RU2720313C2 - Способ получения фторида кальция из фторкремниевой кислоты - Google Patents

Способ получения фторида кальция из фторкремниевой кислоты Download PDF

Info

Publication number
RU2720313C2
RU2720313C2 RU2017140415A RU2017140415A RU2720313C2 RU 2720313 C2 RU2720313 C2 RU 2720313C2 RU 2017140415 A RU2017140415 A RU 2017140415A RU 2017140415 A RU2017140415 A RU 2017140415A RU 2720313 C2 RU2720313 C2 RU 2720313C2
Authority
RU
Russia
Prior art keywords
reactor
suspension
calcium fluoride
solution
fluoride
Prior art date
Application number
RU2017140415A
Other languages
English (en)
Other versions
RU2017140415A3 (ru
RU2017140415A (ru
Inventor
Камал САМРАНЕ
Абделаали Коссир
Original Assignee
ОуСиПи СА
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОуСиПи СА filed Critical ОуСиПи СА
Publication of RU2017140415A publication Critical patent/RU2017140415A/ru
Publication of RU2017140415A3 publication Critical patent/RU2017140415A3/ru
Application granted granted Critical
Publication of RU2720313C2 publication Critical patent/RU2720313C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/186Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof from or via fluosilicic acid or salts thereof by a wet process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/26Carbonates or bicarbonates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

Изобретение может быть использовано в химической промышленности. Способ получения синтетического фторида кальция включает взаимодействие фторкремниевой кислоты H2SiF6 с гидроксидом аммония или аммиаком в первом реакторе для получения первой суспензии. Проводят фильтрацию указанной суспензии для получения фильтрата, содержащего раствор фторида аммония. Полученный раствор фторида аммония обрабатывают карбонатом кальция во втором реакторе для получения второй суспензии, содержащей фторид кальция и карбонат аммония. Указанную вторую суспензию фильтруют для получения отфильтрованного осадка, содержащего фторид кальция, и фильтрата, содержащего раствор карбоната аммония. Отфильтрованный осадок промывают и сушат. Часть второй суспензии возвращают во второй реактор. Основную часть аммиака из второго реактора удаляют путем частичного разложения карбоната аммония и дальнейшей очистки и возврата указанного аммиака в первый реактор. Изобретение позволяет утилизировать фторкремниевую кислоту, образующуюся в качестве побочного продукта при производстве суперфосфатов и экстракционной фосфорной кислоты, с получением товарного фторида кальция и возвращением в цикл используемого аммиака. 7 з.п. ф-лы, 1 ил., 4 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу получения синтетического фторида кальция (CaF2) и активного диоксида кремния из фторкремниевой кислоты (H2SiF6).
Известный уровень техники
Фосфориты содержат от 2 до 4 процентов фтора.
Часть фтора из фосфоритов осаждается гипсом, другая часть выщелачивается получаемой фосфорной кислотой, а оставшаяся часть, которая составляет около 70% от общего количества фтора, испаряется в реакторе и испарителе.
В связи с тем, что природоохранное законодательство продолжает сокращать выбросы химических веществ, владельцам фосфатных заводов в конечном итоге потребуется нейтрализовать фторидные отходы.
Большинство фосфатных заводов в настоящее время используют барометрические конденсаторы с непосредственным контактом фаз с рециркуляцией воды пруда-охладителя, которая насыщена фторидными солями.
Большую часть этого фторида осаждают, когда рециркуляционная вода охлаждается в больших системах пруда-охладителя.
Когда требуется обработка загрязненной фторидом воды, производители фосфатов обычно используют нейтрализацию известью или известняком до сброса сточных вод.
Лучшей альтернативой для окружающей среды было бы использование скрубберов для удаления фторидов в виде фторкремниевой кислоты до конденсации паров в барометрических конденсаторах.
Если фторсодержащая кислота не может быть использована непосредственно, её можно было бы нейтрализовать несколькими соединениями кальция, такими как фосфорит, известь и известняк, что не является рентабельным способом.
В настоящее время наиболее важным применением фторкремниевой кислоты являются фторирование питьевой воды, производство силикофторида, фтористого водорода и фторида алюминия, который является наиболее значимым химическим веществом в мире фторкремниевой кислоты.
В прошлом было разработано несколько способов, позволяющих превратить фторкремниевую кислоту во фтористый водород или фторид алюминия, однако ни один из этих способов не подходит для поглощения всего количества фторкремниевой кислоты, получаемой при производстве фосфатов.
Таким образом, существует потребность в других способах превращения фторкремниевой кислоты в более подходящие фторированные продукты, такие как синтетический фторид кальция.
Синтетический фторид кальция может успешно заменить плавиковый шпат, который является наиболее распространённым исходным минералом для производства всех фторсодержащих продуктов, особенно принимая во внимание высочайшую стоимость плавикового шпата во всём мире в результате сокращения ресурсов и из-за ограничений по экспорту.
Поэтому были разработаны некоторые способы получения фторида кальция из фторкремниевой кислоты реакцией с карбонатом кальция (CaCO3) или гидроксидом кальция Ca(OH)2.
В патентах US No 2,780,521 и No 2,780,523 описывается реакция разбавленной фторкремниевой кислоты с концентрацией 2,5 - 3,8% с известью. Согласно этим патентам, если реакцию проводят в диапазоне рН 3,5 - 6,7, фторид кальция CaF2 отделяется в легко фильтруемой форме от одновременно образующегося SiO2-золя.
Большим недостатком способа, описанного в патенте US No 2,780,521, является тот факт, что получается конечный фторид кальция, который содержит 4 - 7% SiO2 в качестве примеси. Такой материал мало подходит для производства фтористого водорода.
В способе, описанном в патенте US No. 2,780,523, получают конечный фторид кальция, имеющий лишь небольшое содержание SiO2, то есть около 0,5% или менее. Этого, как утверждается, достигают добавлением к разбавленной фторкремниевой кислоте не более 85% количества карбоната кальция СаСО3, стехиометрически необходимого для образования фторида кальция. После фильтрации полученного продукта фильтрат снова обрабатывают карбонатом кальция для достижения значения рН 7 - 7,3. Продукт, полученный на этой стадии, представляет собой смесь фторида кальция и фторсиликата кальция, которая непригодна для использования. Кроме того, ещё один недостаток заключается в том, что требуются относительно длительные периоды реакции приблизительно от 30 минут до двух часов. Кроме того, значительный недостаток обоих вышеописанных способов заключается в том, что можно использовать только очень разбавленную фторкремниевую кислоту (максимальная концентрация 4 - 6%).
Соответственно, промышленное производство фтористого водорода по-прежнему проводится сегодня исключительно из природного плавикового шпата, который реагирует в виде так называемого кислотного шпата (кислотный шпат), содержащего более 97% фторида кальция CaF2.
Поэтому необходимо превратить во фторид кальция фторкремниевую кислоту, получаемую в виде все возрастающих количеств побочного продукта при производстве суперфосфатов и экстракционной фосфорной кислоты. Соответственно, фторид, полученный в такой форме, может быть сразу превращён во фтористый водород на существующих промышленных предприятиях. Более того, фторид кальция будет рассматриваться как резерв фтора, поскольку он может быть безопасно складирован.
Патент US No 4,031,193 предлагает способ получения фторида кальция из фторкремниевой кислоты, который включает стадии взаимодействия фторкремниевой кислоты с карбонатом кальция, предпочтительно в форме водной суспензии, при значении рН 2 - 6, предпочтительно 3 - 5, и в присутствии сульфата и/или ионов алюминия, в результате чего фторид кальция осаждается и формируется водный золь диоксида кремния, и затем отделения осадка фторида кальция от водного золя диоксида кремния.
Патент US No 3,271,107 предлагает способ получения высокосортного диоксида кремния из фторкремниевой кислоты реакцией фторкремниевой кислоты с гидроксидом аммония на двух отдельных стадиях, которые включают взаимодействие фторкремниевой кислоты с гидроксидом аммония в реакционной зоне с интенсивным перемешиванием и контролем отношения реагентов для поддержания рН в диапазоне 6,0 - 8,0, в результате чего получают суспензию, содержащую диоксид кремния, и затем взаимодействия указанной суспензии в неподвижной реакционной зоне с дополнительным гидроксидом аммония в количестве достаточном для обеспечения конечного рН 8,3 - 9,0 в течение 20 - 120 минут и отделения осаждённого диоксида кремния от полученной суспензии.
Патент US No 6,224,844 предлагает способ получения фторида кальция, включающий: (а) смешивание фосфорной кислоты (H3PO4) с водной H2SiF6 для формирования смеси, так что концентрация H3PO4 составляет, по меньшей мере, около 3 моль/л, (b) добавление фосфорита к смеси с такой скоростью, чтобы pH смеси поддерживался ниже чем около 1,0, и при температуре, достаточной для формирования второй смеси, содержащей фторид кальция, и (c) отделение фторида кальция от указанной второй смеси.
В документах CN 103073040, CN 102502753 и US 4,915,705 раскрывается способ получения фторида кальция из фторкремниевой кислоты, включающий следующие стадии:
(а) взаимодействие фторкремниевой кислоты с гидроксидом аммония или аммиаком в первом реакторе для получения первой суспензии; фильтрация указанной первой суспензии для получения фильтрата, содержащего раствор фторида аммония;
(b) осаждение раствора фторида аммония, полученного в виде фильтрата на стадии (а), гидроксидом кальция во втором реакторе для получения второй суспензии, содержащей фторид кальция и гидроксид аммония; фильтрацию указанной второй суспензии для получения отфильтрованного осадка, содержащего фторид кальция, и фильтрата, содержащего раствор гидроксида аммония; промывку и сушку указанного отфильтрованного осадка для получения фторида кальция и фильтрата от промывки отфильтрованного осадка, содержащего раствор гидроксида аммония.
Однако из-за использования гидроксида кальция для осаждения фторида кальция химия и кинетика реакции не очень благоприятны для легкого получения фторида кальция со степенью чистоты и гранулометрией требуемой для рынка кислотного шпата. Кроме того, потери фтора и аммиака при отделении фторидов кальция огромны из-за формы и размера кристаллов фторида кальция. Кроме того, фильтрат гидроксида аммония имеет значительную концентрацию по NH3, что делает извлечение аммиака очень сложным и дорогостоящим.
Краткое описание изобретения
Целью изобретения является создание нового способа получения высококачественного синтетического фторида кальция (мин. 90% масс. CaF2) по конкурентоспособной цене.
Изобретение относится к способу получения синтетического фторида кальция (CaF2) мин 90% CaF2 из фторкремниевой кислоты, включающему следующие стадии:
(а) взаимодействие фторкремниевой кислоты (H2SiF6) с гидроксидом аммония или аммиаком в первом реакторе для получения первой суспензии; фильтрация указанной первой суспензии для получения фильтрата, содержащего раствор фторида аммония;
(b) обработку раствора фторида аммония, полученного в виде фильтрата на стадии (а), карбонатом кальция в сухом виде или в виде суспензии с концентрацией 10 - 80% масс. во втором реакторе для получения второй суспензии, содержащей фторид кальция и карбонат аммония; фильтрацию указанной второй суспензии для получения отфильтрованного осадка, содержащего фторид кальция, и фильтрата, содержащего раствор карбоната аммония; промывку и сушку указанного отфильтрованного осадка, чтобы получить фторид кальция и раствор от промывки отфильтрованного осадка, содержащий раствор карбоната аммония;
(c) выделение большей части аммиака из второго реактора на стадии (b) из-за частичного разложения карбоната аммония в условиях реактора, и затем промывку и возврат указанного аммиака в первый реактор, а также сбор и обработку путём дистилляции и конденсации как растворов карбоната аммония, полученных в виде фильтрата, так и раствора от промывки отфильтрованного осадка стадии (b) для извлечения жидкого аммиака, который возвращают в первый реактор.
Для улучшения кристаллизации фторида кальция во втором реакторе на стадии (b) вторую суспензию в количестве 10 - 70% возвращают во второй реактор, в то время как оставшуюся часть второй суспензии фильтруют для извлечения фторида кальция, который промывают и сушат.
Преимущественно на стадии (а) фильтрация первой суспензии даёт отфильтрованный осадок, содержащий диоксид кремния, который является осаждённым аморфным диоксидом кремния, и указанный отфильтрованный осадок диоксида кремния далее промывают и сушат.
Согласно одному осуществлению источником кальция является известняк высокого качества (CaCO3).
Согласно одному осуществлению концентрация фторкремниевой кислоты, используемой на стадии (а), составляет 5 - 40% масс.
Согласно одному осуществлению фторкремниевая кислота, используемая на стадии (а), является побочным продуктом кислотной обработки фосфоритов.
Преимущественно условия реакции, проводимой в первом реакторе на стадии (а), включают, по меньшей мере, одно из:
- перемешивание смеси,
- температура 20 - 90°С,
- рН 5 - 11; и
- время пребывания 15 - 360 минут.
Согласно одному осуществлению, раствор от промывки отфильтрованного осадка, полученный на стадии (а), содержит раствор фторида аммония, который возвращают в первый реактор или во второй реактор, и фильтрат, полученный на стадии (а) направляют во второй реактор.
Согласно одному осуществлению рН осаждения фторида кальция на стадии (b) находится в диапазоне 6 - 12, и массовое отношение Ca/F составляет более 0,5.
Преимущественно условия реакции, проводимой во втором реакторе на стадии (b), включают, по меньшей мере, одно из:
- перемешивание смеси;
- температура 60 - 90°С;
- время пребывания 30 - 60 минут.
Аммиак, полученный на стадии (с), может быть использован непосредственно на стадии (а), или в виде раствора карбоната аммония.
Краткое описание чертежей
Другие признаки и преимущества изобретения будут очевидны из нижеследующего подробного описания с использованием прилагаемых чертежей, на которых фиг. 1 схематически представляет установку для осуществления способа в соответствии с изобретением.
Детальное описание осуществлений изобретения
Данное изобретение предлагает способ получения высококачественного синтетического фторида кальция мин. 90% CaF2 и активного диоксида кремния, который представляет собой аморфный осаждённый диоксид кремния, из фторкремниевой кислоты, получаемой в качестве побочного продукта кислотной обработки фосфорита фторированным газом.
Способ включает использование аммиака для получения синтетического CaF2 и активного диоксида кремния (SiO2) из фторкремниевой кислоты.
Процесс состоит из двух основных стадий.
Фторкремниевую кислоту используют в виде водного раствора.
Концентрация фторкремниевой кислоты в указанном водном растворе преимущественно составляет 5 - 40% масс.
Первая стадия способа включает нейтрализацию фторкремниевой кислоты добавлением в реактор аммиака в виде жидкого раствора или газа.
Если используют аммиак или раствор гидроксида аммония, рН этого раствора более 7, предпочтительно более 8, более предпочтительно более 9.
Если предлагается раствор гидроксида аммония, концентрация NH3 в растворе предпочтительно составляет 10 - 35% масс.
Чтобы повысить эффективность реакции, реакцию необходимо проводить с соответствующим перемешиванием и/или при подходящей температуре. Например, температура реакции может составлять 20 - 90°С.
Реакция между раствором фторкремниевой кислоты и аммиаком даёт суспензию. Указанную суспензию фильтруют с использованием вакуумного фильтра с размером пор 100 мкм или более, предпочтительно с использованием пресс-фильтра, чтобы получить, с одной стороны, фильтрат, который содержит раствор фторида аммония, а с другой стороны отфильтрованный осадок, который включает активный диоксид кремния.
Продуктами первой стадии процесса являются, таким образом, фторид аммония (NH4F) (в жидкой форме) и активный диоксид кремния SiO2 (в твёрдой форме).
Учитывая последующее использование указанного активного диоксида кремния активный диоксид кремния может быть дополнительно промыт деминерализованной водой, высушен при 110°С и удалён.
Вторая стадия процесса включает осаждение NH4F путём добавления источника кальция, который является известняком высокого качества (CaCO3).
Источник кальция подаётся в виде суспензии карбоната кальция в водном растворе. Концентрация суспензии оставляет 10 - 80% масс. Альтернативно, карбонат кальция может подаваться в сухом виде.
Требуемое количество источника кальция выбирают так, чтобы оно соответствовало массовому отношению Ca/F в реакционной смеси, превышающему или равному 0,5, обычно равному 1.
рН реакционной смеси является основным, предпочтительно более 8, более предпочтительно более 9 и наиболее предпочтительно более 10.
Для повышения эффективности реакции, которая является эндотермической, реакцию можно проводить с соответствующим перемешиванием и/или при подходящей температуре. Например, температура реакции может составлять 60 - 90°С. В частности, в отличие от реакции между гидроксидом кальция и фтористым аммонием, которая является экзотермической, реакция между карбонатом кальция и фторидом аммония является эндотермической. Нагрев смеси в реакторе, таким образом, позволяет лучше солюбилизировать источник кальция, уменьшая время реакции и улучшая форму и размер кристаллов фторида кальция.
Реакция между фторидом аммония и карбонатом кальция даёт суспензию, содержащую фторид кальция и карбонат аммония.
Затем эту суспензию фильтруют с использованием вакуумного фильтра с размером пор 100 мкм или более предпочтительно с использованием пресс-фильтра, чтобы получить, с одной стороны, отфильтрованный осадок, содержащий фторид кальция, а с другой стороны фильтрат, содержащий раствор карбоната аммония. Для улучшения кристаллизации фторида кальция определённое количество суспензии фторида кальция (обычно в диапазоне 10 - 70% масс.) возвращают в реактор, в то время как оставшаяся суспензия фторида кальция отделяется фильтрованием с использованием пресс-фильтра для извлечения конечного фторида кальция. При таком возвращении суспензии в реакторе увеличивается степень пересыщения фторида кальция, что увеличивает рост кристаллизации частиц фторида кальция и позволяет получать крупные и однородные кристаллы, что улучшает гранулометрическое распределение частиц фторида кальция. Гранулометрия фторида кальция является ключевым условием использования синтетического фторида кальция в качестве заменителя кислотного шпата.
Затем отфильтрованный осадок промывают и сушат, чтобы получить фторид кальция и раствор от промывки отфильтрованного осадка, содержащий раствор карбоната аммония.
Продуктами второй стадии способа являются, таким образом, фторид кальция (CaF2) (в твёрдой форме) и карбонат аммония ((NH4)2CO3) (в жидкой форме). Используя карбонат кальция, который является сверхчистым источником кальция (в отличие от гидроксида кальция, который содержит примеси), легко получить фторид кальция с очень высокой чистотой.
Следовательно, на второй стадии процесса образуются два раствора карбоната аммония: первый является фильтратом, полученным при фильтрации суспензии, и второй является раствором от промывки отфильтрованного осадка.
Что касается возврата в цикл аммиака, основная часть аммиака и диоксида углерода выделяется из реактора осаждения фторида кальция из-за частичного разложения карбоната аммония в условиях реактора, и затем очищается и возвращается в реактор осаждения диоксида кремния, причем оба раствора карбоната аммония затем собирают и перерабатывают дистилляцией и конденсацией для извлечения жидкого аммиака.
Таким образом, указанный аммиак можно возвращать в цикл на первой стадии процесса для нейтрализации фторкремниевой кислоты. Этот возврат в цикл позволяет свести к минимуму стоимость процесса изготовления фторида кальция.
Механизмами реакций являются:
- первая стадия процесса: нейтрализация фторкремниевой кислоты NH3 или NH4OH:
H2SiF6.2H2O + 6 NH4OH → 6 NH4F + SiO2 ↓ + 6 H2O
или
H2SiF6.2H2O + 6 NH3 → 6 NH4F + SiO2
- вторая стадия процесса: осаждение NH4F известняком (CaCO3):
2 NH4F + CaCO3 → CaF2 ↓ + CO2 ↑ + 2 NH3 ↑ + H2O
Способ по настоящему изобретению позволяет использовать неочищенную фторкремниевую кислоту с высокой концентрацией, например, с концентрацией 5 - 40% масс. для получения синтетического фторида кальция и активного диоксида кремния (SiO2).
Полученный фторид кальция полностью подходит для получения фтористого водорода в соответствии с обычными способами.
В то же время полученный активный диоксид кремния имеет такое качество, что он может быть включён в производство фосфорной кислоты для корректировки дефицита активного диоксида кремния в фосфорите, а также, поскольку он обладает подходящими свойствами, он может быть использован для получения синтетических смол, каучука, красок и бумаги.
Этот новый способ позволяет избежать недостатков ранее известных способов, особенно поскольку он использует аммиак (NH3 или NH4OH) для нейтрализации фторкремниевой кислоты для подходящего осаждения и разделения диоксида кремния.
Полученный жидкий раствор представляет собой фторид аммония (NH4F), который может легко осаждаться путём добавления высокосортного известняка (CaCO3).
Основными преимуществами являются:
- в способе может быть использована фторкремниевая кислота различного качества,
- в способе могут быть использованы обе формы аммиака (жидкость или газ),
- способ имеет высокую эффективность,
- отделение активного диоксида кремния происходит легко,
- получен высокоактивный диоксид кремния,
- отделение фторида кальция происходит легко,
- получен высококачественный фторид кальция,
- размер зерна фторида кальция является приемлемым для обычных процессов, необходимых для производства фтористого водорода.
Фиг. 1 иллюстрирует схему осуществления способа согласно изобретению.
Первая стадия способа включает получение активного диоксида кремния реакцией водного раствора фторкремниевой кислоты (FSA) с концентрацией 5 - 40% масс. с основным раствором гидроксида аммония, содержащим 10 - 35% масс. NH3 или с жидким аммиаком NH3. Реакционную смесь подают в реактор 1 при особых условиях, таких как соответствующее перемешивание, подходящая температура 20 - 90°С, рН 5 - 11 и время пребывания 15 - 360 минут. Значение рН предпочтительно выбирают таким образом, чтобы обеспечить осаждение из фторкремниевой кислоты всего аморфного осаждённого диоксида кремния. Время пребывания влияет на морфологию аморфного осаждённого диоксида кремния. Полученную суспензию затем отделяют фильтрованием на фильтре 2 с использованием вакуумного фильтра с размером пор 100 мкм или более, предпочтительно, с использованием пресс-фильтра, и активный диоксид кремния (диоксид кремния) промывают и сушат при 110°С. Активный диоксид кремния имеет высокое содержание диоксида кремния 50 - 90% масс. и состоит из частиц со средним диаметром 32 мкм, причем 67,5% об. Частиц имеют размер менее 40 мкм и удельной поверхностью112 м²/г, измеренной лазерной гранулометрией.
Раствор от промывки отфильтрованного осадка представляет собой разбавленный раствор фторида аммония, который возвращают в реактор 1 с перемешиванием фторкремниевой кислоты или в реактор 3, и фильтрат, который является раствором фторида аммония, направляют на вторую стадию процесса, на которой фторид аммония реагирует с известняком в качестве источника кальция, для получения высокосортного фторида кальция с характеристиками коммерческого плавикового шпата.
Осаждение фторида аммония проводят в реакторе 3 с перемешиванием, в который добавляют суспензию карбоната кальция с концентрацией 10 - 80% масс. Температура варьируется в интервале 60 - 90°С, рН составляет 6 - 12, и время пребывания составляет около 30 - 60 мин. рН и время пребывания предпочтительно выбирают, чтобы обеспечить осаждение всего NH4F в виде CaF2, который обладает хорошими кристаллическими свойствами. Требуемое количество карбоната кальция выбирают так, чтобы оно соответствовало массовому отношению Ca/F превышающему 0,5 в реакционной смеси. Для улучшения кристаллизации фторида кальция в реактор 3 возвращают 10 - 70% суспензии фторида кальция, оставшуюся суспензию фторида кальция отделяют фильтрацией на фильтре 4 для извлечения конечного фторида кальция, который промывают и сушат в сушилке 5.
Чистота фторида кальция зависит от чистоты источника кальция. Она может достигать более 97% CaF2 по массе, так как используется карбонат кальция, который имеет высокую чистоту. Содержание диоксида кремния составляет менее 1,5% масс. за счёт соответствующего отделения диоксида кремния на первой стадии процесса. Что касается частиц фторида кальция, то средний диаметр составляет около 20 мкм, причем 87% по объёму частиц имеют диаметр менее 40 мкм, и удельная площадь поверхности составляет 278 м²/г, гораздо больший диаметр частиц достигается контролем возвращения в цикл суспензии фторида кальция или использованием, при необходимости, декантации перед фильтрованием фторида кальция. Кроме того, после сушки можно выполнить гранулирование частиц.
После фильтрации суспензии фторида кальция и фильтрат, и раствор от промывки отфильтрованного осадка, которые являются разбавленными растворами карбоната аммония, собирают в резервуаре 6 и перерабатывают дистилляцией и конденсацией для получения раствора аммиака. Указанный аммиак повторно используют непосредственно или в виде раствора карбоната аммония с содержанием 10 - 30% масс. NH3, для подачи на нейтрализацию фторкремниевой кислоты.
По сравнению с известными способами получение фторида кальция из фторкремниевой кислоты с использованием аммиака в соответствии с изобретением представляет собой новый процесс в том смысле, что он впервые использует аммиак и карбонат кальция для превращения фторкремниевой кислоты во фторид кальция при конкурентоспособной стоимости за счёт повышения эффективности реакций и возвращения в цикл аммиака, полученный фторид кальция отвечает техническим требованиям для коммерческого плавикового шпата, благодаря высокой степени чистоты и хорошей гранулометрии.
Кроме того, активный диоксид кремния, также называемый аморфным осаждённым диоксидом кремния, легко отделяется до осаждения и отделения фторида кальция.
Чтобы создать наиболее экономичный и надёжный процесс, основная часть аммиака выделяется из реактора 3 осаждения фторида кальция, путем частичного разложения карбоната аммония в условиях реактора, и затем очищается и возвращается в реактор осаждения диоксида кремния, оба раствора карбоната аммония, полученные на стадии (b), в виде фильтрата и раствора от промывки отфильтрованного осадка, затем собирают и перерабатывают дистилляцией и конденсацией для извлечения жидкого аммиака, который возвращают в цикл в реактор 1 осаждения диоксида кремния.
Вышеизложенное описание и последующие примеры относятся к нескольким конкретным осуществлениям способа, однако следует понимать, что это описание является только иллюстративным и ни в коем случае не ограничивает изобретение. Не исключаются другие возможные осуществления, которые позволяют осуществлять реакцию получения высокосортного фторида кальция из фторкремниевой кислоты с использованием аммиака.
Пример 1
252 грамма раствора фторкремниевой кислоты с концентрацией 32% масс., которая является коммерческой фторкремниевой кислотой, загружали в перемешиваемый реакционный сосуд объёмом 1 литр. Раствор в реакционном сосуде перемешивали со скоростью 250 об/мин. Во время перемешивания 380 граммов раствора гидроксида аммония с концентрацией 25% (мас.) по NH3, вводят непосредственно ниже поверхности жидкости. Время пребывания реакционной смеси составляет около 60 минут и конечный рН составляет около 8,3, и температуру снижают от 61° до 28°С. Затем реакционную смесь фильтруют, полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях выход нейтрализации фтора составляет 81,24%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствуют о получении фторсиликата аммония, а не активного диоксида кремния.
Сравнительный пример
В тех же условиях, что и в примере 1, берут 350 граммов раствора фторкремниевой кислоты с концентрацией 23% масс., который получен разбавлением коммерческой фторкремниевой кислоты, с концентрацией 32% масс. Во время перемешивания используют 507 граммов раствора гидроксида аммония, имеющего концентрацию 25% (масс.) по NH3. Конечный рН реакционной смеси составляет около 9,4. В этих условиях не образуется силикофторид, а образуется только активный диоксид кремния, выход нейтрализации фтора составляет 97,88%. Химический анализ высушенного отфильтрованного осадка свидетельствует о получении активного диоксида кремния (SiO2).
Пример 2
В реакционный сосуд, снабженный мешалкой, загружают 80 граммов фторида аммония с концентрацией 8,47% масс., извлеченного на стадии нейтрализации фторкремниевой кислоты. Раствор в реакционном сосуде перемешивают со скоростью 250 об/мин. Во время перемешивания вводят 71,4 г суспензии (19,5% масс.) гидроксида кальция, имеющей концентрацию 74,16% масс., для получения массового отношения NH4F/CaO, эквивалентного 2,1. Время пребывания реакционной смеси составляет около 30 минут и конечный рН составляет около 10, и температуру снижают от 21° до 16°С. Затем реакционную смесь фильтруют, полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях выход осаждения фтора составляет 87,62%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствуют о получении фторида кальция.
Сравнительный пример А
В условиях, идентичных во всех отношениях примеру 2, 96 граммов фторида аммония с концентрацией 8,47% масс., подают в реакционный сосуд, снабженный мешалкой. Во время перемешивания вводят 71,4 г суспензии (19,5% масс.) гидроксида кальция, имеющей концентрацию 74,16% масс., для получения массового отношения NH4F/CaO, эквивалентного 2,2. Время пребывания реакционной смеси составляет около 30 минут, и конечный рН составляет около 9,8. В этих условиях выход осаждения фтора составляет 69,75%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствует о получении фторида кальция.
Сравнительный пример B
В условиях, идентичных во всех отношениях, условиям примера 2, 100 граммов фторида аммония, имеющего концентрацию 6,49% масс., подают в реакционный сосуд, снабженный мешалкой. Во время перемешивания подают 50 граммов суспензии (25% масс.) гидроксида кальция, имеющей концентрацию 94,76% масс., для получения массового отношения NH4F/CaO, эквивалентного 2. Время пребывания реакционной смеси составляет около 30 минут и конечный рН составляет около 10,7. В этих условиях выход осаждения фтора составляет 96,66%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствуют о получении фторида кальция.
Пример 3
В реакционный сосуд объёмом 1 литр, снабженный мешалкой, подают 200 граммов раствора фторкремниевой кислоты с концентрацией 23% масс., который получен разбавлением коммерческой 32% масс. фторкремниевой кислоты. Раствор в реакционном сосуде перемешивают со скоростью 250 об/мин. Во время перемешивания 308 граммов раствора гидроксида аммония, имеющего концентрацию 25% (масс.) по NH3, вводят непосредственно ниже поверхности жидкости. Время пребывания реакционной смеси составляет около 60 минут, и конечный рН составляет около 9,6, тогда как температуру снижают от 54° до 20°С. Затем реакционную смесь фильтруют, полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях максимальный выход нейтрализации фтора составляет 98,22% в зависимости от морфологии диоксида кремния и параметров процесса фильтрации. Химический анализ свидетельствует о получении активного диоксида кремния, который имеет высокое содержание диоксида кремния 50 - 90 масс. в зависимости от технологии фильтрации и состоит из частиц со средним диаметром 30 мкм, причем 67% об. Частиц имеет диаметр менее 40 мкм, и удельной площадью поверхности, измеренной лазерной гранулометрией, 112 м²/г. Раствор после промывки отфильтрованного осадка, который является разбавленным раствором фторида аммония, 76 граммов с концентрацией 6,79% (масс.), возвращают в реактор с перемешиванием для фторкремниевой кислоты. Отфильтрованный раствор фторида аммония, 286,6 грамма и с содержанием фтора 7,04% масс., направляют на вторую стадию способа для взаимодействия с 86,7 грамма суспензии (40% масс.) гидроксида кальция, имеющей концентрацию 94,76% (масс.). На этой стадии мольное отношение NH4F/CaO эквивалентно 2. Время пребывания реакционной смеси составляет около 60 минут и конечный рН составляет около 10,7. Затем реакционную смесь разделяют на две части: 60% возвращают в реактор для фторида кальция и 40% фильтруют; полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях выход осаждения фтора составляет 96,66%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствуют о получении фторида кальция, который соответствует характеристикам коммерческого плавикового шпата. Чистота фторида кальция составляет 91% CaF2. Содержание диоксида кремния составляет менее 1,5%. Что касается частиц фторида кальция, средний диаметр составляет около 12 мкм, причем 87% по объёму частиц имеет диаметр менее 40 мкм, и удельная площадь поверхности, измеренная лазерной гранулометрией, составляет 276 м²/г, значительно больший диаметр частиц достигается контролем возврата в цикл суспензии фторида кальция или при необходимости декантацией до фильтрации фторида кальция. Кроме того, после сушки можно выполнить гранулирование частиц.
Пример 4
400 граммов раствора фторкремниевой кислоты с концентрацией 23% масс., который получен разбавлением коммерческой 32% масс. фторкремниевой кислоты, подают в реакционный сосуд объёмом 1 л, снабженный мешалкой. Раствор в реакционном сосуде перемешивают со скоростью 250 об/мин. Во время перемешивания в нижнюю часть реактора для диоксида кремния вводят стехиометрическое количество аммиака. Время пребывания реакционной смеси составляет около 60 минут, и конечный рН составляет около 9,5, и температуру снижают от 85° до 45°С. Затем реакционную смесь фильтруют, полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях выход нейтрализации фтора составляет 81,69%. Химический анализ свидетельствует о получении активного диоксида кремния, который имеет высокое содержание диоксида кремния 80 - 90 масс. в зависимости от технологии фильтрации и состоит из частиц со средним диаметром 36 мкм, причем 56% об. Частиц имеет диаметр менее 40 мкм, и удельной площадью поверхности, измеренной лазерной гранулометрией 200 м²/г. Раствор после промывки отфильтрованного осадка, который является разбавленным раствором 159 граммов фторида аммония, содержащим 13,44% (масс.) фтора, возвращают в реактор с перемешиванием для фторкремниевой кислоты. 357 граммов отфильтрованного раствора фторида аммония с содержанием 17,30% (масс.), фтора направляют на вторую стадию процесса для взаимодействия с 410 граммами суспензии (40% масс.) высокосортного карбоната кальция, с содержанием 55,55% CaO. На этом стадии массовое отношение NH4F/CaO эквивалентно 1,3. Время пребывания реакционной смеси составляет около 30 минут и конечный рН составляет около 11,5. Реакционную смесь фильтруют; полученный отфильтрованный осадок промывают дистиллированной водой и сушат при 110°С. В этих условиях выход осаждения фтора составляет 96,70%. Химический анализ и рентгеновская дифрактометрия высушенного отфильтрованного осадка свидетельствуют о получении фторида кальция, который соответствует характеристикам коммерческого плавикового шпата. Чистота фторида кальция составляет 97,95% CaF2. Содержание диоксида кремния составляет менее 1%. Что касается частиц фторида кальция, гранулометрия составляет около 40% частиц менее 45 мкм и 20% частиц выше 150 мкм, значительно больший диаметр частиц достигается контролем возврата суспензии фторида кальция или при необходимости декантацией до фильтрации фторида кальция. Кроме того, после сушки можно выполнить гранулирование частиц.
Ссылки
US 2,780,521
US 2,780,523
US 4,031,193
US 3,271,107
US 6,224,844
US 4,915,705
CN 103073040
CN 102502753

Claims (18)

1. Способ получения синтетического фторида кальция (CaF2), содержащего минимум 90% CaF2 по массе, из фторкремниевой кислоты, включающий следующие стадии:
(а) взаимодействия фторкремниевой кислоты (H2SiF6) с гидроксидом аммония или аммиаком в первом реакторе (1) для получения первой суспензии; фильтрации указанной первой суспензии для получения фильтрата, содержащего раствор фторида аммония;
(b) обработки раствора фторида аммония, полученного в виде фильтрата на стадии (а) карбонатом кальция (СаСО3) в виде сухого вещества или в виде суспензии с концентрацией 10 - 80% масс. во втором реакторе (3) для получения второй суспензии, содержащей фторид кальция и карбонат аммония; фильтрации указанной второй суспензии для получения отфильтрованного осадка, содержащего фторид кальция, и фильтрата, содержащего раствор карбоната аммония; промывки и сушки указанного отфильтрованного осадка, чтобы получить фторид кальция и раствор после промывки отфильтрованного осадка, содержащий раствор карбоната аммония; причём часть второй суспензии в количестве 10 - 70% возвращают во второй реактор (3), чтобы улучшить кристаллизацию фторида кальция;
(c) удаления основной части аммиака из второго реактора (3) на стадии (b) путем частичного разложения карбоната аммония в условиях реактора и затем очистки и возврата указанного аммиака в первый реактор (1), а также сбора и переработки путём дистилляции и конденсации как растворов карбоната аммония, полученных в виде фильтрата, так и раствора после промывки отфильтрованного осадка на стадии (b) для извлечения жидкого аммиака, который возвращают в первый реактор (1).
2. Способ по п. 1, в котором на стадии (а) в результате фильтрации первой суспензии получают отфильтрованный осадок, содержащий аморфный осаждённый диоксид кремния, и указанный отфильтрованный осадок диоксида кремния дополнительно промывают и сушат.
3. Способ по п. 1 или 2, в котором концентрация фторкремниевой кислоты, используемой на стадии (а), составляет 5 - 40% масс.
4. Способ по любому из пп. 1-3, в котором фторкремниевая кислота, используемая на стадии (а), представляет собой побочный продукт кислотной обработки фосфорита.
5. Способ по любому из пп. 1-4, в котором условия реакции, проводимой в первом реакторе (1) на стадии (а), включают, по меньшей мере, одно из условий:
- перемешивание смеси;
- температура между 20 и 90°С;
- рН от 5 до 11; и
- время пребывания 15 - 360 минут.
6. Способ по любому из пп. 1-5, в котором раствор от промывки отфильтрованного осадка, полученный на стадии (а), содержит раствор фторида аммония, который возвращают в первый реактор (1) или во второй реактор (3) и в котором фильтрат, полученный на стадии (а), направляют во второй реактор (3).
7. Способ по любому из пп. 1-6, в котором рН осаждения фторида кальция на стадии (b) составляет 6 - 12 и массовое отношение Ca/F составляет более 0,5.
8. Способ по любому из пп. 1-7, в котором условия реакции, проводимой во втором реакторе (3) на стадии (b), включают, по меньшей мере, одно из следующих условий:
- перемешивание смеси;
- температура 60 - 90°С;
- время пребывания 30 - 60 минут.
RU2017140415A 2015-04-22 2016-04-22 Способ получения фторида кальция из фторкремниевой кислоты RU2720313C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15164685.8 2015-04-22
EP15164685 2015-04-22
PCT/MA2016/000009 WO2016171535A2 (fr) 2015-04-22 2016-04-22 Processus de preparation du fluorure de calcium a partir de l'acide fluosilicique

Publications (3)

Publication Number Publication Date
RU2017140415A RU2017140415A (ru) 2019-05-22
RU2017140415A3 RU2017140415A3 (ru) 2019-09-03
RU2720313C2 true RU2720313C2 (ru) 2020-04-28

Family

ID=53189587

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140415A RU2720313C2 (ru) 2015-04-22 2016-04-22 Способ получения фторида кальция из фторкремниевой кислоты

Country Status (8)

Country Link
US (1) US11873229B2 (ru)
EP (1) EP3286138B1 (ru)
CN (1) CN108025923B (ru)
ES (1) ES2732943T3 (ru)
HK (1) HK1251215B (ru)
RU (1) RU2720313C2 (ru)
TN (1) TN2017000447A1 (ru)
WO (1) WO2016171535A2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950359A (zh) * 2020-01-07 2020-04-03 贵州瓮福蓝天氟化工股份有限公司 一种制备氟化钠副产高性能白炭黑的方法
CN113120937B (zh) * 2020-01-16 2023-02-28 中国科学院过程工程研究所 一种含氟硅酸废水的综合利用方法
CN114058855A (zh) * 2021-11-16 2022-02-18 秦皇岛信宝资源循环科技有限公司 一种二次铝灰无害化处理工艺
CN114031100A (zh) * 2021-12-20 2022-02-11 湖北祥云(集团)化工股份有限公司 一种磷矿伴生氟制备氟化盐的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU101115A1 (ru) * 1951-03-02 1954-11-30 А.Г. Павлович-Волковысский Способ получени фтористого кальци
US2780523A (en) * 1954-03-22 1957-02-05 Int Minerals & Chem Corp Process for recovering solid calcium fluoride containing product and colloidal silica solution from a weak aqueous fluosilicic acid solution
SU1142446A1 (ru) * 1983-03-02 1985-02-28 Предприятие П/Я Г-4567 Способ получени фтористого кальци
US4915705A (en) * 1986-08-01 1990-04-10 Freeport Research And Engineering Co. Production of silica and fluorine-containing coproducts from fluosilicic acid
RU2072324C1 (ru) * 1996-06-20 1997-01-27 Денисов Анатолий Кузьмич Способ получения фторида кальция
RU2388694C2 (ru) * 2006-01-05 2010-05-10 Валерий Николаевич Степаненко Способ получения фторида кальция и устройство для его осуществления
CN102502753A (zh) * 2011-11-18 2012-06-20 昆明道尔森科技有限公司 一种氟化钙的合成方法
WO2013153847A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2780521A (en) 1954-03-22 1957-02-05 Int Minerals & Chem Corp Process for producing colloidal silicafree calcium fluoride
US3271107A (en) 1963-07-31 1966-09-06 Int Minerals & Chem Corp Silica pigments from fluosilicic acid
DE2307897C3 (de) * 1973-02-17 1982-02-18 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von synthetischem Flußspat
US3923964A (en) * 1973-06-11 1975-12-02 Gustave E Kidde Process for the production of calcium fluoride from fluosilicates and by-product gypsum
DE2407238C3 (de) 1974-02-15 1979-06-28 Kali-Chemie Ag, 3000 Hannover Verfahren zur Herstellung von Calciumfluorid aus Hexafluorokieselsäure
DE2535658C2 (de) * 1975-08-09 1984-04-05 Kali-Chemie Ag, 3000 Hannover Verfahren zur Herstellung von Calciumfluorid
FI57980C (fi) * 1978-02-16 1980-11-10 Tampella Oy Ab Foerfarande och slipverk foer avlaegsning av slipmassa vid slipning av ved under tryck
US4279703A (en) * 1978-08-16 1981-07-21 Bethlehem Steel Corporation Apparatus for the distillation of weak ammonia liquor
TW406028B (en) * 1994-05-26 2000-09-21 Toshiba Corp Process for treating acidic exhaust gas
US6224844B1 (en) 1998-09-21 2001-05-01 E. I. Du Pont De Nemours And Company Process for the production of calcium fluoride
US6355221B1 (en) * 1999-04-05 2002-03-12 Bp Corporation North America Inc. Process for removing soluble fluoride from a waste solution containing the same
CN103073040B (zh) * 2013-01-30 2015-05-13 昆明道尔森科技有限公司 一种氟化钙联产白炭黑的生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU101115A1 (ru) * 1951-03-02 1954-11-30 А.Г. Павлович-Волковысский Способ получени фтористого кальци
US2780523A (en) * 1954-03-22 1957-02-05 Int Minerals & Chem Corp Process for recovering solid calcium fluoride containing product and colloidal silica solution from a weak aqueous fluosilicic acid solution
SU1142446A1 (ru) * 1983-03-02 1985-02-28 Предприятие П/Я Г-4567 Способ получени фтористого кальци
US4915705A (en) * 1986-08-01 1990-04-10 Freeport Research And Engineering Co. Production of silica and fluorine-containing coproducts from fluosilicic acid
RU2072324C1 (ru) * 1996-06-20 1997-01-27 Денисов Анатолий Кузьмич Способ получения фторида кальция
RU2388694C2 (ru) * 2006-01-05 2010-05-10 Валерий Николаевич Степаненко Способ получения фторида кальция и устройство для его осуществления
CN102502753A (zh) * 2011-11-18 2012-06-20 昆明道尔森科技有限公司 一种氟化钙的合成方法
WO2013153847A1 (ja) * 2012-04-13 2013-10-17 セントラル硝子株式会社 フッ化カルシウムの製造方法及び装置

Also Published As

Publication number Publication date
WO2016171535A3 (fr) 2017-03-30
WO2016171535A2 (fr) 2016-10-27
TN2017000447A1 (en) 2019-04-12
CN108025923A (zh) 2018-05-11
ES2732943T3 (es) 2019-11-26
US11873229B2 (en) 2024-01-16
HK1251215B (zh) 2019-11-22
RU2017140415A3 (ru) 2019-09-03
US20180155207A1 (en) 2018-06-07
RU2017140415A (ru) 2019-05-22
CN108025923B (zh) 2020-01-21
EP3286138A2 (fr) 2018-02-28
EP3286138B1 (fr) 2019-04-10

Similar Documents

Publication Publication Date Title
RU2720313C2 (ru) Способ получения фторида кальция из фторкремниевой кислоты
JP5201455B2 (ja) リン回収資材とその製造方法およびリン回収方法
JP4316393B2 (ja) フッ化カルシウムの製造方法と再利用法ならびにそのリサイクル方法
CN1721044A (zh) 磷肥生产中含氟废气利用的方法
US5427757A (en) Process for the production of phosphoric acid and hydrogen fluoride from phosphate rock and fluosilicic acid
CN109795995B (zh) 一种盐酸法湿法磷酸高效除杂的方法
US4465657A (en) Process for the preparation of pure silicon dioxide and silicon dioxide obtained by applying this process
SK7952001A3 (en) Lime treatment
CN107337212A (zh) 一种氟硅酸的综合利用方法
US5531975A (en) Process for the production of phosphoric acid and calcium fluoride
WO2013153846A1 (ja) フッ化カルシウムの製造方法及び装置
CN105819415B (zh) 一种盐酸制取饲料磷酸氢钙的磷矿全资源利用的生产方法
CN1234596C (zh) 以氟硅酸钠为原料制取氟化合物和二氧化硅的生产方法
US4965061A (en) Process for removing fluoride from a wastewater and producing hydrofluoric acid therefrom
RU2627431C1 (ru) Способ получения фторида кальция из фторуглеродсодержащих отходов алюминиевого производства
US4554144A (en) Removal of magnesium and/or aluminum values from impure aqueous phosphoric acid
WO2015150907A2 (en) High purity synthetic fluorite and process for preparing the same
RU2411183C1 (ru) Способ получения кремнефторида натрия
OA18492A (en) Process for preparing calcium fluoride from fluosilicic acid.
WO2013153847A1 (ja) フッ化カルシウムの製造方法及び装置
US3056650A (en) Preparation of fluorine compounds
RU2487082C1 (ru) Способ получения фторида кальция
JPH0692247B2 (ja) 珪弗化マグネシウムの製造方法
RU2472705C1 (ru) Способ получения синтетического флюорита
US2584895A (en) Treatment of fluoric effluents to obtain ammonium fluoride