RU2542330C1 - Способ пассивного обнаружения воздушных объектов - Google Patents

Способ пассивного обнаружения воздушных объектов Download PDF

Info

Publication number
RU2542330C1
RU2542330C1 RU2013147340/07A RU2013147340A RU2542330C1 RU 2542330 C1 RU2542330 C1 RU 2542330C1 RU 2013147340/07 A RU2013147340/07 A RU 2013147340/07A RU 2013147340 A RU2013147340 A RU 2013147340A RU 2542330 C1 RU2542330 C1 RU 2542330C1
Authority
RU
Russia
Prior art keywords
signals
signal
received
receiving channels
objects
Prior art date
Application number
RU2013147340/07A
Other languages
English (en)
Inventor
Евгений Васильевич Рогожников
Михаил Владимирович Миронов
Елена Павловна Великанова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority to RU2013147340/07A priority Critical patent/RU2542330C1/ru
Application granted granted Critical
Publication of RU2542330C1 publication Critical patent/RU2542330C1/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных воздушными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат изобретения - расширение зоны действия системы обнаружения воздушных объектов, а также повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, при наличии мешающих сигналов, переотраженных от объектов индустрии. Указанные результаты достигаются за счет применения антенн с широкой диаграммой направленности, а также за счет компенсации прямого сигнала передатчика и сигналов, отраженных от объектов индустрии, за счет усреднением оценки доплеровского сдвига частоты по оценкам, полученным в каждом из четырех приемных пунктов. 2 ил.

Description

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных воздушными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.
Известен способ пассивного обнаружения воздушных объектов [1], заключающийся в том, что выбирают передатчики, излучающие радиосигналы с расширенным спектром, синхронно принимают решеткой антенн многолучевые радиосигналы, включающие прямые радиосигналы передатчиков и рассеянные от объектов радиосигналы этих передатчиков, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямые и сжатые рассеянные сигналы, сравнивают выделенные прямые и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию воздушных объектов.
Недостатком данного способа является ограниченная дальность обнаружения воздушных объектов вследствие отсутствия операций компенсации когерентных помех, возникающих за счет просачивания прямого радиосигнала передатчика подсвета в канал приема рассеянных объектами радиосигналов.
Наиболее близким к заявляемому изобретению является способ пассивного обнаружения воздушных объектов [2], заключающийся в том, что когерентно принимают двумя пространственно совмещенными приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, из комплексных цифровых сигналов формируют сигнал, зависящий от временного и частотного сдвигов комплексной двухмерной взаимно корреляционной функции (ДВКФ), исключают центральную часть комплексной ДВКФ и получают сигнал модифицированной комплексной ДВКФ, из сигнала модифицированной комплексной ДВКФ и прямого комплексного цифрового сигнала формируют модифицированный рассеянный комплексный цифровой сигнал, формируют результирующий сигнал комплексной ДВКФ между модифицированным рассеянным комплексным цифровым сигналом и прямым комплексным цифровым сигналом, по модулю результирующего сигнала комплексной ДВКФ определяют число сжатых рассеянных сигналов, по параметрам которых - значению задержки по времени, абсолютного доплеровского сдвига каждого сжатого рассеянного сигнала, и значению азимутально-угломестного направления приема рассеянных сигналов выполняют обнаружение и пространственную локализацию воздушных объектов. Недостатком способа прототипа является ограничение зоны действия системы обнаружения, поскольку в способе прототипе, для приема рассеянного радиосигнала предусматривается использование антенной системы с узкой диаграммой направленности, которая наводится на заданное азимутально-угломерное направление приема, таким образом прием рассеянных воздушными объектами сигналов с других направлений будет затруднен. Также к недостаткам способа-прототипа можно отнести низкую точность оценки доплеровского сдвига частоты, в том случае, если совместно с сигналами, отраженными от воздушного объекта, антенной системой будут приниматься сигналы, отраженные от окружающих объектов индустрии, имеющих большую эффективную поверхность рассеяния (здания, мосты и др.), поскольку эти сигналы накладываются на сигналы, отраженные от воздушного объекта, и уменьшают точность оценки доплеровского сдвига частоты, а следовательно, и точность оценки скорости воздушного объекта.
Задача, на решение которой направлено предлагаемое техническое решение, - расширение зоны действия системы обнаружения воздушных объектов, а также повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, при наличии мешающих сигналов, переотраженных от объектов индустрии.
Решение поставленной задачи достигается тем, что в способе пассивного обнаружения воздушных объектов, заключающегося в том, что когерентно принимают двумя приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, формируют сигнал, зависящий от временного и частотного сдвигов комплексной взаимно корреляционной функции, отличающемся тем, что прямые и рассеянные сигналы дополнительно принимаются двумя приемными каналами, при этом все четыре приемных канала пространственно разнесены, и в каждом из четырех приемных каналов используется широконаправленная антенная система, а в качестве сигнала подсвета используются широкополосные сигналы синхронизации, наземных систем связи, цифрового телевидения либо других источников, которые заранее известны, рассчитываются комплексные временные: взаимно корреляционная функции опорного сигнала и принятого сигнала подсвета, содержащего в себе прямой сигнал от передатчика, а также сигналы, отраженные от воздушного объекта, и сигналы, отраженные от окружающих приемные каналы объектов индустрии, в качестве опорного сигнала используется сигнал, совпадающий с сигналом подсвета, но не искаженный беспроводным каналом распространения радиоволн, по каждой из рассчитанных комплексных взаимно корреляционных функций производится оценка времени приема, частотного и фазового сдвигов, прямых сигналов, сигналов, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемный канал каждого из четырех приемных пунктов, зная полученные оценки, производится выделение сигналов, отраженных от воздушного объекта, и компенсация остальных сигналов, принятых в каждом из четырех приемных каналах, после чего производится повторная оценка фазового и частотного сдвига сигналов, отраженных от воздушного объекта, и принятого каждым из четырех приемных каналов, полученная оценка частотного сдвига усредняется и рассчитывается скорость воздушного объекта, по полученным оценкам времени приема сигналов выполняют пространственную локализацию воздушного объекта. Функциональная схема предлагаемого способа приведена на фиг.1, на которой обозначено: 1 - преобразование частоты, 2 - аналого-цифровое преобразование сигналов и формирование комплексных сигналов, 3 - вычисление комплексной временной взаимокорреляционной функции, 4 - формирование опорного сигнала, 5 - оценка временного, частотного и фазового сдвига, 6 - выделение сигналов, отраженных от воздушного объекта, 7 - компенсация «сигналов-помех», 8 - пространственная локализация объекта, оценка скорости воздушного объекта.
Подробное описание способа.
В основе способа пассивного обнаружения воздушных объектов лежит идея использования сторонних, широкополосных сигналов известных источников в качестве сигналов подсвета. Идея предлагаемого способа поясняется на фиг.2. Система обнаружения воздушных объектов включает четыре разнесенных в пространстве приемных пункта. В качестве сигнала подсвета может использоваться сигнал синхронизации, который известен и определяется стандартом, в соответствии с которым работает данная система. Для увеличения зоны действия системы обнаружения воздушных объектов, в каждом из четырех приемных пунктов устанавливаются антенны с широкой диаграммой направленности, при этом, для уменьшения влияния сигналов, отраженных от земли и объектов индустрии, антенны направляются преимущественно в сторону передатчика сигнала подсвета и в направлении от земной поверхности. В каждом из четырех приемных пунктов принимается смесь прямого сигнала с сигналами, отраженными от воздушного объекта и объектов индустрии. Принятые в каждом приемном пункте, зависящие от времени радиосигналы x1(t), x2(t), x3(t), x4(t) переносятся на более низкую частоту. После преобразования частоты, синхронно, в каждом приемном пункте производится аналого-цифровое преобразование сигналов x1(t), x2(t), x3(t), x4(t), выделение квадратур и формирование комплексных цифровых сигналов
Figure 00000001
,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
. Далее производится вычисление четырех комплексных временных взаимокорреляционных функций (ВКФ)
Figure 00000005
,
Figure 00000006
,
Figure 00000007
,
Figure 00000008
, опорного сигнала, с каждым из четырех комплексных цифровых сигналов
Figure 00000001
,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
. По полученным временным взаимокорреляционным функциям производится оценка времени приема
Figure 00000009
, частотного
Figure 00000010
и фазового
Figure 00000011
сдвига, прямых, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемные каналы, i - номер приемного канала, N - количество принятых переотраженных сигналов, включая прямой сигнал. Оценка времени приема сигналов производится по положению максимумов рассчитанных ВКФ. Оценка частотного и фазового сдвига может быть произведена, например, при помощи способа, описанного в [3]. По полученным оценкам частотного сдвига выделяются сигналы, отраженные от воздушного объекта, поскольку сигналы, отраженные от объектов индустрии и земли, будут иметь минимальный частотный сдвиг (либо не будут иметь его). Для повышения точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, используя полученные оценки временного, частотного и фазового сдвига, в каждом из сигналов
Figure 00000001
,
Figure 00000002
,
Figure 00000003
,
Figure 00000004
, производится компенсация прямых сигналов от передатчика, а также сигналов, отраженных от объектов индустрии. После операции компенсации, производится повторная оценка частотного сдвига для сигналов, отраженных от воздушного объекта. Полученные для каждого приемного пункта оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, усредняются. Пространственная локализация воздушного объекта (определение координат) производится разностно-дальномерным методом, описанным, например, в [4], по разности моментов приема сигналов, отраженных от воздушного объекта в каждом приемном пункте.
Предлагаемый способ позволит расширить зону действия системы обнаружения воздушных объектов, по сравнению с системой, описанной в способе-прототипе, поскольку подразумевает применение антенн с широкой диаграммой направленности. Повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, достигается за счет компенсации прямого сигнала передатчика, а также сигналов, отраженных от объектов индустрии, и может достигать 20% по сравнению со способом-прототипом.
1. Пат. РФ №2158002, МПК G01S 13/14. Способ радиоконтроля. Опубл. 20.10.2000.
2. Пат. РФ №2472176, МПК G01S 13/02. Способ пассивного обнаружения воздушных объектов. Опубл. 10.01.2013.
3. Пат. РФ №2459354 H04B 1/68, G01S 3/46. Способ оценки сдвига несущей частоты в восходящем канале для беспроводных телекоммуникационных систем. Опубл. 20.08.2012.
4. Черняк B.C. Многопозиционная радиолокация. - М.: Радио и связь, 1993. - 416 с.

Claims (1)

  1. Способ пассивного обнаружения воздушных объектов, заключающегося в том, что когерентно принимают двумя приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, формируют сигнал, зависящий от временного и частотного сдвигов комплексной взаимно корреляционной функции, отличающийся тем, что прямые и рассеянные сигналы дополнительно принимаются двумя приемными каналами, при этом все четыре приемных канала пространственно разнесены, и в каждом из четырех приемных каналов используется широконаправленная антенная система, а в качестве сигнала подсвета используются широкополосные сигналы синхронизации, наземных систем связи, цифрового телевидения либо других источников, которые заранее известны, рассчитываются комплексные временные взаимно корреляционная функции опорного сигнала и принятого сигнала подсвета, содержащего в себе прямой сигнал от передатчика, а также сигналы, отраженные от воздушного объекта, и сигналы, отраженные от окружающих приемные каналы объектов индустрии, в качестве опорного сигнала используется сигнал, совпадающий с сигналом подсвета, но не искаженный беспроводным каналом распространения радиоволн, по каждой из рассчитанных комплексных взаимно корреляционных функций производится оценка времени приема, частотного и фазового сдвигов, прямых сигналов, сигналов, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемный канал каждого из четырех приемных пунктов, зная полученные оценки, производится выделение сигналов, отраженных от воздушного объекта, и компенсация остальных сигналов, принятых в каждом из четырех приемных каналах, после чего производится повторная оценка фазового и частотного сдвига сигналов, отраженных от воздушного объекта, и принятого каждым из четырех приемных каналов, полученная оценка частотного сдвига усредняется и рассчитывается скорость воздушного объекта, по полученным оценкам времени приема сигналов выполняют пространственную локализацию воздушного объекта.
RU2013147340/07A 2013-10-23 2013-10-23 Способ пассивного обнаружения воздушных объектов RU2542330C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013147340/07A RU2542330C1 (ru) 2013-10-23 2013-10-23 Способ пассивного обнаружения воздушных объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013147340/07A RU2542330C1 (ru) 2013-10-23 2013-10-23 Способ пассивного обнаружения воздушных объектов

Publications (1)

Publication Number Publication Date
RU2542330C1 true RU2542330C1 (ru) 2015-02-20

Family

ID=53288975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013147340/07A RU2542330C1 (ru) 2013-10-23 2013-10-23 Способ пассивного обнаружения воздушных объектов

Country Status (1)

Country Link
RU (1) RU2542330C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716006C2 (ru) * 2018-03-13 2020-03-05 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
RU2723432C2 (ru) * 2018-03-13 2020-06-11 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ дистанционного мониторинга радиомолчащих объектов
RU2730184C1 (ru) * 2019-11-11 2020-08-19 Андрей Викторович Быков Многопозиционная радиолокационная система
RU2770176C1 (ru) * 2018-08-10 2022-04-14 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ скрытного обнаружения радиомолчащих объектов
RU2810525C1 (ru) * 2023-07-11 2023-12-27 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения плановых координат воздушной цели с помощью многопозиционной радиолокационной системы, встроенной в пространственно-распределенную систему радиопомех

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703594A (en) * 1996-06-24 1997-12-30 The United States Of America As Represented By The Secretary Of The Navy Method for remotely detecting tides and the height of other surfaces
US5760743A (en) * 1996-07-25 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Miss distance indicator data processing and recording apparatus
US7012562B2 (en) * 2003-12-22 2006-03-14 Tdk Corporation Pulse wave radar device
RU56000U1 (ru) * 2006-02-06 2006-08-27 Лев Федорович Олейников Наземно-космическая система обнаружения "дуплет-1"
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置
RU2440588C1 (ru) * 2010-07-29 2012-01-20 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи (ОАО "КБ "Связь") Способ пассивного радиомониторинга воздушных объектов
RU2471200C1 (ru) * 2011-06-27 2012-12-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ пассивного обнаружения и пространственной локализации подвижных объектов
RU2472176C1 (ru) * 2011-06-24 2013-01-10 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ"Связь") Способ пассивного обнаружения воздушных объектов

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703594A (en) * 1996-06-24 1997-12-30 The United States Of America As Represented By The Secretary Of The Navy Method for remotely detecting tides and the height of other surfaces
US5760743A (en) * 1996-07-25 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Miss distance indicator data processing and recording apparatus
US7012562B2 (en) * 2003-12-22 2006-03-14 Tdk Corporation Pulse wave radar device
RU56000U1 (ru) * 2006-02-06 2006-08-27 Лев Федорович Олейников Наземно-космическая система обнаружения "дуплет-1"
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置
RU2440588C1 (ru) * 2010-07-29 2012-01-20 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи (ОАО "КБ "Связь") Способ пассивного радиомониторинга воздушных объектов
RU2472176C1 (ru) * 2011-06-24 2013-01-10 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ"Связь") Способ пассивного обнаружения воздушных объектов
RU2471200C1 (ru) * 2011-06-27 2012-12-27 Открытое акционерное общество "Конструкторское бюро по радиоконтролю систем управления, навигации и связи" (ОАО "КБ "Связь") Способ пассивного обнаружения и пространственной локализации подвижных объектов

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716006C2 (ru) * 2018-03-13 2020-03-05 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
RU2723432C2 (ru) * 2018-03-13 2020-06-11 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ дистанционного мониторинга радиомолчащих объектов
RU2770176C1 (ru) * 2018-08-10 2022-04-14 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ скрытного обнаружения радиомолчащих объектов
RU2730184C1 (ru) * 2019-11-11 2020-08-19 Андрей Викторович Быков Многопозиционная радиолокационная система
RU2810525C1 (ru) * 2023-07-11 2023-12-27 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения плановых координат воздушной цели с помощью многопозиционной радиолокационной системы, встроенной в пространственно-распределенную систему радиопомех

Similar Documents

Publication Publication Date Title
US9958526B2 (en) Localization with non-synchronous emission and multipath transmission
JP7394777B2 (ja) 位置サービスのためのネットワークアーキテクチャ及び方法
US9841489B2 (en) Mitigation of multipath distortions for TDOA-based geolocation
US11035946B2 (en) Accurate localization of client devices for wireless access points
US11921184B2 (en) Methods and apparatus for characterising the environment of a user platform
Zhang et al. Environmental-adaptive indoor radio path loss model for wireless sensor networks localization
RU2444754C1 (ru) Способ обнаружения и пространственной локализации воздушных объектов
RU2440588C1 (ru) Способ пассивного радиомониторинга воздушных объектов
US20120014412A1 (en) Positioning system and positioning method
RU2542330C1 (ru) Способ пассивного обнаружения воздушных объектов
CN107843910B (zh) 一种适于复杂环境下的虚拟多站tdoa定位方法与装置
JP2019090791A5 (ru)
RU2524401C1 (ru) Способ обнаружения и пространственной локализации подвижных объектов
RU2529483C1 (ru) Способ скрытной радиолокации подвижных объектов
Takahashi et al. Accuracy comparison of wireless indoor positioning using single anchor: Tof only versus tof-doa hybrid method
RU2444753C1 (ru) Способ радиоконтроля воздушных объектов
RU2472176C1 (ru) Способ пассивного обнаружения воздушных объектов
Jain et al. HF source geolocation using an operational TDoA receiver network: Experimental results
RU2557250C1 (ru) Способ скрытной радиолокации подвижных объектов
Hua et al. Joint TDOA-DOA localization scheme for passive coherent location systems
Steffes et al. Direct position determination for TDOA-based single sensor localization
Sun et al. 5g positioning based on the wideband electromagnetic vector antenna
RU162946U1 (ru) Пассивный когерентный локатор
JP2021139669A (ja) 通信源位置推定システム及び通信源位置推定方法
Celik et al. Experimental evaluation of passive radar approach for homeland security applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161024