RU2726938C1 - Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов - Google Patents

Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов Download PDF

Info

Publication number
RU2726938C1
RU2726938C1 RU2019128462A RU2019128462A RU2726938C1 RU 2726938 C1 RU2726938 C1 RU 2726938C1 RU 2019128462 A RU2019128462 A RU 2019128462A RU 2019128462 A RU2019128462 A RU 2019128462A RU 2726938 C1 RU2726938 C1 RU 2726938C1
Authority
RU
Russia
Prior art keywords
layer
electrode
protective
lithium
group
Prior art date
Application number
RU2019128462A
Other languages
English (en)
Inventor
Олег Владиславович Левин
Евгений Всеволодович Белецкий
Даниил Александрович Лукьянов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)"
Priority to RU2019128462A priority Critical patent/RU2726938C1/ru
Priority to EA201900585A priority patent/EA201900585A1/ru
Application granted granted Critical
Publication of RU2726938C1 publication Critical patent/RU2726938C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Изобретение может быть использовано для изготовления как защитных подслоев и электродов, так и самих аккумуляторов. В конструкции электрода используется защитный подслой, который имеет толщину от 100 нм до 10 мкм и выполнен из полимера вида:включающего в себя основную цепь и боковые заместители, где R - заместитель из группы (-Н, -(СН)CH, -O(СН)CH, где n находится в диапазоне от 0 до 12), R, R, Rи R- заместители из группы (-Н, -СН, -(СН)-), а М - переходный металл из группы (Ni, Со, Cu, Pd), а электроактивный слой состоит из композитного материала, включающего от 40 до 95% активного катодного материала, от 1 до 30% проводящей добавки и от 1 до 30% связующего. Изобретение позволяет повысить безопасность аккумулятора. 1 з.п. ф-лы, 5 ил.

Description

Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов относится к изделиям электротехнической промышленности и может быть использован для изготовления как защитных подслоев и электродов, так и самих аккумуляторов, для повышения безопасности в процессе их эксплуатации.
Известен аккумулятор, в котором для электрода в качестве защищающего от перезаряда подслоя используется композиционный материал, состоящий из полиэтилена, поливинилидендифторида и сажи и обладающий положительным температурным коэффициентом [1]. Однако, данное техническое решение не позволяет защитить аккумулятор на ранних стадиях перезаряда и избежать его повреждения.
Известен электрод, защищающий от перезаряда и обладающий положительным температурным коэффициентом, за счет использования в качестве подслоя поли(3-бутилтиофена) [2]. Однако, данное техническое решение не позволяет защитить аккумулятор на ранних стадиях перезаряда и избежать его повреждения.
Наиболее близким к заявленному изобретению является электрод с положительным температурным коэффициентом (ПТК) [3], изготовленный в виде композита полимерного материала с различными неорганическими наполнителями. В качестве полимерной матрицы использовались полиэтилен, полипропилен, полиамиды, полиметилметакрилат, поливинилидендифторид и другие полимеры. В качестве наполнителей использовались допированные оксиды переходных металлов, допированный титанат бария. Сущность работы такого электрода состоит в обратимом резком повышении удельного электрического сопротивления защитного подслоя, находящегося между алюминиевым токоподводом и электроактивным слоем, при повышении температуры, вызываемой перезарядом аккумулятора.
Недостатком известного изобретения является недостаточная защищенность за счет того, что защитный подслой, используемый в известном устройстве, реагирует лишь при существенном изменении температуры аккумулятора, что приводит к сравнительно позднему срабатыванию защиты, к недостаточной безопасности аккумуляторов и в целом не защищает от их необратимого повреждения при перегреве.
Технической задачей данного изобретения является повышение безопасности аккумуляторов при перезаряде, которое выражается в отсутствии возгорания, вздутия и взрыва.
Техническим результатом изобретения является повышение безопасности и защита от необратимых повреждений при перезаряде заявляемого нового устройства, что обеспечивается за счет того, что при превышении допустимых значений напряжения происходит резкое увеличение сопротивления в цепи и обеспечивает защиту от перезаряда для аккумуляторов, работающих в диапазоне напряжений от 2,0 до 4,2 В, при превышении заданного диапазона, и уменьшающий ток разложения электролита в 2 раза.
Указанный технический результат достигается заявляемым устройством в виде нового электрода, в котором защитный слой имеет толщину от 25 нм до 10 мкм и выполнен из полимера вида:
Figure 00000001
включающего в себя основную цепь и боковые заместители, где R - заместитель из группы (-Н, -(СН2)nCH3, -O(СН2)nCH3 где n находится в диапазоне от 0 до 12), R1, R2, R3 и R4 - заместители из группы (-Н, -СН3, -(СН2)4-), а М - переходный металл из группы (Ni, Со, Cu, Pd), а электроактивный слой состоит из композитного материала, включающего от 40 до 95% активного катодного материала, от 1 до 30% проводящей добавки и от 1 до 30% связующего.
При этом, в качестве активного катодного материала используются смешанные оксиды состава LiaM1 xO2 (0<а<3, 1<х<3) и LiaM1 xM2 yO2 (0<х<2, 0<у<2, 0<а<3), фосфаты состава - LiaM1 x (PO4)у (0<а<3, 1<х<3, 1<у<3) и LiaM1 xM2 yPO4 (0<a<3, 0<x<1, 0<y<2), где M1 и M2 - металл как переменной, так и непременной валентности.
Сущность заявляемого изобретения иллюстрируются Фиг. 1-5, на которых представлены результаты проведенных исследований, подтверждающих достижение им указанного выше технического результата.
На Фиг. 1 представлена схема заявленного устройства, включающего защитный подслой.
Слой 1: активная масса катода толщины от 15 до 500 мкм
Слой 2: защитный подслой толщины от 25 нм до 10 мкм
Слой 3: токоподвод толщины от 5 до 50 мкм
На Фиг. 2 представлены фотографии алюминиевых токоподводов с нанесенным на них защитным подслоем.
На Фиг. 3 представлены зарядо-разрядные кривые электрода с активной массой состава 80% LiMn0.5Fe0,5PO4, 10% PVDF и 10% SuperP, нанесенной на чистый алюминиевый токовывод и алюминиевый токовывод с защитным подслоем. Заряд-разрядные кривые были записаны в диапазоне напряжений 2,8-4,5 В при постоянном токе I=140 мА/г, рассчитанном на массу активного вещества.
На Фиг. 4 представлены перезарядные кривые электрода с активной массой состава 80% LiFePO4, 10% PVDF и 10% SuperP, нанесенной на чистый алюминиевый токовывод и алюминиевый токовывод с защитным подслоем. Зарядные кривые были записаны в диапазоне напряжений 2,8-5,0 В при постоянном токе I=140 мА/г, рассчитанном на массу активного вещества с последующей выдержкой при 5,0 В в течение 1 часа.
На Фиг. 5 представлены зависимости силы тока от времени, выраженной на массу активного вещества, поученные при выдержке в течение 1 часа при 5,0 В.
Заявленное изобретение было многократно апробировано в лабораторных условиях химического факультета Санкт-Петербургского государственного университета. Результаты проведенных исследований, подтверждающих достижение указанного технического результата, поясняются конкретными примерами реализации способа. В нижеприведенных примерах апробирование заявляемого защитного подслоя было проведено с использованием доступных реактивов следующих производителей: C-LiFePO4 (Phostech Co., Канада), углеродная сажа SuperP (Timcal Ltd., Канада), поливинилиденфторид PVDF (MTI Co., Китай), LiMn0.5Fe0,5PO4 (MTI Co., Китай).
Пример 1. Для подтверждения достижения технического результата были собраны образцы, в которых в качестве активного катодного материала выступали LiMn0.5Fe0,5PO4 и LiFePO4.
Подготовка токоподвода. Алюминиевую пластину с размерами 17*20*0,02 мм натирали графитовым стержнем так, чтобы вся его поверхность была покрыта графитом.
Нанесение ПЭК-слоя из раствора мономера [NiCH3Salen]. В качестве растворителя использовался состав: диметилкарбонат/этиленкарбонат/диэтилкарбонат с объемным соотношением компонентов 1:1:1 с добавкой 2% винилкарбоната. Соль - 1 М LiPF6. Концентрация мономера - 0,005 М. В качестве противоэлектрода и электрода сравнения выступала литиевая фольга.
Подготовленный электрод погрузили в ячейку с раствором мономера [NiCH3Salen]
Figure 00000002
и осадили на нем слой полимера. Ячейка представляла собой цилиндрическую емкость диаметром 2,5 см и емкость, 50 мл. Осаждение проводили потенциодинамической полимеризацией со скоростью развертки 5 мВ/с в диапазоне потенциалов 2,8-4,2 В отн. лития, пока окислительная емкость не достигала 2 Кл, что соответствует 1 мкм толщины подслоя. Образцы промывали ацетонитрилом и высушивали.
Фотографии алюминиевых токоподводов с защитным подслоем, полученных таким способом, представлены на Фиг. 1.
Нанесение электроактивного слоя на основе LiMn0.5Fe0,5PO4 на подготовленный токоподвод. На подготовленный по процедуре, описанной в примере 1 токоподвод наносили электродную массу, состоящую из 80% LiMn0.5Fe0,5PO4, 10% PVDF и 10% SuperP по массе. Для этого суспензию 250 мг LiMn0.5Fe0,5PO4, 31,3 мг PVDF и 31,3 мг SuperP в 1 мл N-метилпирролидона измельчали в гомогенизаторе в течение 5 минут при скорости 8000 оборотов в минуту. Полученную пасту наносили слоем толщиной 400 мкм на алюминиевый токоподвод и сушили в вакууме (10-20 Па) при 40-50°С в течение суток.
Нанесение электроактивного слоя на основе LiMn0.5Fe0,5PO4 на токоподвод с ПЭК-слоем. На подготовленный по процедуре, описанной в примере 2 токоподвод с ПЭК-слоем наносили электродную массу, состоящую из 80% LiMn0.5Fe0,5PO4, 10% PVDF и 10% SuperP по массе. Для этого суспензию 250 мг LiMn0.5Fe0,5PO4, 31,3 мг PVDF и 31,3 мг SuperP в 1 мл N-метилпирролидона измельчали в гомогенизаторе в течение 5 минут при скорости 8000 оборотов в минуту. Полученную пасту наносили слоем толщиной 400 мкм на алюминиевый токоподвод с ПЭК-слоем и сушили в вакууме (10-20 Па) при 40-50°С в течение суток.
Нанесение электроактивного слоя на основе LiFePO4 на подготовленный токоподвод. На подготовленный по процедуре, описанной в примере 1 токоподвод наносили электродную массу, состоящую из 80% LiFePO4, 10% PVDF и 10% SuperP по массе. Для этого суспензию 250 мг LiFePO4, 31,3 мг PVDF и 31,3 мг SuperP в 1 мл N-метилпирролидона измельчали в гомогенизаторе в течение 5 минут при скорости 8000 оборотов в минуту. Полученную пасту наносили слоем толщиной 400 мкм на алюминиевый токоподвод с ПЭК-слоем и сушили в вакууме (10-20 Па) при 40-50°С в течение суток.
Нанесение электроактивного слоя на основе LiFePO4 на токоподвод с ПЭК-слоем. На подготовленный по процедуре, описанной в примере 2 токоподвод с ПЭК-слоем наносили электродную массу, состоящую из 80% LiFePO4, 10% PVDF и 10% SuperP по массе. Для этого суспензию 250 мг LiFePO4, 31,3 мг PVDF и 31,3 мг SuperP в 1 мл N-метилпирролидона измельчали в гомогенизаторе в течение 5 минут при скорости 8000 оборотов в минуту. Полученную пасту наносили слоем толщиной 400 мкм на алюминиевый токоподвод с ПЭК-слоем и сушили в вакууме (10-20 Па) при 40-50°С в течение суток.
Изготовление макетов литий-ионных аккумуляторов на основе изготовленных электродов. Макеты литий-ионных аккумуляторов форм-фактора CR2032 собирали с использованием полученных по примерам 3-6 электродов в качестве катода, противоэлектрода из литиевой фольги в качестве анода, сепаратора из мембраны Celgard® и электролита, представляющего собой 1 М раствор LiPF6 в смеси диметилкарбоната/этиленкарбоната/диэтилкарбоната с объемным соотношением компонентов 1:1:1 с добавкой 2% винилкарбоната.
Тестирование макетов литий-ионных аккумуляторов. Материал LiMn0.5Fe0,5PO4 был выбран потому, что его зарядо-разрядная характеристика имеет два плато, и одного зарядное плато располагается при напряжении 4,15 В, что и имитирует нежелательный процесс перезаряда (разложения электролита). Как видно на представленных кривых, в случае использования в составе аккумулятора электрода с ПЭК-слоем отсутствует второе зарядное плато при 4,15 В, что говорит об эффективной защите аккумулятора от перезаряда при данных условиях работы (Фиг. 2). Заряд-разрядные кривые были записаны в диапазоне напряжений 2,8-4,5 В - для образцов с LiMn0.5Fe0,5PO4 при постоянном токе I=140 мА/г, рассчитанном на массу активного вещества.
Измерение зависимости силы тока от времени, выраженной на массу активного вещества, проводили в течение 1 часа при напряжении 5,0 В на образцах с LiFePO4 после заряда до напряжения 5,0 В постоянным током 140 мА/г, рассчитанным на массу активного вещества. На Фиг. 3 представлены перезарядные кривые для образцов, в которых в качестве активного вещества выступал LiFePO4, без ПЭК-слоя и с ним. Как видно, на образце без ПЭК-слоя начинается процесс разложения электролита, о чем свидетельствует начинающийся загиб кривой при 4,8 В. В образце с ПЭК-слоем такого не происходит, что говорит о возрастании сопротивления и смещения процесса разложения электролита к более высоким значениям напряжения. На второй стадии перезаряда - выдержке в течение 1 часа при напряжении 5,0 В (Фиг. 4), было измерено изменение тока, протекающего через образец, от времени выдержки. Видно, что в образце с ПЭК-слоем ток падает более резко и в целом имеет значение, в 2 раза меньшее, чем в случае без ПЭК-слоя. Это говорит о том, что перезаряд происходит менее интенсивно в образце с ПЭК-слоем.
Кроме указанных примеров, электроактивный слой может быть выполнен из катодной массы для литий-ионных аккумуляторов любого известного состава.
Список использованной литературы
[1] Патент Китая № CN 108390113 А, дата приоритета 10.08.2018, МПК Н01М 10/0525, Н01М 10/4235, Н01М 4/62, Н01М 4/66, «High-safety lithium-ion power battery».
[2] Haiyan Zhang, Jing Pang, Xinping Ai, Yuliang Cao, Hanxi Yang, Shigang Lu. Poly(3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries // Electrochimica Acta. - 2016. Vol. 187. P. 173-178.
[3] Патент США №9627722 B1, дата приоритета 18.04.2017, МПК Н01М 10/4235, Н01М 10/5026, C09D 109/06, C09D 123/12, C09D 127/16, C09D 179/08, C09K 21/00, C09K 21/02, C09K 21/12, Н01М 10/0525, Н01М 10/613, Н01М 4/525, C08K 2003/2206, C08K 2003/2237, C08K 2201/001, C08K 3/04, C08K 3/22, C08K 5/42, Н01М 2200/106 «Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same» (прототип).

Claims (4)

1. Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов, состоящий из электропроводящего токоподвода, защитного слоя толщиной в диапазоне 100 нм до 10 мкм, нанесенного на токоподвод, и электроактивного слоя, нанесенного на защитный слой, отличающийся тем, что защитный слой выполнен из полимера вида:
Figure 00000003
включающего в себя основную цепь и боковые заместители, где R - заместитель из группы (-Н, -(CH2)nCH3, -O(СН2)nCH3, где n находится в диапазоне от 0 до 12), R1, R2, R3 и R4 - заместители из группы (-Н, -СН3, -(СН2)4-), а М - переходный металл из группы (Ni, Со, Cu, Pd), а электроактивный слой состоит из композитного материала, включающего от 40 до 95% активного катодного материала, от 1 до 30% проводящей добавки и от 1 до 30% связующего.
2. Электрод по п. 1, отличающийся тем, что в качестве активного катодного материала используются смешанные оксиды состава LiaM1 xO2 (0<а<3, 1<х<3) и LiaM1 xM2 yO2 (0<х<2, 0<у<2, 0<а<3), фосфаты состава - LiaM1 x(PO4)y (0<а<3, 1<х<3, 1<у<3) и LiaM1 xM2 yPO4 (0<a<3, 0<х<1, 0<y<2), где M1 и M2 - металл как переменной, так и непременной валентности.
RU2019128462A 2019-09-10 2019-09-10 Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов RU2726938C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019128462A RU2726938C1 (ru) 2019-09-10 2019-09-10 Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов
EA201900585A EA201900585A1 (ru) 2019-09-10 2019-12-27 Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019128462A RU2726938C1 (ru) 2019-09-10 2019-09-10 Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов

Publications (1)

Publication Number Publication Date
RU2726938C1 true RU2726938C1 (ru) 2020-07-17

Family

ID=71616492

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019128462A RU2726938C1 (ru) 2019-09-10 2019-09-10 Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов

Country Status (2)

Country Link
EA (1) EA201900585A1 (ru)
RU (1) RU2726938C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773501C1 (ru) * 2021-09-14 2022-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Электрод для защиты от повреждений аккумулятора при коротком замыкании

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038293A1 (en) * 2004-09-30 2006-04-13 Nippon Chemi-Con Corporation Method for producing electrode material
JP2008091134A (ja) * 2006-09-29 2008-04-17 Nippon Chemicon Corp 電気化学素子用電極及びその製造方法、並びに電気化学素子
RU2575194C1 (ru) * 2014-09-15 2016-02-20 Пауэрмерс Инк. Катод для металловоздушных источников тока и металловоздушный источник тока, включающий этот катод
US9627722B1 (en) * 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038293A1 (en) * 2004-09-30 2006-04-13 Nippon Chemi-Con Corporation Method for producing electrode material
JP2008091134A (ja) * 2006-09-29 2008-04-17 Nippon Chemicon Corp 電気化学素子用電極及びその製造方法、並びに電気化学素子
US9627722B1 (en) * 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
RU2575194C1 (ru) * 2014-09-15 2016-02-20 Пауэрмерс Инк. Катод для металловоздушных источников тока и металловоздушный источник тока, включающий этот катод

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.FONSECA ET AL "STRUCTURAL AND ELECTROCHEMICAL CHARACTERISATION OF [Pd(SALEN)]-TYPE CONDUCTING POLYMER FILMS", ELECTROCHIMICA ACTA, pp.7726-7736,2010. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773501C1 (ru) * 2021-09-14 2022-06-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Электрод для защиты от повреждений аккумулятора при коротком замыкании
RU2810612C1 (ru) * 2022-01-04 2023-12-28 Пролоджиум Текнолоджи Ко., Лтд. Литиевые аккумуляторы
RU2810614C1 (ru) * 2022-01-04 2023-12-28 Пролоджиум Текнолоджи Ко., Лтд. Литиевые аккумуляторы

Also Published As

Publication number Publication date
EA201900585A1 (ru) 2021-03-31

Similar Documents

Publication Publication Date Title
US10763509B2 (en) Positive electrode for lithium ion secondary battery, electrode for lithium ion secondary battery, electrode active material layer including polyolefin particles, and lithium ion secondary battery
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
US9391344B2 (en) Polymer electrolyte and lithium secondary battery including the same
JP5070753B2 (ja) 電池
EP2923400B1 (en) Reduction of gassing in lithium titanate cells
JP4847296B2 (ja) 陰極活物質及びこれを採用したリチウム電池
CN114024034B (zh) 一种电池
US10529978B2 (en) Nonaqueous electrolyte secondary battery
CA2553667A1 (en) Electrode for lithium secondary battery
CN113410510A (zh) 一种锂离子电池
US20210167393A1 (en) Lithium ion secondary battery
JP3965567B2 (ja) 電池
JP3791797B2 (ja) 電池
JP2005005117A (ja) 電池
JP2005071678A (ja) 電池
JP2009200043A (ja) 電池
CN112563563A (zh) 复合固态电解质、固态电池及其制备方法
JP4416232B2 (ja) 非水系リチウム二次電池用負極材並びにこれを用いた非水系リチウム二次電池
CN114024035B (zh) 一种电池
JP2018116831A (ja) 電池の製造方法
JP5382414B2 (ja) リチウムイオン二次電池
RU2726938C1 (ru) Электрод с защитным подслоем для предотвращения разрушения при возгорании литий-ионных аккумуляторов
KR20120093769A (ko) 일체형 전극조립체 및 이를 이용한 이차전지
JP2005005118A (ja) 電池
JP5890715B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池