2018-08-30 | 2023-02-14 | Rolls-Royce Corporation | Efficiency-based machine control |
US10826415B2 (en) * | 2018-09-06 | 2020-11-03 | Pratt & Whitney Canada Corp. | Operation of a hybrid electric aircraft propulsion system |
US11159024B2 (en) * | 2018-11-08 | 2021-10-26 | Rolls-Royce North American Technologies, Inc. | Electrical architecture for hybrid propulsion |
US10759540B2 (en) * | 2018-11-08 | 2020-09-01 | Rolls-Royce North American Technologies, Inc. | Hybrid propulsion systems |
-
2016
- 2016-10-03 FR FR1659513A patent/FR3057120B1/fr not_active Expired - Fee Related
-
2017
- 2017-10-02 WO PCT/FR2017/052692 patent/WO2018065709A1/fr active Application Filing
- 2017-10-02 CN CN201780061433.XA patent/CN109792199B/zh active Active
- 2017-10-02 JP JP2019517969A patent/JP2019531967A/ja active Pending
- 2017-10-02 EP EP17792110.3A patent/EP3520209B1/fr active Active
- 2017-10-02 CA CA3038303A patent/CA3038303C/en active Active
- 2017-10-02 US US16/337,998 patent/US10807724B2/en active Active
- 2017-10-02 KR KR1020197012985A patent/KR20190057140A/ko not_active Application Discontinuation
- 2017-10-02 RU RU2019112750A patent/RU2732853C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2264812A (en) * | 1992-03-04 | 1993-09-08 | Dowty Defence & Air Syst | Electric power generators |
FR2708804A1 (fr) * | 1993-08-04 | 1995-02-10 | Labinal | Dispositif de démarrage de turbine, notamment de turbine à gaz. |
EP1096648A2 (en) * | 1999-10-27 | 2001-05-02 | Nissan Motor Co., Ltd. | Motor/generator having two rotors |
EP2688184A1 (fr) * | 2012-07-19 | 2014-01-22 | Eurocopter | Machine électrique réversible pour aéronef |
EP3007336A1 (en) * | 2014-10-07 | 2016-04-13 | C.R.F. Società Consortile per Azioni | Synchronous electric machine with two rotors |
Also Published As
Publication number | Publication date |
---|---|
EP3520209B1 (fr) | 2020-11-25 |
US20190233128A1 (en) | 2019-08-01 |
FR3057120A1 (fr) | 2018-04-06 |
US10807724B2 (en) | 2020-10-20 |
CA3038303A1 (en) | 2018-04-12 |
EP3520209A1 (fr) | 2019-08-07 |
JP2019531967A (ja) | 2019-11-07 |
WO2018065709A1 (fr) | 2018-04-12 |
CN109792199A (zh) | 2019-05-21 |
CA3038303C (en) | 2023-12-19 |
CN109792199B (zh) | 2021-01-29 |
FR3057120B1 (fr) | 2023-03-17 |
KR20190057140A (ko) | 2019-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2732853C1 (ru) | Авиационный турбовинтовой двигатель, оснащенный электрической машиной | |
US7880355B2 (en) | Electromagnetic variable transmission | |
EP2654185B1 (en) | Multi-rotor generator | |
RU2566590C2 (ru) | Электроснабжение для устройств, поддерживаемых ротором авиационного двигателя | |
CA2913526C (en) | Jet engine assembly and method for generating electricity | |
JP2016532044A (ja) | 発電機を伴うターボファンエンジン | |
CN101205835A (zh) | 用于涡扇和涡轴发动机的集成增压腔环式发电机 | |
EP1802865A1 (en) | Dual-rotor, single input/output starter-generator | |
US4447737A (en) | Variable frequency induction generator | |
US8823334B2 (en) | Method for starting an electric motor | |
RU2650490C2 (ru) | Система электропитания, содержащая асинхронную машину, и двигатель, оснащенный такой системой электропитания | |
JP2021061734A (ja) | タービンエンジンからの発電 | |
EP3032716B1 (en) | Dual-output generators | |
RU2645866C2 (ru) | Электромеханическая система приведения в действие и/или генерирования, содержащая электрическую изоляцию между источником электрического напряжения и нагрузкой |