RU2725205C1 - Способ разработки неоднородного по проницаемости нефтяного пласта - Google Patents
Способ разработки неоднородного по проницаемости нефтяного пласта Download PDFInfo
- Publication number
- RU2725205C1 RU2725205C1 RU2019141792A RU2019141792A RU2725205C1 RU 2725205 C1 RU2725205 C1 RU 2725205C1 RU 2019141792 A RU2019141792 A RU 2019141792A RU 2019141792 A RU2019141792 A RU 2019141792A RU 2725205 C1 RU2725205 C1 RU 2725205C1
- Authority
- RU
- Russia
- Prior art keywords
- water
- rim
- oil
- well
- solution
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000035699 permeability Effects 0.000 title claims abstract description 22
- 230000015572 biosynthetic process Effects 0.000 title abstract description 21
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000007924 injection Substances 0.000 claims abstract description 37
- 238000002347 injection Methods 0.000 claims abstract description 37
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000000243 solution Substances 0.000 claims abstract description 29
- 239000002280 amphoteric surfactant Substances 0.000 claims abstract description 28
- 239000007864 aqueous solution Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 25
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011787 zinc oxide Substances 0.000 claims abstract description 15
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 claims abstract description 12
- 229960003237 betaine Drugs 0.000 claims abstract description 10
- ZKWJQNCOTNUNMF-QXMHVHEDSA-N 2-[dimethyl-[3-[[(z)-octadec-9-enoyl]amino]propyl]azaniumyl]acetate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O ZKWJQNCOTNUNMF-QXMHVHEDSA-N 0.000 claims abstract description 5
- 239000003599 detergent Substances 0.000 claims abstract description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims abstract 4
- 239000004094 surface-active agent Substances 0.000 claims description 20
- 239000004971 Cross linker Substances 0.000 claims description 17
- 238000005406 washing Methods 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 abstract description 13
- 238000001914 filtration Methods 0.000 abstract description 10
- 229920006395 saturated elastomer Polymers 0.000 abstract description 6
- 230000000903 blocking effect Effects 0.000 abstract description 5
- 238000005086 pumping Methods 0.000 abstract description 5
- 239000003431 cross linking reagent Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000005755 formation reaction Methods 0.000 description 18
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 239000002736 nonionic surfactant Substances 0.000 description 5
- 244000309464 bull Species 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000033558 biomineral tissue development Effects 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009416 shuttering Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
- C09K8/88—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
- C09K8/88—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
- C09K8/882—Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
- C09K8/88—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
- C09K8/887—Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Cosmetics (AREA)
Abstract
Изобретение относится к разработке нефтяного месторождения и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости пластами для регулирования профиля приемистости нагнетательной скважины. Изобретение содержит способ разработки неоднородного по проницаемости нефтяного пласта. Способ включает последовательную закачку в нагнетательную скважину двух оторочек водного раствора и остановку скважины на технологическую выдержку. Водный раствор первой оторочки содержит полиакриламид – 0,51-0,8 мас.%, сшиватель (ацетат хрома – 0,04-0,06 мас.%, оксид цинка – 0,04-0,06 мас.%), воду – остальное. После закачки первой оторочки останавливают скважину на технологическую выдержку от двух до трех суток. Затем закачивают вторую оторочку водного раствора. Водный раствор второй оторочки содержит полиакриламид – 0,3 мас.%, амфотерное поверхностно-активное вещество (ПАВ) – 0,3-5,0 мас.%, воду – остальное. Соотношение первой и второй оторочек – 1: (1÷5). В качестве амфотерного ПАВ используют амфотерные ПАВ на основе бетаина БЕТАПАВ АП 18.30 – водно-спиртовый раствор олеиламидопропилбетаина, или БЕТАНОР™ Алкиламидопропилбетаин марки A, Б, или моющую композицию марки Неоминол А, Б, или моющую композицию марки Биксол А, Б. Путем увеличения фильтрационного сопротивления за счет создания блокирующего экрана закачкой гелеобразующего раствора полимера и более широкого вовлечения в разработку низкопроницаемых нефтенасыщенных зон пласта закачкой раствора полимера и амфотерного ПАВ повышается эффективность способа. 1 з.п. ф-лы, 1 табл.
Description
Изобретение относится к разработке нефтяного месторождения и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости пластами для регулирования профиля приемистости нагнетательной скважины.
Известен способ выравнивания профиля приемистости скважин (патент RU № 2592916, МПК Е21В 43/12, С09К 8/508, опубл. 27.07.2016 г., бюл. № 21), включающий последовательную закачку оторочки СПС - сшитого полимерного состава на основе сополимеров акриламида и акриловой кислоты со сшивателем - солью трехвалентного хрома с добавлением КПАВ – катионоактивного поверхностно-активного вещества, при этом дополнительно закачивают оторочку раствора КПАВ после оторочки СПС, в который добавлен КПАВ.
Недостатком способа является то, что за счет гидрофобизации и высокопроницаемых и низкопроницаемых интервалов при воздействии КПАВ происходит увеличение проницаемости по воде как высоко-, так и низкопроницаемых интервалов.
Известен способ выравнивания профиля приемистости нагнетательной и ограничения водопритока в добывающей скважинах (патент RU № 2382185, МПК Е 21 В 43/22, С09К 8/90, опубл. 20.02.2010 в бюл. № 5), включающий закачку в пласт гелеобразующего состава - дисперсии в воде полиакриламида, ацетата хрома и оксида цинка.
Недостатком способа является низкая эффективность способа разработки неоднородного по проницаемости нефтяного пласта из-за того, что после блокировки высокопроницаемых промытых каналов вытесняющая нефть вода, вследствие большой разницы вязкости нефти в нефтенасыщенных, неохваченных ранее каналах и воды, быстро прорывается к добывающей скважине и уменьшается охват пласта воздействием и снижается объем добытой нефти.
Известен способ регулирования профиля приемистости нагнетательной скважины (варианты) (патент RU № 2398958, МПК Е21В 43/22, опубл. 10.09.2010 г., бюл. № 25), включающий приготовление и последовательную закачку через нагнетательную скважину в неоднородный нефтяной пласт первой оторочки водного раствора водорастворимого полимера со сшивателем и второй оторочки – раствора неонола АФ9-12 в минерализованной воде, продавку их в пласт и остановку скважины на технологическую выдержку. Предварительно определяют текущую приемистость нагнетательной скважины и при значении ее 100-200 м3/сут объемное соотношение первой и второй оторочек составляет (2÷1):1, технологическую выдержку осуществляют в течение 0,5 - 6 сут, при следующем соотношении компонентов, мас. %:
Натрий-карбоксиметилцеллюлоза | 0,2-0,5 |
Указанный раствор сшивателя | 0,02-0,2 |
Вода | остальное, |
соотношение компонентов второй оторочки соответствует, мас. %:
АФ9-12 товарный формы | 0,01-1,0 |
Минерализованная вода | остальное. |
Недостатком способа является низкий охват пласта заводнением и низкая эффективность нефтевытеснения при разработке неоднородных пластов из-за малого фильтрационного сопротивления, создаваемого закачиваемыми растворами, и большая продолжительность технологической выдержки.
Наиболее близким решением к предлагаемому по технической сущности и достигаемому результату является способ регулирования разработки неоднородного нефтяного пласта (патент RU № 2279540, МПК Е21В 43/22, опубл. 10.07.2006 г., бюл. № 19), включающий одновременную закачку в нагнетательную скважину двух оторочек водного раствора: первой оторочки, содержащей полиакриламид ПАА со сшивателем, и второй оторочки, содержащей поверхностно – активное вещество ПАВ и хлористый кальций (СаСl2), затем закачку водного раствора, содержащего ПАВ и хлористый кальций, и закачку вытесняющего агента – воды, в качестве первой оторочки водный раствор, содержащий ПАА со сшивателем, мас. %:
ПАА | 0,1-0,5 |
сшиватель - ацетат хрома | 0,01-0,05 |
вода | остальное |
а в качестве второй оторочки водный раствор, содержащий ПАВ и хлористый кальций, мас. %
неионогенное ПАВ | 1,0-5,0 |
хлористый кальций | 1,5-3,5 |
вода | остальное, |
останавливают скважину на технологическую выдержку на 6-12 час.
Недостатком способа является низкая эффективность нефтевытеснения при разработке неоднородных пластов из-за невысокого фильтрационного сопротивления, создаваемого водным раствором ПАА со сшивателем и водного раствора ПАВ и непродолжительной технологической выдержки.
Технической задачей изобретения является повышение эффективности способа разработки неоднородного по проницаемости нефтяного пласта путем увеличения фильтрационного сопротивления за счет создания блокирующего экрана закачкой гелеобразующего раствора полимера и увеличение охвата пласта воздействием путем вовлечения в разработку низкопроницаемых нефтенасыщенных, ранее не охваченных зон пласта, а также сокращение материальных затрат.
Техническая задача решается способом разработки неоднородного по проницаемости нефтяного пласта, включающим закачку в нагнетательную скважину двух оторочек водного раствора: первой оторочки, содержащей полиакриламид со сшивателем, и второй оторочки, содержащей поверхностно – активное вещество, остановку скважины на технологическую выдержку.
Новым является то, что закачку двух оторочек водного раствора осуществляют последовательно, в качестве первой оторочки закачивают водный раствор, который содержит полиакриламид со сшивателем, в качестве сшивателя используют композицию ацетата хрома и оксида цинка, в мас. %:
полиакриламид | 0,51-0,8, |
ацетат хрома | 0,04-0,06, |
оксид цинка | 0,04-0,06, |
вода | остальное, |
после закачки первой оторочки останавливают скважину на технологическую выдержку от двух до трех суток, затем закачивают вторую оторочку водного раствора, которая дополнительно содержит полиакриламид, а в качестве поверхностно-активного вещества ПАВ включает амфотерный ПАВ при следующем соотношении компонентов, в мас. %:
полиакриламид | 0,3, |
амфотерный ПАВ | 0,3-5,0, |
вода | остальное, |
при соотношении первой и второй оторочек 1: (1÷5).
Также новым является то, что в качестве амфотерного ПАВ используют амфотерные ПАВ на основе бетаина БЕТАПАВ АП 18.30 - водно-спиртовый раствор олеиламидопропилбетаина, или БЕТАНОР™ Алкиламидопропилбетаин марки A, Б, или моющую композицию марки Неоминол А, Б, или моющую композицию марки Биксол А, Б.
Для осуществления способа используют:
- полиакриламид (ПАА) по ТУ 2458-024-14023401-2012 c изм. № 1, 2 или его аналоги;
- в качестве сшивателя используют композицию из ацетата хрома (АХ) по ТУ 2499-023-55373366-2011 с изм.№1-6 и оксида цинка (OЦ), в качестве которого используют Белила цинковые БЦОМ ГОСТ 202-84.
- в качестве амфотерного поверхностно-активного вещества ПАВ используют амфотерные ПАВ на основе бетаина БЕТАПАВ АП 18.30 - водно-спиртовый раствор олеиламидопропилбетаина (ТУ 2480-040-04706205-2013), или БЕТАНОР™ Алкиламидопропилбетаин (марки A, Б) по ТУ 2480-003-13805981-2014, или моющую композицию марки Неоминол А (Б), или моющую композицию марки Биксол А (Б) по ТУ 2458-001-91222887-2011.
Для приготовления водных растворов полиакриламида ПАА и ПАВ (первой и второй оторочек) используют как пресную, так и минерализованную воду с общей минерализацией до 300 г/л.
Сущность изобретения.
В процессе разработки нефтяных месторождений усугубляется проницаемостная неоднородность пласта с образованием обширных промытых зон с высокой проницаемостью. Одним из эффективных направлений повышения нефтеотдачи является увеличение фильтрационного сопротивления этих зон за счет создания блокирующего экрана закачкой первой оторочки водного раствора - гелеобразующего раствора полимера, который первоначально имея невысокую вязкость фильтруется в высокопроницаемую часть пласта. Затем во время технологической выдержки происходит гелеобразование (сшивка) ПАА в присутствии сшивателя. В качестве сшивателя используют композицию ацетата хрома и оксида цинка. Соотношение компонентов первой оторочки составляет, в мас. %: полиакриламид - 0,51-0,8, ацетат хрома - 0,04-0,06, оксид цинка - 0,04-0,06, вода – остальное.
В результате образуется сшитая полимерная система, которая закупоривает высокопроницаемые зоны пласта, и закачиваемая следом вода вынуждена фильтроваться через соседние низкопроницаемые нефтенасыщенные зоны, ранее не охваченные воздействием, и, тем самым, увеличивается охват пласта заводнением.
Закупоривание высокопроницаемых и вовлечение низкопроницаемых зон пласта ведет к выравниванию проницаемостной неоднородности пласта и позволяет регулировать профиль приемистости нагнетательной скважины. Все эти операции повышают эффективность способа разработки неоднородного по проницаемости нефтяного пласта.
Использование более высоких концентраций, по сравнению с прототипом, раствора полиакриламида (0,51 % – 0,8 %) и комплексного сшивателя, состоящего из ацетата хрома и оксида цинка, увеличивает величину остаточного фактора сопротивления и увеличивает эффективность способа в целом. При концентрациях ПАА в водных растворах ниже 0,5 % и использовании в качестве сшивателя только ацетата хрома, образуется редко сшитая полимерная система, которая легко деформируется при возникающих перепадах давления и может произойти прорыв воды в высокопроницаемой зоне пласта, что отрицательно скажется на эффективности нефтеизвлечения.
На эффективность способа разработки неоднородных по проницаемости пластов влияет и продолжительность технологической выдержки, необходимой для полного гелеобразования. Время гелеобразования зависит от концентрации полимера и сшивателя, от температуры. При используемых концентрациях реагентов продолжительность технологической выдержки может составлять больше суток. Но для окончательного структурирования геля требуется не менее двух суток. Поэтому после закачки первой оторочки водного раствора полимера останавливают скважину на технологическую выдержку продолжительностью от двух до трех суток. Остановка скважины на 6-12 час. (как в прототипе) на реагирование явно недостаточна, поскольку при этом образуется слабый гель, который может легко разрушиться при высоких перепадах давления. В тоже время технологическая выдержка продолжительностью от 3 до 6 суток ведет к непроизводительному простою скважины и снижению технологической и экономической эффективности способа.
В процессе длительной разработки нефтяного месторождения остаточная нефть, находящаяся в ранее неохваченных зонах, также претерпевает изменения: увеличиваются ее плотность и вязкость, снижается подвижность. Поэтому для более полного извлечения такой нефти недостаточно вытеснения ее только водой или неионогенным ПАВ с раствором хлористого кальция.
Для увеличения извлечения остаточной нефти по предлагаемому способу закачивают вторую оторочку водного раствора, которая дополнительно содержит полимер ПАА и амфотерный ПАВ, при соотношении компонентов, в мас. %: полиакриламид - 0,3, амфотерный ПАВ - 0,3-5,0, вода – остальное. При этом происходит увеличение вытесняющей способности раствора за счет загущения воды полимером и увеличение ее отмывающей способности за счет закачки амфотерного ПАВ. В качестве амфотерного ПАВ используют амфотерные ПАВ на основе бетаина БЕТАПАВ АП 18.30 - водно-спиртовый раствор олеиламидопропилбетаина, или БЕТАНОР™ Алкиламидопропилбетаин марки A, Б, или моющую композицию марки Неоминол А, Б, или моющую композицию марки Биксол А, Б.
В отличие от прототипа, в котором в качестве ПАВ используются неионогенные НПАВ в предлагаемом способе используются амфотерные ПАВ. Использование амфотерных ПАВ усиливает вытесняющие и отмывающие свойства второй оторочки, потому что они, концентрируясь (адсорбируясь) на поверхности раздела фаз, вызывают снижение поверхностного натяжения и, тем самым, облегчают отрыв нефти от породы. Амфотерные ПАВ – соединения, содержащие в составе два типа групп: кислотную (чаще всего карбоксильную) и основную (обычно аминогруппу разных степеней замещения). Карбоксильная группа хорошо совмещается с карбоксильной группой полиакриламида. Сочетание поверхностно-активных свойств молекул разных классов ПАВ в одной молекуле амфотерного ПАВ позволяет повысить эффективность действия моющих средств.
Соотношение объемов первой оторочки ко второй находится в пределах 1:(1÷5). Соотношение оторочек выбирается исходя из приемистости скважины: при приемистости скважины выше 250 м3 соотношение оторочек находится в пределах 1:(1÷3), при приемистости скважины ниже 250 м3 соотношение оторочек находится в пределах 1:(3÷5).
Изучение влияния данного способа разработки неоднородного по проницаемости нефтяного пласта на фильтрационные и нефтевытесняющие параметры проводилось с использованием двухслойных разнопроницаемых трубчатых моделей пласта.
Основные условия и результаты вытеснения нефти по предлагаемому способу и наиболее близкому аналогу представлены в таблице.
Таблица – Результаты фильтрационных опытов.
№ опы та |
Способ и закачиваемые реагенты | Концентрация реагентов, мас. % | Объем закачки реагентов, про. | Соотношение объема оторочек | Остаточный фактор сопротивления | Прирост коэффициента вытеснения нефти, % |
1 | 1 оторочка – ПАА, ZnO, АХ Минерализ. вода, техн. выдержка - 3 cут. 2 оторочка – ПАА, БЕТАПАВ АП 18.30, Пресная вода |
0,8 0,06 0,06 остальное 0,3 5,0 остальное |
0,05 0,15 |
1:3 | 139 | 14,2 |
2 | 1 оторочка – ПАА, ZnO, АХ Пресная вода, техн. выдержка – 2,5 cут. 2 оторочка – ПАА, БЕТАПАВ АП 18.30, Минерализ. вода |
0,7 0,05 0,05 остальное 0,3 3,0 остальное |
0,05 0,05 |
1:1 | 20,0 | 13,6 |
3 | 1 оторочка – ПАА, ZnO, АХ Минерализ. вода, техн. выдержка - 2 cут. 2 оторочка – ПАА Неоминол А, Пресная вода |
0,51 0,04 0,04 остальное 0,3 0,3 остальное |
0,05 0,2 |
1:4 | 6,83 | 12,2 |
4 | Наиболее близкий аналог 1 оторочка – НПАВ СаСl2 ПАА+ АХ 2 оторочка – НПАВ СаСl2 |
1,0 1,5 0,1 0,01 1,0 1,5 |
0,15 0,3 0,15 |
3:1 | 5,8 | 10,0 |
Одним из основных параметров эффективности способов увеличения нефтеотдачи является остаточный фактор сопротивления (ОФС). Остаточный фактор сопротивления – это отношение подвижности воды до воздействия к подвижности воды после воздействия способа. Как видно из таблицы, предлагаемый способ по этому параметру превышает известный способ в 1,2 - 23 раза в зависимости от концентрации реагентов в оторочках. Также прирост коэффициента вытеснения нефти у предлагаемого способа выше в 1,2 - 1,4 раза.
Суммарный объем двух оторочек по предлагаемому способу равен 10 % - 30 % (от 0,1 до 0,3) от порового объема (п.о.), по известному способу – 60 % (0,6) от п.о. При этом суммарное количество реагентов ПАА и ПАВ по двум оторочкам у прототипа выше. Таким образом, предлагаемый способ сокращает материальные затраты при его осуществлении.
Чем выше ОФС или коэффициент вытеснения нефти при минимальном содержании реагента в вытесняющем растворе, тем технологически и экономически эффективнее его применение в нефтедобыче. Применение предлагаемого способа способствует повышению эффективности разработки неоднородного по проницаемости нефтяного пласта и сокращению материальных затрат.
Примеры конкретного выполнения.
Предлагаемый способ осуществляют с применением стандартного (существующего) нефтепромыслового оборудования, обеспечивающего транспортировку, приготовление (перемешивание) и закачку водных растворов в скважину: комплекс по приготовлению растворов из жидких и сыпучих химических реагентов КУДР-8 или аналоги; насосные агрегаты типа АНЦ-320 по ТУ 26-02-30-75 или аналоги; автоцистерны типа АЦ-10, АЦН-10 по ТУ 26-16-32-77 или аналоги.
Пример 1. Разрабатывают конкретную нефтяную залежь со следующими характеристиками: толщина продуктивного пласта - 5 м, пластовое давление - 8,4 МПа, обводненность – 90 %, приемистость скважины – 350 м3/сут. Плотность воды, на которой готовится раствор, составляет 1100 кг/м3. Способ реализуют через нагнетательные скважины. Водные растворы готовят непосредственно на скважине перед закачкой в пласт смешением компонентов на установке КУДР-8.
Готовят первую оторочку. Состав первой оторочки: а) ПАА – 0,7 мас. %; б) оксид цинка – 0,05 мас. %; в) ацетат хрома – 0,05 мас. %, вода – остальное.
Готовят водный раствор с концентрациями: 0,7 мас.% ПАА + 0,05 мас.% ОЦ + 0,05 мас.% АХ. Расход реагентов на 1 м3 воды составляет ПАА – 7,7 кг, ОЦ - 0,55 кг, АХ - 1,1 кг. Закачивают первую оторочку объемом 120 м3. Продавливают водный раствор первой оторочки в пласт в объеме, превышающем объем колонны труб, по которым закачивают водный раствор, не менее чем на 0,5 м3. После этого осуществляют технологическую выдержку на время гелеобразования продолжительностью 2,5 суток.
Готовят вторую оторочку на той же воде с плотностью 1100 кг/м3. Состав второй оторочки: а) ПАА – массовая доля в композиции 0,3 %; б) Амфотерный ПАВ – БЕТА ПАВ АП 18.30 с концентрацией 3 %, вода – остальное.
Расход реагентов на 1 м3 воды составляет ПАА – 3,3 кг, БЕТА ПАВ АП 18.30 – 33 кг. Закачивают вторую оторочку объемом 240 м3, соотношение первой и второй оторочек составляет 1:2.
В узел загрузки установки КУДР засыпается порошкообразный ПАА массовой долей в композиции 0,3 %. Из бункера шнековым дозатором ПАА подается в струйный аппарат, где смешивается с водой и в виде суспензии подается в смесительную емкость. Одновременно в емкость смешения насосом дозируется амфотерный ПАВ с расходом, обеспечивающим заданную концентрацию в композиции. После чего композиция закачивается в скважину. После закачки первой оторочки гелеобразующего раствора полимера со сшивателем, остановки скважины на технологическую выдержку, закачки второй оторочки – раствора полимера и амфотерного ПАВ скважина переходит на обычный режим работы. После этого определяют давление закачки и приемистость скважины. Давление закачки увеличилось c 10,5 МПа до 12,0 МПа, приемистость нагнетательной скважины снизилась с 350 м3/сут до 300 м3/сут, возрос средний дебит по окружающим добывающим скважинам с 9,5 т/сут до 12 т/сут. Прирост среднесуточного дебита составил 2,5 т/сут.
Пример 2. Пример проводят в условиях примера 1. Приемистость скважины до закачки составляет – 245 м3/сут. Готовят первую оторочку, аналогичного состава (как в примере 1) в объеме 50 м3. Осуществляют технологическую выдержку на время гелеобразования продолжительностью 3 суток.
Готовят вторую оторочку на воде с плотностью 1100 кг/м3. Состав второй оторочки:
а) ПАА – массовая доля в композиции 0,3 %;
б) Амфотерный ПАВ – Биксол А с концентрацией 1 %.
Расход реагентов на 1 м3 воды составляет ПАА – 3,3 кг, Биксол А – 10 кг. Закачивают вторую оторочку объемом 250 м3, соотношение первой и второй оторочек составляет 1:5.
Приемистость нагнетательной скважины снизилась с 245 м3/сут до 200 м3/сут, возрос средний дебит по окружающим добывающим скважинам с 9,0 т/сут до 11,3 т/сут. Прирост среднесуточного дебита составил 2,3 т/сут.
Полученные результаты показывают, что произошло увеличение фильтрационного сопротивления за счет создания остаточного фактора сопротивления после закачки в нагнетательную скважину оторочки гелеобразующего раствора полимера со сшивателем. В результате происходит перераспределение фильтрационных потоков и при закачке второй оторочки – раствора полимера и амфотерного ПАВ вовлекаются неохваченные ранее нефтенасыщенные пласты и происходит увеличение охвата пласта воздействием и рост дебита добывающих скважин.
Таким образом, предлагаемый способ разработки неоднородного по проницаемости нефтяного пласта повышает эффективность способа разработки неоднородного по проницаемости нефтяного пласта путем увеличения фильтрационного сопротивления за счет создания блокирующего экрана закачкой гелеобразующего раствора полимера и увеличение охвата пласта воздействием путем вовлечения в разработку низкопроницаемых нефтенасыщенных ранее не охваченных зон пласта и способствует сокращению материальных затрат.
Claims (6)
1. Способ разработки неоднородного по проницаемости нефтяного пласта, включающий закачку в нагнетательную скважину двух оторочек водного раствора: первой оторочки, содержащей полиакриламид со сшивателем, и второй оторочки, содержащей поверхностно-активное вещество, остановку скважины на технологическую выдержку, отличающийся тем, что закачку двух оторочек водного раствора осуществляют последовательно, в качестве первой оторочки закачивают водный раствор, который содержит полиакриламид со сшивателем, в качестве сшивателя используют композицию ацетата хрома и оксида цинка, мас. %:
после закачки первой оторочки останавливают скважину на технологическую выдержку от двух до трех суток, затем закачивают вторую оторочку водного раствора, которая дополнительно содержит полиакриламид, а в качестве поверхностно-активного вещества ПАВ включает амфотерный ПАВ при следующем соотношении компонентов, мас. %:
при соотношении первой и второй оторочек 1:(1÷5).
2. Способ по п. 1, отличающийся тем, что в качестве амфотерного ПАВ используют амфотерные ПАВ на основе бетаина БЕТАПАВ АП 18.30 - водно-спиртовый раствор олеиламидопропилбетаина, или БЕТАНОР™ Алкиламидопропилбетаин марки A, Б, или моющую композицию марки Неоминол А, Б, или моющую композицию марки Биксол А, Б.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019141792A RU2725205C1 (ru) | 2019-12-17 | 2019-12-17 | Способ разработки неоднородного по проницаемости нефтяного пласта |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019141792A RU2725205C1 (ru) | 2019-12-17 | 2019-12-17 | Способ разработки неоднородного по проницаемости нефтяного пласта |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2725205C1 true RU2725205C1 (ru) | 2020-06-30 |
Family
ID=71509870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019141792A RU2725205C1 (ru) | 2019-12-17 | 2019-12-17 | Способ разработки неоднородного по проницаемости нефтяного пласта |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2725205C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2818344C1 (ru) * | 2023-10-12 | 2024-05-02 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ извлечения нефти из нефтяного пласта с применением наночастиц |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6194356B1 (en) * | 1997-12-13 | 2001-02-27 | Schlumberger Technology Corporation | Gelling composition for wellbore service fluids |
RU2169258C1 (ru) * | 2000-11-15 | 2001-06-20 | Общество с ограниченной ответственностью "Научно-производственное предприятие "ТАТРОЙЛ" | Способ выравнивания профиля приемистости в нагнетательных и ограничения водопритоков в добывающих скважинах |
RU2279540C1 (ru) * | 2005-03-21 | 2006-07-10 | Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") | Способ регулирования разработки неоднородного нефтяного пласта |
RU2382185C1 (ru) * | 2009-03-04 | 2010-02-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ выравнивания профиля приемистости нагнетательной и ограничения водопритока в добывающей скважинах (варианты) |
RU2401939C2 (ru) * | 2008-10-30 | 2010-10-20 | Общество с ограниченной ответственностью "Дельта-пром" | Способ разработки неоднородного нефтяного пласта |
RU2485301C1 (ru) * | 2011-12-26 | 2013-06-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ добычи нефти |
RU2518615C1 (ru) * | 2013-04-23 | 2014-06-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки неоднородного нефтяного пласта (варианты) |
-
2019
- 2019-12-17 RU RU2019141792A patent/RU2725205C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6194356B1 (en) * | 1997-12-13 | 2001-02-27 | Schlumberger Technology Corporation | Gelling composition for wellbore service fluids |
RU2169258C1 (ru) * | 2000-11-15 | 2001-06-20 | Общество с ограниченной ответственностью "Научно-производственное предприятие "ТАТРОЙЛ" | Способ выравнивания профиля приемистости в нагнетательных и ограничения водопритоков в добывающих скважинах |
RU2279540C1 (ru) * | 2005-03-21 | 2006-07-10 | Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") | Способ регулирования разработки неоднородного нефтяного пласта |
RU2401939C2 (ru) * | 2008-10-30 | 2010-10-20 | Общество с ограниченной ответственностью "Дельта-пром" | Способ разработки неоднородного нефтяного пласта |
RU2382185C1 (ru) * | 2009-03-04 | 2010-02-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ выравнивания профиля приемистости нагнетательной и ограничения водопритока в добывающей скважинах (варианты) |
RU2485301C1 (ru) * | 2011-12-26 | 2013-06-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ добычи нефти |
RU2518615C1 (ru) * | 2013-04-23 | 2014-06-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки неоднородного нефтяного пласта (варианты) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2818344C1 (ru) * | 2023-10-12 | 2024-05-02 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ извлечения нефти из нефтяного пласта с применением наночастиц |
RU2818633C1 (ru) * | 2023-10-12 | 2024-05-03 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ извлечения нефти из нефтяного пласта с применением наночастиц |
RU2818628C1 (ru) * | 2023-10-12 | 2024-05-03 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ извлечения нефти из нефтяного пласта с применением наночастиц |
RU2818632C1 (ru) * | 2023-10-12 | 2024-05-03 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ извлечения нефти из нефтяного пласта с применением наночастиц |
RU2827252C1 (ru) * | 2024-02-14 | 2024-09-23 | Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") | Состав для селективного ограничения водопритока в добывающих скважинах |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120245061A1 (en) | Enhancing drag reduction properties of slick water systems | |
SA91120183B1 (ar) | رغوة لتحسين كفاءة الإزاحة في التكوينات التحت أرضية الحاملة للبترول | |
CN110945208B (zh) | 提高地层采油率的方法 | |
RU2456439C1 (ru) | Способ выравнивания профиля приемистости нагнетательных скважин и ограничения водопритока в добывающие скважины | |
RU2476665C2 (ru) | Способ изоляции водопритока в скважине | |
RU2286446C1 (ru) | Способ кислотной обработки призабойной зоны скважины | |
RU2398958C1 (ru) | Способ регулирования профиля приемистости нагнетательной скважины (варианты) | |
RU2485301C1 (ru) | Способ добычи нефти | |
RU2528183C1 (ru) | Способ разработки нефтяной залежи | |
RU2704166C1 (ru) | Способ разработки нефтяного пласта | |
RU2483092C1 (ru) | Состав полисахаридного геля для глушения высокотемпературных скважин | |
RU2725205C1 (ru) | Способ разработки неоднородного по проницаемости нефтяного пласта | |
RU2693104C1 (ru) | Состав реагента для разработки нефтяного месторождения заводнением и способ его применения | |
RU2536070C1 (ru) | Способ разработки и повышения нефтеотдачи неоднородных нефтяных пластов | |
CN112177578B (zh) | 一种调剖调驱剂及一种油气田层内的调剖调驱方法 | |
RU2292450C1 (ru) | Способ добычи нефти | |
CN105419761A (zh) | 一种阻止钙卤结垢的改性剂 | |
RU2090746C1 (ru) | Способ регулирования разработки нефтяных месторождений заводнением | |
RU2143548C1 (ru) | Способ разработки неоднородных обводненных нефтяных пластов | |
RU2352772C1 (ru) | Способ разработки нефтяной залежи | |
RU2302519C2 (ru) | Способ регулирования проницаемости обводненного неоднородного нефтяного пласта | |
RU2822152C1 (ru) | Способ разработки неоднородного нефтяного пласта (варианты) | |
RU2266398C2 (ru) | Способ повышения нефтеотдачи пластов | |
RU2361898C1 (ru) | Состав для регулирования проницаемости водопромытых интервалов нефтяного пласта | |
RU2827252C1 (ru) | Состав для селективного ограничения водопритока в добывающих скважинах |