RU2723432C2 - Способ дистанционного мониторинга радиомолчащих объектов - Google Patents

Способ дистанционного мониторинга радиомолчащих объектов Download PDF

Info

Publication number
RU2723432C2
RU2723432C2 RU2018109034A RU2018109034A RU2723432C2 RU 2723432 C2 RU2723432 C2 RU 2723432C2 RU 2018109034 A RU2018109034 A RU 2018109034A RU 2018109034 A RU2018109034 A RU 2018109034A RU 2723432 C2 RU2723432 C2 RU 2723432C2
Authority
RU
Russia
Prior art keywords
signal
signals
radio
frequency
matrix
Prior art date
Application number
RU2018109034A
Other languages
English (en)
Other versions
RU2018109034A (ru
RU2018109034A3 (ru
Inventor
Валерий Николаевич Шевченко
Игорь Владимирович Донец
Яков Аронович Рейзенкинд
Original Assignee
Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") filed Critical Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент")
Priority to RU2018109034A priority Critical patent/RU2723432C2/ru
Publication of RU2018109034A publication Critical patent/RU2018109034A/ru
Publication of RU2018109034A3 publication Critical patent/RU2018109034A3/ru
Application granted granted Critical
Publication of RU2723432C2 publication Critical patent/RU2723432C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5242Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi with means for platform motion or scan motion compensation, e.g. airborne MTI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
    • G01S13/532Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar using a bank of range gates or a memory matrix
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters

Abstract

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Техническим результатом изобретения является повышение чувствительности при обнаружении и сопровождении радиомолчащих объектов. Повышение чувствительности достигается за счет применения операций компенсации маскирующих помех и когерентного формирования на каждой ожидаемой частоте доплеровского сдвига и в каждой части ожидаемой области задержек элементов многомерного пространственно-частотно-временного изображения из сигналов всех антенн решетки и их объединения в результирующее изображение вместо операций некогерентного суммирования совокупности двумерных частотно-временных изображений, сформированных из сигналов отдельных антенн. 1 ил.

Description

Изобретение относится к радиотехнике и может быть использовано в системах мониторинга наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.
Технология скрытного дистанционного радиомониторинга подвижных объектов, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения, пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность обнаружения, пространственной локализации и сопровождения широкого класса радиомолчащих подвижных объектов.
Известен способ дистанционного мониторинга радиомолчащих объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы, которые объединяют в матричный цифровой сигнал, матричный цифровой сигнал запоминают и преобразуют в сигнал пространственной корреляционной матрицы, который совместно с зависящим от азимутально-угломестного направления приема прямого радиосигнала, длины волны и геометриирешетки сигналом вектора наведения преобразуют в сигнал оптимального весового вектора, который совместно с матричным цифровым сигналом преобразуют в прямой цифровой сигнал, который запоминают, формируют и запоминают зависящие от временного сдвига комплексные взаимно корреляционные функции (ВКФ) между цифровым сигналом отдельной антенны и прямым цифровым сигналом, определяют максимальное значение модуля каждой комплексной ВКФ и фиксируют соответствующие этим максимумам значения комплексной ВКФ, вычисляют разностные цифровые сигналы, формируют зависящие от временного и частотного сдвигов комплексные двумерные взаимно корреляционные функции (ДВКФ) между каждым разностным цифровым сигналом и прямым цифровым сигналом, усредняют модули комплексных ДВКФ, определяют по максимумам усредненной ДВКФ число сжатых сигналов и фиксируют значения задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала, идентифицируют соответствующие отдельному максимуму усредненной ДВКФ составляющие комплексных ДВКФ как сжатый по времени и частоте р-й сигнал, выделяют и запоминают значениясоставляющих комплексных ДВКФ, задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала, по выделенным значениям р-ых идентифицированных составляющих комплексных ДВКФ синтезируют комплексный двумерный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р- го сжатого сигнала, по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.
Данный способ содержит операции формирования классической двумерной взаимной корреляционной функции, которая, кроме основного лепестка, ширина которого ограничивает разрешающую способность обнаружения, содержит высокие боковые лепестки, маскирующие сигналы далеких и слабо рассеивающих объектов.
Более эффективным является способ дистанционного мониторинга радиомолчащих объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:
выбирают передатчик, излучающий радиосигнал с расширенным спектром;
синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика;
синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал
Figure 00000001
из которого формируют цифровой прямой сигнал s';
преобразуют прямой сигнал s' в многочастотный матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые потенциальными объектами в ожидаемых областях доплеровских частот и задержек, запоминают матричный сигнал А;
преобразуют сигнал отдельной антенны sn в сигнал комплексного частотно-временного изображения
Figure 00000002
где AH - матрица, эрмитово сопряженная с А;
сигнал
Figure 00000003
запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал
Figure 00000004
Figure 00000005
- z-й элемент вектора
Figure 00000006
k=1, 2, … - номер итерации, и сигнал очередного приближения комплексного частотно-временного изображения
Figure 00000007
где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог K;
после чего, усредняют модули текущих частотно-временных изображений отдельных антенн
Figure 00000008
по локальным максимумам усредненного частотно-временного изображения
Figure 00000009
z=1, …, Z, где Z - число элементов изображения, определяют число рассеянных радиосигналов и фиксируют значения временной задержки и доплеровского сдвига каждого р-го рассеянного радиосигнала;
идентифицируют соответствующие отдельному максимуму усредненного изображения
Figure 00000010
элементы
Figure 00000011
комплексных частотно-временных изображений
Figure 00000012
как составляющие р-го рассеянного радиосигнала;
выделяют и запоминают значения идентифицированных составляющих
Figure 00000013
по которым синтезируют комплексный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го рассеянного сигнала, по значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.
Способ-прототип обеспечивает обнаружение и пространственную локализацию радиомолчащих объектов с повышенной разрешающей способностью и увеличенным динамическим диапазоном.
Однако, у способа-прототипа на этапе обнаружения применяются операции некогерентного суммирования сигналов двумерных частотно-временных изображений, сформированных из сигналов отдельных антенн решетки. Другими словами, у способа-прототипа на этапе обнаружения отсутствует пространственная избирательность, характерная для случая когерентного суммирования сигналов всех антенн в антенных решетках, что приводит к следующим недостаткам способа-прототипа:
потере чувствительности на 3 дБ при обнаружении, измерении пространственных координат и сопровождении объектов в условиях некоррелированности шумов и помех;
дополнительному снижению чувствительности обнаружения при наличии в окружающем пространстве источников коррелированных помех (например, сигналов передатчиков, частоты радиоизлучений которых совпадают с частотой приема рассеянных объектами сигналов).
Кроме того, у способа-прототипа отсутствуют операции компенсации прямого сигнала подсвета и рассеянных стационарными объектами сигналов. Как следствие, прямой сигнал и рассеянные стационарными объектами сигналы маскируют эхо-сигналы малоразмерных низкоскоростных объектов, что дополнительно ограничивает чувствительность и, как следствие, дальность при их обнаружении и сопровождении.
Таким образом, недостатком способа-прототипа является ограниченная чувствительность при обнаружении и сопровождении радиомолчащих объектов.
Техническим результатом изобретения является повышение чувствительности при обнаружении и сопровождении радиомолчащих объектов.
Повышение чувствительности достигается за счет применения новых операций:
компенсации помех, маскирующих эхо-сигналы объектов;
когерентного формирования на каждой ожидаемой частоте доплеровского сдвига и в каждой части ожидаемой области задержек элементов многомерного пространственно-частотно-временного изображения из сигналов всех антенн решетки и их объединения в результирующее изображение, вместо формирования из сигналов отдельных антенн совокупности двумерных частотно-временных изображений и последующего их некогерентного суммирования.
Технический результат достигается тем, что в способе дистанционного мониторинга радиомолчащих объектов, заключающемся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал
Figure 00000001
из которого формируют цифровой прямой сигнал s', согласно изобретению, преобразуют прямой сигнал s' в частичные матричные сигналы комплексной фазирующей функции Аων, каждый из которых включает гипотетические сигналы, рассеиваемые потенциальными подвижными и стационарными объектами в ожидаемой области угловых направлений на каждой ожидаемой частоте доплеровского сдвига со в ν-й части ожидаемой области задержек, частичные матричные сигналы Аων запоминают и объединяют в полный матричный сигнал комплексной фазирующей функции А0 для нулевого значения доплеровского сдвига частоты, объединяют запомненные цифровые сигналы антенн sn в векторный сигнал
Figure 00000014
векторный сигнал s запоминают и преобразуют в сигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты
Figure 00000015
где
Figure 00000016
- матрица, эрмитово сопряженная с А0, с использованием сигнала в качестве начального приближения итерационно формируют и запоминают зависящий от предыдущего решения вспомогательный матричный сигнал
Figure 00000017
- z - я компонента вектора элемента изображения
Figure 00000018
k=1, 2, … - номер итерации, а также сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения
Figure 00000019
где λ - множитель Лагранжа, и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал
Figure 00000020
до тех пор, пока номер текущей итерации не превысит заданный порог K, после этого, из очищенного векторного сигнала
Figure 00000021
для каждого ожидаемого ненулевого значения доплеровского сдвига частоты со в каждой ν-й части ожидаемой области задержек формируют сигнал начального приближения
Figure 00000022
а затем итерационно получают и запоминают вспомогательный матричный сигнал
Figure 00000023
и сигнал очередного приближения
Figure 00000024
элемента комплексного пространственно-частотно-временного изображения, до тех пор, пока номер текущей итерации не превысит заданный порог K, объединяют сформированные сигналы элементов изображения
Figure 00000025
в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н, после чего по локальным максимумам квадрата модуля матричного сигнала результирующего изображения
Figure 00000026
где
Figure 00000027
компонента матричного сигнала Н, определяют число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты ω, временной задержки q и азимутально-угломестного направления приема
Figure 00000028
каждого рассеянного радиосигнала выполняют обнаружение, пространственную локализацию и сопровождение объектов.
Операции способа поясняются чертежом.
Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2, вычислительную систему 3 и блок управления и индикации 4.
В свою очередь система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт поиска источников подсвета, включающий преобразователь частоты 1-2, аналого-цифровой преобразователь (АЦП) 1-3 и устройство обнаружения 1-4, а также тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-5, АЦП 1-6 и устройство адаптивной пространственной фильтрации 1-7. Вычислительная система 3 включает блок синтеза частотно-временного изображения 3-1, блок сравнения 3-2, устройство формирования вспомогательного и взвешивающего сигнала 3-3 и блок формирования сигнала фазирующей функции 3-4. При этом система 2 соединена с входом блока 4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, блок 4 имеет выход, предназначенный для подключения к внешним системам. Подсистема 1 является аналогово-цифровым устройством и предназначена для поиска и измерения параметров синхронизации передатчиков подсвета объектов, излучающих радиосигналы с расширенным спектром, а также для адаптивной пространственной фильтрации полезных прямых и рассеянных радиосигналов. Отметим, что после того, как параметры синхронизации прямого радиосигнала выбранного передатчика подсвета измерены или когда они априорно известны, прямой радиосигнал передатчика может быть сформирован путем моделирования в системе 2.
Антенная решетка 1-1 состоит из N антенн с номерами
Figure 00000029
Пространственная конфигурация антенной решетки должна обеспечивать измерение азимутально-угломестного направления прихода радиосигналов и может быть произвольной пространственной конфигурации: плоской прямоугольной, плоской кольцевой или объемной, в частности, конформной. Для улучшения различения сигналов не только по пространству, но и по поляризации требуется существенное различие поляризационных откликов антенн решетки, то есть антенная решетка должна быть неоднородной (гетерогенной), и иметь антенные элементы с отличающимися векторными диаграммами направленности. Преобразователи частоты 1-2 и 1-5 являются N-канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов. АЦП 1-3 и 1-6 также являются N-канальными и синхронизированы сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, то вместо преобразователей частоты 1-2 и 1-5 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, преобразователи частоты 1-2 и 1-5 обеспечивают подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов. Устройство обнаружения 1-4 и устройство адаптивной пространственной фильтрации 1-7 представляют собой вычислительные устройства. Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления рабочего списка передатчиков радиосигналов с расширенным спектром, используемых для подсвета заданной области контролируемого пространства, а также для формирования модельных сигналов выбранных передатчиков. Вычислительная система 3 предназначена для формирования сигнала фазирующей функции (блок 3-4), формирования вспомогательного и взвешивающего сигналов (устройство 3-3), сравнения числа итераций с заданным порогом (блок 3-2) и синтеза пространственно-частотно-временного изображения (блок 3-1).
Устройство работает следующим образом.
В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных радиопередатчиках подсвета, поступающих от устройства 1-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется рабочий список передатчиков, излучающих радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации подвижных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования. Кроме того, в системе 2 регенерируются принятые прямые радиосигналы или формируются модельные сигналы передатчиков с требуемыми параметрами синхронизации.
Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, его форма, параметры синхронизации и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в подсистеме 2, поступают в блок 4, а также используются для настройки преобразователей 1-2 и 1-5. С целью упрощения цепи управления преобразователем не показаны.
По сигналам системы 2 преобразователь частоты 1-2 начинает перестраиваться с заданным темпом в заданном диапазоне частот поиска радиосигналов, например, в диапазоне 10-1000 МГц. При этом тракт поиска осуществляет поиск и измерение параметров синхронизации передатчиков подсвета, излучающих радиосигналы с расширенным спектром, на дискретной сетке частот поиска. Принятый каждым антенным элементом с номером «антенной решетки 1-1 зависящий от времени t радиосигнал фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-2. Сформированные в преобразователе 1-2 радиосигналы преобразуется с помощью АЦП 1-3 в цифровые сигналы, которые поступают в устройство обнаружения 1-4, в котором на каждой частоте дискретной сетки частот поиска осуществляется обнаружение и измерение параметров синхронизации передатчиков подсвета. Функционирование устройства обнаружения 1-4 основано на широко известных способах радиоконтроля, например, [3].
Одновременно по сигналам системы 2 преобразователь частоты 1-5 перестраивается на заданную частоту приема. Тракт приема синхронно принимает на заданной частоте многолучевые радиосигналы, включающие прямой радиосигнал выбранного передатчика с расширенным спектром и рассеянные объектами радиосигналы этого передатчика.
Принятый каждым антенным элементом с номером п антенной решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-5.
Сформированные в преобразователе 1-5 радиосигналы sn(t) синхронно преобразуются с помощью АЦП 1-6 в цифровые сигналы
Figure 00000030
где
Figure 00000031
- номер временного отсчета сигнала, {}Т - означает транспонирование.
Цифровые сигналы отдельных антенн sn поступают в устройство 1-7 и в блок 3-1, где запоминаются.
Кроме того, в устройстве 1-7 выполняются следующие действия:
- цифровые сигналы отдельных антенн sn объединяются в матричный цифровой сигнал
Figure 00000001
размером N×I;
- из матричного цифрового сигнала S формируется N×N сигнал пространственной корреляционной матрицы R;
- сигнал корреляционной матрицы R преобразуется в N×1 сигнал оптимального весового вектора w=R-1v, где v-N×1 вектор наведения, определяемый азимутально-угломестным направлением, длиной волны (частотой) прямого радиосигнала и геометрией решетки;
- преобразуется матричный цифровой сигнал S в прямой цифровой сигнал s'T=wHS.
Физически описанные операции адаптивной пространственной фильтрации обеспечивают направленный прием полезного прямого радиосигнала выбранного передатчика подсвета с заданного направления с одновременным подавлением широкого класса помех, приходящих с других направлений. Отметим, что технически реализуемая глубина подавления помех достигает величины 40 дБ [4]. Это обеспечивает выигрыш в чувствительности при обнаружении слабых рассеянных сигналов на последующих этапах обработки.
Сформированный в устройстве 1-7 прямой цифровой сигнал s' поступает и запоминается в блоке 3-4.
После этого, в блоке 3-4 цифровой прямой сигнал s' преобразуется в одночастотные частичные матричные сигналы комплексной фазирующей функции Aων, которые поступают в устройство 3-3, где запоминаются.
Преобразование прямого сигнала s' в одночастотный частичный матричный сигнал Aων осуществляется по следующим формулам:
Figure 00000032
где
Figure 00000033
Figure 00000034
- матрица фазирующей функции по угловому направлению размером N×L. Множители
Figure 00000035
учитывают фазовый сдвиг, вызванный различным пространственным расположением антенн решетки (определяемым их радиус-векторами rn), ожидаемым направлением прихода сигнала
Figure 00000036
Figure 00000037
а также отличием диаграмм направленности антенн и их ориентацией. Для ненаправленных антенн справедливо следующее:
Figure 00000038
- волновой вектор, зависящий от частоты приема и направления
Figure 00000036
прихода сигнала;
символ
Figure 00000039
обозначает прямое произведение матриц,
Figure 00000040
- векторы размером I×1, являющиеся задержанными по времени на qTs версиями опорного сигнала s'; q=0, …, Q-1, Q - число временных задержек прямого сигнала; Ts - период выборки сигнала;
Figure 00000041
- матрицы доплеровских сдвигов размером I×I, ω=0,±1, …, ±Ω, (2Ω+1) - размер координатной сетки по доплеровскому сдвигу. Значения доплеровского сдвига частоты пробегают дискретный ряд значений ω/(ITS).
Разбиение ожидаемой области задержек может быть равномерным или неравномерным. В простейшем случае равномерного разбиения число временных задержек в каждой ν-й части ожидаемой области задержек одинаково и равно
Figure 00000042
где Q - общее ожидаемое число задержек, а
Figure 00000043
- число частей, на которые разбивается ожидаемая область задержек.
Отметим, что чем меньше число
Figure 00000044
тем меньше размерность частичного матричного сигнала комплексной фазирующей функции Аων и, как следствие, тем выше быстродействие последующих этапов синтеза пространственно-частотно-временного изображения. Однако, экспериментально установлено, что число задержек в каждой
Figure 00000045
части ожидаемой области задержек должно быть не менее 10. Это ограничивает размерность частичного матричного сигнала комплексной фазирующей функции Aων снизу.
При равномерном разбиении ожидаемой области задержек одночастотные частичные матричные сигналы Аων будут иметь одинаковый размер. При неравномерном разбиении сигналы Аων будут отличаться размером.
Таким образом, столбцы матрицы Aων представляют собой задержанные по времени, сдвинутые по частоте доплеровского сдвига и фазированные по направлению версии прямого сигнала s, а размер этой матрицы
Figure 00000046
определяется числом отсчетов I в разведываемом сигнале (длительностью интервала наблюдения), числом антенн N, числом временных задержек в ν-й части ожидаемой области задержек
Figure 00000047
и размерами координатной сетки по направлениям прихода L.
Кроме того, в устройстве 3-3 из сигнала Aων последовательно вычисляются сигналы
Figure 00000048
которые запоминаются. Кроме того сигналы Aων объединяются в полный матричный сигнал комплексной фазирующей функции А0 для нулевого значения ω=0 доплеровского сдвига частоты. Объединение сигналов A осуществляется в порядке возрастания задержек. Из сигнала А0 формируются вспомогательные сигналы
Figure 00000049
которые также запоминаются и поступают в блок 3-1.
В блоке 3-1 запомненные цифровые сигналы антенн s„ объединяются в векторный сигнал
Figure 00000050
Векторный сигнал s запоминается, а также с использованием сигналов
Figure 00000051
поступивших от блока 3-3, преобразуется в сигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты
Figure 00000052
(вектор с размером QL×1).
Полученный в блоке 3-1 сигнал элемента изображения
Figure 00000053
запоминается в блоке 3-2 в качестве начального приближения и транслируется в устройство 3-3 для запоминания и инициализации очередной итерации с номером k=1.
В устройстве 3-3 с использованием сигнала элемента изображения, полученного на предыдущей итерации, то есть
Figure 00000054
при k=1, формируется зависящий от предыдущего решения вспомогательный матричный сигнал
Figure 00000055
где
Figure 00000056
- z-я компонента вектора элемента изображения
Figure 00000057
и взвешивающий сигнал
Figure 00000058
Значение множителя Лагранжа λ выбирают исходя из уровня шумов в каналах приема. Взвешивающий сигнал
Figure 00000059
поступает в блок 3-1.
В блоке 3-1 с использованием сигнала
Figure 00000060
и запомненного векторного сигнала s синтезируется сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты
Figure 00000061
и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал
Figure 00000062
Сигнал
Figure 00000063
запоминается в блоке 3-1. Сигнал
Figure 00000064
поступает в блок 3-2, где также запоминается для использования на следующей итерации. Кроме того сигнал
Figure 00000065
поступает в устройство 3-3 для запоминания и инициализации очередной итерации синтеза элемента пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты и очищенного сигнала.
После чего, в устройстве 3-3, блоках 3-1 и 3-2 выполняется описанная ранее последовательность операций по формированию сигналов
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
запоминанию сигналов
Figure 00000070
а также сравнению номера текущей итерации с заданным порогом K.
При превышении номером текущей итерации порога K в устройстве 3-3, блоках 3-1 и 3-2 из запомненных сигналов
Figure 00000071
для каждого ожидаемого ненулевого значения доплеровского сдвига частоты ω формируется сигнал начального приближения
Figure 00000072
а затем итерационно получается и запоминается вспомогательный матричный сигнал
Figure 00000073
где
Figure 00000074
- z-я компонента вектора элемента изображения
Figure 00000075
и сигнал очередного приближения
Figure 00000076
элемента очищенного комплексного частотно-временного изображения до тех пор, пока номер текущей итерации не превысит заданный порог K.
При превышении номером текущей итерации заданного порога K в блоке 3-1 сформированные сигналы элементов очищенного изображения
Figure 00000077
объединяются в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н.
Отметим, что сигнал результирующего комплексного пространственно-частотно-временного изображения Н может быть трехмерным при синтезе изображения в координатах " азимут-доплеровский сдвиг частоты-задержка" или четырехмерным при синтезе изображения в координатах "азимут-угол места-доплеровский сдвиг частоты-задержка".
Объединение элементов очищенного изображения
Figure 00000078
в матричный сигнал Н осуществляется путем присоединения элементов очищенного изображения
Figure 00000079
друг к другу в порядке убывания доплеровского сдвига частоты ω.
Например, при фиксированном значении азимутально-угломестного направления приема
Figure 00000080
рассеянного радиосигнала матричный сигнал результирующего комплексного пространственно-частотно-временного изображения
Figure 00000081
формируется в соответствии со следующей формулой:
Figure 00000082
Матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н поступает в блок 4.
В блоке 4 вычисляются квадраты модулей
Figure 00000083
матричного сигнала результирующего комплексного частотно-временного изображения Н. По локальным максимумам квадратов модулей
Figure 00000084
определяется число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты со, временной задержки q и азимутально-угломестного направления приема
Figure 00000085
каждого рассеянного радиосигнала выполняют обнаружение, пространственную локализацию и сопровождение подвижных объектов.
Обнаружение, пространственная локализация и сопровождение объектов осуществляется известными способами, например, [3].
Кроме того, для повышения информативности в блоке 4 отображаются результаты обнаружения, пространственной локализации и сопровождения объектов.
Из приведенного описания следует, что устройство, реализующее предложенный способ, при формировании пространственно-частотно-временных изображений эхо-сигналов объектов осуществляет компенсацию маскирующих помех и многомерную обработку сигналов всех антенн решетки, которая в части пространственной обработки сигналов эквивалентна когерентному формированию суммарной пространственной диаграммы направленности антенной решетки. Это, по сравнению с реализованной в способе-прототипе некогерентной обработкой сигналов отдельных антенн решетки, повышает, как минимум, на 3 дБ чувствительность в условиях некоррелированности шумов и помех и улучшает помехоустойчивость и помехозащищенность при наличии расположенных в окружающем пространстве источников коррелированных помех. Как следствие, повышается дальность обнаружения и точность сопровождения широкого класса пилотируемых и беспилотных малоразмерных низкоскоростных радиомолчащих объектов.
Таким образом, за счет применения новых операций когерентного формирования на каждой ожидаемой частоте доплеровского сдвига и в каждой части ожидаемой области задержек элементов очищенного от маскирующих помех пространственно-частотно-временного изображения эхо-сигналов подвижных объектов из сигналов всех антенн решетки и их объединения в результирующее изображение, вместо операций формирования совокупности двумерных частотно-временных изображений из сигналов отдельных антенн и последующего некогерентного их суммирования, удается решить поставленную задачу с достижением указанного технического результата.
Источники информации
1. RU, патент, 2444754, кл. G01S 13/02, 2012 г.
2. RU, патент, 2524401, кл. G01S 13/02, 2014 г.
3. Справочник по радиолокации. Под ред. М. Сколника. Нью-Йорк, 1970. Пер. с англ. (в четырех томах) под общей ред. К.Н. Трофимова. Том 4. Радиолокационные станции и системы. Под ред. М.М. Вейсбейна, М, "Сов. радио". 1978. 376 с.
4. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь. 2003 г.

Claims (1)

1. Способ дистанционного мониторинга радиомолчащих объектов, заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал S={s1, …, sn, …, sN}T, из которого формируют цифровой прямой сигнал s', отличающийся тем, что преобразуют прямой сигнал s' в частичные матричные сигналы комплексной фазирующей функции Aων, каждый из которых включает гипотетические сигналы, рассеиваемые потенциальными подвижными и стационарными объектами в ожидаемой области угловых направлений на каждой ожидаемой частоте доплеровского сдвига ω в ν-й части ожидаемой области задержек, частичные матричные сигналы Aων запоминают и объединяют в полный матричный сигнал комплексной фазирующей функции А0 для нулевого значения доплеровского сдвига частоты, объединяют запомненные цифровые сигналы антенн sn в векторный сигнал
Figure 00000086
, векторный сигнал s запоминают и преобразуют в сигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты
Figure 00000087
, где
Figure 00000088
- матрица, эрмитово сопряженная с А0, с использованием сигнала
Figure 00000089
в качестве начального приближения итерационно формируют и запоминают зависящий от предыдущего решения вспомогательный матричный сигнал
Figure 00000090
, где
Figure 00000091
- z-я компонента вектора элемента изображения
Figure 00000092
, k=1, 2, … - номер итерации, а также сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения
Figure 00000093
, где λ - множитель Лагранжа, и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал
Figure 00000094
до тех пор, пока номер текущей итерации не превысит заданный порог K, после этого из очищенного векторного сигнала
Figure 00000095
для каждого ожидаемого ненулевого значения доплеровского сдвига частоты ω в каждой ν-й части ожидаемой области задержек формируют сигнал начального приближения
Figure 00000096
, а затем итерационно получают и запоминают вспомогательный матричный сигнал
Figure 00000097
и сигнал очередного приближения
Figure 00000098
элемента комплексного пространственно-частотно-временного изображения до тех пор, пока номер текущей итерации не превысит заданный порог K, объединяют сформированные сигналы элементов изображения
Figure 00000099
в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н, после чего по локальным максимумам квадрата модуля матричного сигнала результирующего изображения
Figure 00000100
, где
Figure 00000101
-
Figure 00000102
компонента матричного сигнала Н, определяют число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты ω, временной задержки q и азимутально-угломестного направления приема
Figure 00000103
каждого рассеянного радиосигнала - выполняют обнаружение, пространственную локализацию и сопровождение объектов.
RU2018109034A 2018-03-13 2018-03-13 Способ дистанционного мониторинга радиомолчащих объектов RU2723432C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018109034A RU2723432C2 (ru) 2018-03-13 2018-03-13 Способ дистанционного мониторинга радиомолчащих объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018109034A RU2723432C2 (ru) 2018-03-13 2018-03-13 Способ дистанционного мониторинга радиомолчащих объектов

Publications (3)

Publication Number Publication Date
RU2018109034A RU2018109034A (ru) 2019-09-13
RU2018109034A3 RU2018109034A3 (ru) 2019-12-16
RU2723432C2 true RU2723432C2 (ru) 2020-06-11

Family

ID=67989418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018109034A RU2723432C2 (ru) 2018-03-13 2018-03-13 Способ дистанционного мониторинга радиомолчащих объектов

Country Status (1)

Country Link
RU (1) RU2723432C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758585C1 (ru) * 2020-09-09 2021-11-01 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" Способ пространственной локализации радиомолчащих объектов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724923C2 (ru) * 2018-08-10 2020-06-26 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ скрытного мониторинга радиомолчащих объектов

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650269B1 (en) * 1982-05-14 2003-11-18 Lockheed Martin Corporation Ram air inflated passive radar decoy and chaff package therefor
JP2006010333A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 電波監視装置
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置
JP2012233824A (ja) * 2011-05-06 2012-11-29 Toshiba Corp パッシブレーダ装置、誘導装置及び電波検出方法
RU2524401C1 (ru) * 2013-05-13 2014-07-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и пространственной локализации подвижных объектов
RU2542330C1 (ru) * 2013-10-23 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ пассивного обнаружения воздушных объектов
RU2571950C1 (ru) * 2014-12-03 2015-12-27 Российская Федерация, от имени которой выступает Федеральная служба охраны Российской Федерации (ФСО РФ) Способ радиомониторинга радиомолчащих объектов
RU2572584C1 (ru) * 2014-12-03 2016-01-20 Российская Федерация, от имени которой выступает Федеральная служба охраны Российской Федерации (ФСО РФ) Способ радиоконтроля радиомолчащих объектов

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650269B1 (en) * 1982-05-14 2003-11-18 Lockheed Martin Corporation Ram air inflated passive radar decoy and chaff package therefor
JP2006010333A (ja) * 2004-06-22 2006-01-12 Toshiba Corp 電波監視装置
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置
JP2012233824A (ja) * 2011-05-06 2012-11-29 Toshiba Corp パッシブレーダ装置、誘導装置及び電波検出方法
RU2524401C1 (ru) * 2013-05-13 2014-07-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ обнаружения и пространственной локализации подвижных объектов
RU2542330C1 (ru) * 2013-10-23 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Способ пассивного обнаружения воздушных объектов
RU2571950C1 (ru) * 2014-12-03 2015-12-27 Российская Федерация, от имени которой выступает Федеральная служба охраны Российской Федерации (ФСО РФ) Способ радиомониторинга радиомолчащих объектов
RU2572584C1 (ru) * 2014-12-03 2016-01-20 Российская Федерация, от имени которой выступает Федеральная служба охраны Российской Федерации (ФСО РФ) Способ радиоконтроля радиомолчащих объектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758585C1 (ru) * 2020-09-09 2021-11-01 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" Способ пространственной локализации радиомолчащих объектов

Also Published As

Publication number Publication date
RU2018109034A (ru) 2019-09-13
RU2018109034A3 (ru) 2019-12-16

Similar Documents

Publication Publication Date Title
US10955542B2 (en) Radar apparatus and direction-of-arrival estimation device
RU2440588C1 (ru) Способ пассивного радиомониторинга воздушных объектов
JP6396244B2 (ja) レーダ装置
RU2444755C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
RU2444754C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
JP2016180721A (ja) レーダ装置
WO2018194477A1 (ru) Способ и устройство радиолокационного определения координат и скорости объектов
RU2524401C1 (ru) Способ обнаружения и пространственной локализации подвижных объектов
RU2723432C2 (ru) Способ дистанционного мониторинга радиомолчащих объектов
RU2546330C1 (ru) Способ поляризационно-чувствительного радиоконтроля подвижных объектов
RU2410712C1 (ru) Способ обнаружения воздушных объектов
RU2529483C1 (ru) Способ скрытной радиолокации подвижных объектов
RU2546329C1 (ru) Способ поляризационно-чувствительного обнаружения подвижных объектов
RU2524399C1 (ru) Способ обнаружения малоразмерных подвижных объектов
RU2716006C2 (ru) Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
RU2444753C1 (ru) Способ радиоконтроля воздушных объектов
RU2724923C2 (ru) Способ скрытного мониторинга радиомолчащих объектов
RU2557250C1 (ru) Способ скрытной радиолокации подвижных объектов
JP6694027B2 (ja) レーダ装置
RU2528391C1 (ru) Способ поиска малозаметных подвижных объектов
Dubrovinskaya et al. Underwater direction of arrival estimation using wideband arrays of opportunity
RU2444756C1 (ru) Способ обнаружения и локализации воздушных объектов
RU2420755C2 (ru) Способ обнаружения и локализации воздушных объектов
RU2534222C1 (ru) Способ обнаружения малозаметных подвижных объектов
RU2546331C2 (ru) Способ поиска малоразмерных подвижных объектов