RU2722588C1 - Поршневой двухступенчатый компрессор - Google Patents

Поршневой двухступенчатый компрессор Download PDF

Info

Publication number
RU2722588C1
RU2722588C1 RU2019133220A RU2019133220A RU2722588C1 RU 2722588 C1 RU2722588 C1 RU 2722588C1 RU 2019133220 A RU2019133220 A RU 2019133220A RU 2019133220 A RU2019133220 A RU 2019133220A RU 2722588 C1 RU2722588 C1 RU 2722588C1
Authority
RU
Russia
Prior art keywords
piston
cylinder
cavity
stage
compressor
Prior art date
Application number
RU2019133220A
Other languages
English (en)
Inventor
Виктор Евгеньевич Щерба
Виктор Владимирович Шалай
Евгений Юрьевич Носов
Аблай-Хан Савитович Тегжанов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ)
Priority to RU2019133220A priority Critical patent/RU2722588C1/ru
Application granted granted Critical
Publication of RU2722588C1 publication Critical patent/RU2722588C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

Изобретение относится к области машин объемного вытеснения и может быть использовано при создании компрессоров среднего и высокого давления. Поршневой двухступенчатый компрессор содержит цилиндры 1 первой и 2 второй ступени, поршни 3 и 4, соединенные штоком 5 с приводом возвратно-поступательного движения 6. Поршень 3 делит цилиндр 1 на две части – газовую 7 и жидкостную 8 полости и содержит выступ в виде поршня 9, входящего в дополнительный цилиндр 10, заполненный охлаждающей жидкостью,  соединенный с системой охлаждения 11 цилиндра 1, в которую включена подпоршневая полость 8 и полость 12 цилиндра 10. Достигается возможность сжатия газа в двух ступенях компрессора до давления выше 100 бар. Данная конструкция может заменить обычный трех-четырехступенчатый поршневой компрессор. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области машин объемного действия и может быть использовано при создании компрессоров среднего и высокого давления.
Широко известны двухступенчатые поршневые компрессоры, содержащие цилиндры первой и второй ступени с размещенными в них поршнями, соединенными с механизмом привода (см., например, кн. Агурин А.П. «Передвижные компрессорные станции». – М.: Высш. шк., 1989, стр. 8, рис. 2; К.И. Страхович,  М.И. Френкель, И.К. Кондряков, В.Ф. Рис. «Компрессорные машины». – М.: Гос. изд-во торговой литературы, стр. 108, рис. 38; М.И. Френкель «Поршневые компрессоры», Л.: Машиностроение, 1969, стр. 106, рис. IY.1).
Известен также поршневой двухступенчатый компрессор, содержащий цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров (см. С.Е. Захаренко, С.А. Анисимов и др. под ред. С.Е. Захаренко «Поршневые компрессоры», - Л-Д: МАШГИЗ, 1961, с. 133, Фиг. 57, с. 136).
Недостатком известных конструкций является невозможность экономичного сжатия газа до высокого давления (более 50-ти бар) из-за плохого охлаждения, которое в автономном режиме работы может быть только внешним воздушным, а также из-за утечек и перетечек между ступенями.
Технической задачей изобретения является обеспечения возможности экономичного сжатия газа до высокого давления при автономной системе охлаждения цилиндропоршневой группы компрессора.
Указанная задача обеспечивается тем, что в известном поршневом двухступенчатом компрессоре, содержащем цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров, в соответствии с изобретением со стороны надпоршневой полости дисковый поршень содержит выступ в виде поршня или плунжера, входящий в дополнительный цилиндр, заполненный охлаждающей жидкостью и соединенный с системой охлаждения цилиндра, в которую включена подпоршневая полость. При этом дополнительный цилиндр может быть соединен через кран и обратный клапан с резервной емкостью, между краном и резервной емкостью может быть установлен гидронасос, и этот гидронасос вместе с краном может быть снабжен системой управления, содержащей датчик уровня жидкости, расположенный на дне дополнительного цилиндра, и электрический блок, управляющий положением крана и питанием насоса.
Сущность изобретения поясняется чертежами.
На фиг. 1 схематично показано продольное сечение компрессора, а на фиг. 2 и фиг. 3 – схема управления работой насоса и крана.
Компрессор (фиг. 1) содержит цилиндры 1 первой и 2 второй ступени, расположенные вдоль их общей оси, и размещенные в этих цилиндрах поршни 3 и 4, соединенные штоком 5 с приводом возвратно-поступательного движения 6 (в данном примере - кривошипно-шатунного типа), причем в данном примере поршень 3 первой ступени выполнен дисковым, и делит свой цилиндр 1 на две части – надпоршневую газовую 7 и подпоршневую жидкостную 8 полости. Со стороны надпоршневой полости 7 поршень 3 содержит выступ, выполненный в данном примере в виде поршня 9, входящего в дополнительный цилиндр 10, заполненный охлаждающей жидкостью и соединенный с системой охлаждения 11 цилиндра 1, в которую включена подпоршневая полость 8 и полость 12 цилиндра 10.
Дополнительный цилиндр 10 соединен трубопроводами через кран 13, обратный клапан 14 и гидронасос 15 с резервной емкостью 16, частично заполненной той же жидкостью, которой заполнены цилиндр 10 и полость 12.
Гидронасос 15 с краном 13 снабжены системой управления, содержащей датчик 17 уровня жидкости, расположенный на дне дополнительного цилиндра 10, и электрический блок 18, управляющий положением крана 13 и питанием гидронасоса 15.
В систему охлаждения 11 входят вентилятор 19 и радиатор 20, система межступенчатого охлаждения газа  содержит вентилятор 21 и радиатор 22.
Цилиндры 1 и 2 содержат всасывающие 23 и 24 и нагнетательные 25 и 26 самодействующие клапаны, межступенчатый ресивер 27 служит для гашения пульсации газа, нагнетаемого через клапан 25, и дополнительного охлаждения этого газа. Между полостью 12 и полостью цилиндр 2, а также между полостью 2 и полостью картера 28 установлены сальниковые уплотнения 29 и 30.
Электрический блок 18 (фиг. 2 и 3) содержит электромагнитное реле с катушкой 31, управляющей двумя нормально разомкнутыми контактами 32 и 33. Питание катушки осуществляется низким (например, 12 В) напряжением U1 постоянного тока, одна из линий которого (например, «плюсовая») замыкается через изолированный диэлектрическим корпусам металлический стержень 34 датчика 17, электропроводную жидкость полости 10 и корпус 35 полости 10. Замыкание показано штриховой линией на фиг. 2. Напряжение U2 соответствует стандартному напряжению питания промышленных установок, например, 220 В, 50Гц.
В качестве токопроводящей жидкости может использоваться, например, дистиллированная вода или антифриз в смеси с небольшим (около 2%) хромпиком (калий двухромовокислый, являющийся ингибитором коррозии).
Компрессор работает следующим образом (фиг. 1).
Перед первым пуском компрессор заправляют охлаждающей жидкостью до заполнения полости 12 «до верха» с учетом прогноза расширения жидкости при нагреве во время работы компрессора, а также заливают необходимое количество этой жидкости в емкость 16.
При включении привода 6 поршни 3 и 4 совершаю возвратно-поступательное движение. При этом происходит изменение объема 7 и объема цилиндра 2, в результате чего атмосферный воздух всасывается через клапан 23, сжимается и нагнетается через клапан 26 в ресивер 27. Из ресивера 27 газ через клапан 24 попадает в цилиндр 2 и дожимается до более высокого давления, после чего нагнетается потребителю через клапан 26. До попадания в цилиндр 2 газ охлаждается в радиаторе 22.
Одновременно происходит изменение объема полостей 8 и 12, в результате чего жидкость перетекает между этими полостями в обе стороны, охлаждается в системе охлаждения 11 с одновременным охлаждением стенок цилиндра 1 и поршней 9 и 3.
Рабочие объемы полостей 12 и 8 одинаковы (под рабочим объемом понимается произведение смоченной торцовой площади поршня 3 и поршня 9 на их ход), в связи с чем давления в этих полостях всегда практически одинаковы (гидравлическим сопротивлением радиатора 20 можно пренебречь).
С учетом того, что существует малое гидравлическое сопротивление течению воздуха через зазоры между поршнем 9 и цилиндром 10, а также через зазор между поршнем 3 и цилиндра 1, давление жидкости в полостях 8 и 12 всегда практически равно давлению газа полости 7, и утечки воздуха через зазор между поршнем 3 и стенками цилиндра 1 практически отсутствуют. Это позволяет сжимать воздух в этой ступени сразу до высокого давления. Высокая экономичность процесса сжатия также обеспечивается активным отводом теплоты от сжимаемого газа через хорошо охлаждаемые поверхности цилиндра 1, поршня 2 и поршня 9.
Для обеспечения нормальной работы компрессора необходимо, чтобы полости 8 и 12 всегда были полностью заняты жидкостью, что обеспечивается наличием крана 13 с электромагнитным приводом, обратного клапана 14, гидронасоса 15 с емкостью 16 и электрическим блоком 18 (фиг. 1, 2 и 3).
В штатной ситуации (фиг. 2) жидкость заполняет цилиндр 10 «до верха», линия питания катушки 31 замкнута через жидкость, и, соответственно, контакты 32 питания гидронасоса разомкнуты (он отключен), контакты 33 электромагнита управления краном 13 разомкнуты (кран закрыт).
В процессе работы компрессора есть вероятность небольших утечек через сальники 29 и 30, в результате чего уровень жидкости в полости 12 понижается (фиг. 3). В этом случае цепь питания катушки 31 размыкается, и контакты 32 и 33 переходят в замкнутое состояние. При этом включается насос 15, кран 13 переходит в открытое состояние, и происходит пополнение цилиндра 10 до тех пор, пока цилиндр не заполнится «до верха», что приводит к замыканию цепи питания катушки 31, контакты 32 и 33 размыкаются, поступление жидкости в цилиндр 10 прекращается.
Обратный клапан 14 предотвращает возможные перетечки жидкости через неплотности крана 13.
Хорошее охлаждение газа при сжатии в цилиндре 1 (полость 7) и деталей этой цилиндропоршневой группы, высокоэффективное уплотнение в ней зазоров позволяет с высокой экономичностью сжимать газ в ступени компрессора и дожимать его во второй ступени. Ориентировочно в цилиндре 1 (полость 10) газ может быть сжат от атмосферного давления до 50-60 бар (коэффициент повышения давления, соответственно, – 50-60), после чего во второй ступени (цилиндр 2) газ может быть «дожат» с коэффициентом повышения давления 4-6, характерном для обычных ступеней поршневых компрессоров, и получить газ под давлением до 200-300 бар. То есть, данная конструкция двухступенчатого компрессора может заменить обычный трех-четырехступенчатый поршневой компрессор. Причем все это происходит при автономном воздушном охлаждении.
Таким образом, следует считать, что поставленная техническая задача полностью выполнена.

Claims (4)

1. Поршневой двухступенчатый компрессор, содержащий цилиндры первой и второй ступени, расположенные вдоль общей оси, и размещенные в этих цилиндрах поршни, соединенные с приводом возвратно-поступательного движения, причем поршень одной из ступеней выполнен дисковым и делит свой цилиндр на две части – надпоршневую и подпоршневую полости, а также имеющий систему охлаждения цилиндров, отличающийся тем, что со стороны надпоршневой полости дисковый поршень содержит выступ в виде поршня или плунжера, входящий в дополнительный цилиндр, заполненный охлаждающей жидкостью и соединенный с системой охлаждения цилиндра, в которую включена подпоршневая полость.
2. Поршневой двухступенчатый компрессор по п. 1, отличающийся тем, что дополнительный цилиндр соединен через кран и обратный клапан с резервной емкостью.
3. Поршневой двухступенчатый компрессор по п. 2, отличающийся тем, что между краном и резервной емкостью установлен гидронасос.
4. Поршневой двухступенчатый компрессор по п. 3, отличающийся тем, что гидронасос снабжен системой управления, содержащей датчик уровня жидкости, расположенный на дне дополнительного цилиндра, и электрический блок, управляющий положением крана и питанием насоса.
RU2019133220A 2019-10-21 2019-10-21 Поршневой двухступенчатый компрессор RU2722588C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019133220A RU2722588C1 (ru) 2019-10-21 2019-10-21 Поршневой двухступенчатый компрессор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019133220A RU2722588C1 (ru) 2019-10-21 2019-10-21 Поршневой двухступенчатый компрессор

Publications (1)

Publication Number Publication Date
RU2722588C1 true RU2722588C1 (ru) 2020-06-01

Family

ID=71067845

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019133220A RU2722588C1 (ru) 2019-10-21 2019-10-21 Поршневой двухступенчатый компрессор

Country Status (1)

Country Link
RU (1) RU2722588C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU862840A3 (ru) * 1977-06-17 1981-09-07 "Дэнбица" Вытвурня Ужондзэнь Хлодничых Пшедсембиорство Паньствове (Инопредприятие) Двухступенчатый воздушный компрессор
CN206707965U (zh) * 2016-12-23 2017-12-05 无锡五洋赛德压缩机有限公司 一种压缩机
RU2640658C1 (ru) * 2016-08-23 2018-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU862840A3 (ru) * 1977-06-17 1981-09-07 "Дэнбица" Вытвурня Ужондзэнь Хлодничых Пшедсембиорство Паньствове (Инопредприятие) Двухступенчатый воздушный компрессор
RU2640658C1 (ru) * 2016-08-23 2018-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения
CN206707965U (zh) * 2016-12-23 2017-12-05 无锡五洋赛德压缩机有限公司 一种压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
С.Е. ЗАХАРЧЕНКО и др., ПОРШНЕВЫЕ КОМПРЕССОРЫ, Л-Д, МАШГИЗ, 1961, стр.133 фиг.57, стр.136. *

Similar Documents

Publication Publication Date Title
JP5431953B2 (ja) 流体機械
US3005412A (en) Automatic pressure compensator for reciprocating pumps
WO2006071295A1 (en) Reciprocating positive displacement pump for de-ionized water and method of cooling and lubricating therefor
US3216651A (en) Seal
RU2722588C1 (ru) Поршневой двухступенчатый компрессор
US7955058B1 (en) Reciprocating piston to piston energy pump
US11466705B2 (en) Hydraulic unit with combined pneumatic/servomotor action and related use
CN218347538U (zh) 一种可快速冷却的两级压缩缸
RU2578758C1 (ru) Поршневой насос-компрессор
CN216950762U (zh) 一种液体活塞压缩机
RU177393U1 (ru) Подвесной компрессор с приводом от балансира станка-качалки
RU2640658C1 (ru) Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения
RU2518796C1 (ru) Машина объемного действия
RU2220323C1 (ru) Компрессор с гидроприводом
RU2658715C2 (ru) Способ работы поршневой гибридной энергетической машины и устройство для его осуществления
CN220505278U (zh) 活塞式压缩机
US2791370A (en) Hydraulically operated compressor
RU2772010C1 (ru) Компрессор с жидкостными поршнями
RU2342560C1 (ru) Модуль гидроприводного компрессора
RU2755967C1 (ru) Поршневой двухцилиндровый компрессор с автономным жидкостным охлаждением
CN110107485A (zh) 一种换向阀式膜片泵系统
CN210919370U (zh) 一种双油缸控制的气体两级压缩缸
KR100762999B1 (ko) 에어콤프레셔
RU2565951C1 (ru) Способ работы газожидкостного агрегата и устройство для его осуществления
US1625500A (en) Pump