RU2719517C2 - Способ получения аналогов альфа-гидроксиметионина и его производных из сахаров - Google Patents

Способ получения аналогов альфа-гидроксиметионина и его производных из сахаров Download PDF

Info

Publication number
RU2719517C2
RU2719517C2 RU2017141609A RU2017141609A RU2719517C2 RU 2719517 C2 RU2719517 C2 RU 2719517C2 RU 2017141609 A RU2017141609 A RU 2017141609A RU 2017141609 A RU2017141609 A RU 2017141609A RU 2719517 C2 RU2719517 C2 RU 2719517C2
Authority
RU
Russia
Prior art keywords
derivatives
hydroxymethionine
group
hydroxy
analogue
Prior art date
Application number
RU2017141609A
Other languages
English (en)
Other versions
RU2017141609A3 (ru
RU2017141609A (ru
Inventor
Ирантцу САДАБА ЗУБИРИ
Эсбен Таарнинг
Деспина ТЦОУЛАКИ
Original Assignee
Хальдор Топсёэ А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хальдор Топсёэ А/С filed Critical Хальдор Топсёэ А/С
Publication of RU2017141609A publication Critical patent/RU2017141609A/ru
Publication of RU2017141609A3 publication Critical patent/RU2017141609A3/ru
Application granted granted Critical
Publication of RU2719517C2 publication Critical patent/RU2719517C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/02Thiols having mercapto groups bound to acyclic carbon atoms
    • C07C321/04Thiols having mercapto groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения аналога α-гидроксиметионина и его производных, включающему стадию контактирования одного или нескольких cахаров или их производных, выбранных из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, треозы, гликолевого альдегида, метилвинилгликолята, винилгликолевой кислоты и 2-гидрокси-γ-бутиролактона, с металлосиликатной композицией в присутствии соединения, содержащего серу формулы RSR', где R и R' имеют такие же значения, как указано выше, и растворителя при нагревании до температуры от 60 до 140°С. Технический результат – увеличение выхода целевого продукта. 19 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

Description

Предпосылки к созданию изобретения
Углеводы представляют собой самую большую фракцию биомассы, и создаются различные стратегии их эффективного использования в качестве сырья для получения коммерческих химических веществ. Биомасса представляет особый интерес благодаря своему потенциалу касательно дополнения и, в конечном счете, замены нефти как сырья для таких целей. Углеводы, получаемые из биомассы, содержат С2-С6 сахара и представляют особый интерес с точки зрения промышленного производства, поскольку они являются потенциальным источником высокофункциональных углеродных соединений с короткой длиной цепи.
Данное изобретение направлено на получение аналога α-гидроксиметионина и его производных из сахаров в присутствии соединений цеотипа. Аналог α-гидроксиметионина представляет собой 2-гидрокси-4-(метилтио)бутановую кислоту. Аналог α-гидроксиметионина и его производные могут быть использованы в качестве пищевой/питательной добавки в композициях/составах кормов для животных.
Известно, что сахара С2-С6 могут превращаться в метиллактат и метилвинилгликолят (MVG) в присутствии материалов цеотипа, таких как Sn-BEA. В ЕР 2184270 В1 и Science (2010) 328, рр 602-605 сообщается о средних выходах метиллактата 64%, 43% и 44% при 160°С, в присутствии Sn-BEA и метанола из сахарозы, глюкозы и фруктозы, соответственно. Метилвинилгликолят (MVG) является основным побочным продуктом с сообщенным выходом 3-11%. MVG может быть получен с выходами вплоть до 56% из С4 сахара D-эритрозы.
WO 98/32735 раскрывает способ получения аналога метилового сложного эфира α-гидроксиметионина, метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, с выходом 85% за счет свободнорадикального присоединения метилтиола к не-конъюгированному олефиновому субстрату, то есть метилвинилгликоляту (MVG). Несмотря на высокий выход, радикальные реакции имеют способность к образованию регио-изомерных побочных продуктов.
WO 98/32735 также раскрывает альтернативный, многостадийный, коммерчески осуществимый способ получения аналога α-гидроксиметионина, 2-гидрокси-4-(метилтио)бутановой кислоты. Способ включает присоединение по Михаэлю метилмеркаптана к акролеину (конъюгированному олефиновому субстрату) в присутствии органического аминового катализатора с получением 3-(метилтио)-пропаналя, с последующим присоединением нитрила и гидролизом до кислоты. Хотя этот способ является промышленно осуществимым, следует избегать использования токсичных и дорогостоящих реагентов, таких как HCN и акролеин.
ChemCatChem (2013) 5, рр 569-575 раскрывает превращение тетроз (С4-сахаров) в MVG и ММНВ в гомогенных каталитических условиях. ММНВ селективно продуцируется из эритрулозы (С4-сахара) в присутствии гомогенного катализатора хлорида олова.
Соответственно, желательным является обеспечить альтернативный способ получения аналога α-гидроксиметионина и их производных. В частности, желательным является обеспечить способ, который является промышленно осуществимым, поэтому желательно, чтобы способ был высокопроизводительным, прямым и селективным. Желательно, чтобы процесс осуществлялся в условиях, которые являются промышленно осуществимыми, с регентами или катализаторами, которые обеспечивают легкость производства и уменьшают токсичные отходы, такую как использование гетерогенных катализаторов, которые могут быть регенерированы. Кроме того, желательным является обеспечить способ, в котором субстраты получают из возобновляемых источников, таких как С2-С6 сахара. В частности, поскольку сахарные субстраты гораздо менее токсичны и намного дешевле, чем, например, акролеин и реагент HCN, следовательно, использование сахарных субстратов значительно снижает затраты на производство.
Раскрытие изобретения
Неожиданно было обнаружено, что аналог α-гидроксиметионина и его производных может быть получен путем контактирования одного или нескольких сахаров с метало-силикатной композицией в присутствии соединения, содержащего серу, и растворителя.
Аналог α-гидроксиметионина и его производные могут быть представлены формулой
Figure 00000001
,
в которой R выбирают из группы, состоящей из Н, C1-C8 алкила, или щелочного или щелочноземельного металлов; и R' выбирают из группы, состоящей из Н и метила.
Аналог α-гидроксиметионина и его производных альтернативно может быть представлен следующим образом:
Figure 00000002
Неожиданно было обнаружено, что высокий выход аналога α-гидроксиметионина и его производных может быть получен в соответствии со способом согласно представленному изобретению.
Соединение, содержащее серу, предпочтительно представляет собой соединение формулы RSR', где R и R' выбирают из группы, состоящей из Н. С15 алкила, или щелочного, или щелочноземельного металлов. Соединение, содержащее серу, предпочтительно выбирают из группы, состоящей из С15 алкилтиола, солей С15 алкилтиола, диметилмеркаптана, диметилдисульфида и сероводорода. С15 алкил-тиол, как подразумевается в представленном контексте, относится к моно- и дизамещенным тиолам с заместителем, содержащим насыщенную алифатическую алкильную группу с линейной или разветвленной цепью, содержащей один, два, три, четыре или пять атомов углерода. C1-C5 алкилтиол, как подразумевается в представленном контексте, относится к алкилтиолу, выбранному из группы, состоящей из метантиола, этантиол, пропантиол с линейной или разветвленной цепью, бутан-тиол с линейной или разветвленной цепью и пентантиол с линейной или разветвленной цепью.
С15 алкилтиоловая соль, как подразумевается в представленном контексте, относится к соли щелочного или щелочноземельного металла С15 алкилтиола. Конкретно, С15 алкилтиоловая соль, как подразумевается в представленном контексте, относится к C1-C5 алкилтиолу в форме соли, в которой катион выбирают из группы, состоящей из натрия, калия, лития, магния и кальция. Конкретно, С15 алкилтиоловая соль, как подразумевается в представленном контексте, относится к С15 алкилтиолу, выбранному из одной или нескольких из групп, состоящих из NaSCH3, KSCH3, Ca(SCH3)2 и Mg(SCH3)2.
Сероводород может быть использован в качестве соединения серы для получения 2-гидрокси-4-меркаптобутановой кислоты или ее сложных эфиров, которые могут быть в последствии превращены в аналоги α-гидроксиметионина по реакции с метанолом. Альтернативно, сероводород может быть использован для образования C1-C5 алкилтиола в присутствии сахара, спирта и кислотного катализатора, как описано в Roberts, J. S. 2000. Thiols, Kirk-Othmer Encyclopedia of Chemical Technology.
Аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(С1-5 алкилтио)бутановой кислоты, ее солей и сложных эфиров. С1-5 алкилтио соответствует C1-5 алкилтиосоединению, содержащему серу, представленному в способе. Предпочтительно, аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, ее солей и сложных эфиров. Предпочтительно, аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, ее солей щелочного и щелочноземельного металла и C1-8 алкиловых сложных эфиров. Предпочтительно, аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, ее солей щелочного и щелочноземельного металла и C1-8 алкиловых сложных эфиров.
С1-8 алкиловые сложные эфиры, как подразумевается в представленном контексте, относятся к сложным эфирам, содержащим алкильную группу, выбранную из группы, состоящей из метила, этила, пропила, бутила, изопропила, изобутила, пентила, гексила, гептила, октила и 2-этилгексила. Соли щелочного и щелочноземельного металла означают соли кислоты, в которой катион соли выбирают из металлов группы I и группы II.
В одном из вариантов осуществления изобретения аналог α-гидроксиметионина и его производных представляет собой 2-гидрокси-4-(метилтио)бутановую кислоту.
В другом варианте осуществления изобретения аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, этилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, пропилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, бутилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, изопропилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, пентилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, гексилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, гептилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты, октилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты и 2-этилгексилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты.
Один или несколько сахаров, или их производных, выбирают из группы, состоящей из С2-С6 сахаров или их производных. С2-С6 сахара или их производные, как подразумевается в представленном контексте, относятся к углеводам, обычно встречающимся в биомассе, выбранным из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, треозы, глико-левого альдегида и 2-гидрокси-γ-бутиролактона. Один или несколько сахаров, или их производных, могут быть использованы в растворе, или он может представлять собой сахарный сироп. Такой раствор и сироп может быть назван как композиция сахара. Композиция сахара может содержать растворитель. Соответственно, один или несколько сахаров и их производных могут быть смешаны с растворителем и/или соединением, содержащем серу, перед тем как он контактирует с металлосиликатной композицией. Это может быть названо реакционной смесью.
Способ предпочтительно представляет собой одностадийный процесс, в котором аналог α-гидроксиметионина и его производных может быть получен непосредственно из сахарного субстрата путем контактирования одного или нескольких сахаров с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя.
В следующем варианте осуществления изобретения сахара могут использоваться в присутствии других С13 оксигенатов, таких как, ацетол, пирувальдегид, формальдегид и глиоксаль. Гликолевый альдегид (С2 сахар) может быть получен вместе с небольшими количествами других С13 оксигенатов путем гидратированного термолиза сахаров в соответствии с процедурой, описанной в US 7,094,932 В2 и РСТ/ЕР 2014/053587.
Аналог α-гидроксиметионина и его производных также может быть получен, подвергая один или несколько сахаров, или их производных, стадии пиролиза с получением продукта пиролиза и с последующим контактированием продукта пиролиза с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя.
Металлосиликатная композиция относится к одному или нескольким твердым материалам, содержащим оксид кремния и компоненты металла и/или оксида металла, причем компоненты металла и/или оксида металла включены в и/или привиты на поверхность структуры оксида кремния (то есть структура оксида кремния включает связи М-O-Si). Структура оксида кремния также известна как силикат. Металлосиликатные композиции могут быть кристаллическими или некристаллическими. Некристаллические металлосиликаты включают упорядоченные мезопористые аморфные или другие мезопористые аморфные формы. Металлосиликатную композицию выбирают из одной или нескольких групп, состоящих из материалов цеотипа и упорядоченных мезопористых аморфных силикатов.
Предпочтительно активный металл компонента металла и/или оксида металла выбирают из одной или нескольких групп, состоящих из Ge, Sn, Pb, Ti, Zr и Hf. Род материалов цеотипа охватывает род цеолитного материала. Предпочтительно материал цеотипа имеет каркасную структуру, выбранную из группы, состоящей из BEA, MFI, FAU, MOR и FER. Предпочтительно упорядоченный мезопористый аморфный силикат имеет структуру, выбранную из группы, состоящей из МСМ-41 и SBA-15. В предпочтительном варианте осуществления металлосиликатная композиция представляет собой материал цеотипа. Более предпочтительно металлосиликатная композиция представляет собой материал цеотипа и выбирается из группы, состоящей из Sn-BEA, Sn-MFI, Sn-FAU, Sn-MCM-41 и Sn-SBA-15.
Растворитель предпочтительно выбирают из одной или нескольких групп, состоящих из метанола, этанола, 1-пропанола, 1-бутанола, 2-пропанола, 2-бутанола, DMSO и воды.
WO 2015/024875 раскрывает, что в определенных условиях присутствие иона металла в реакционном растворе является благотворным для выхода. WO 2015/024875 приводит экспериментальные подробности, которые описывают происхождение и добавление иона металла в способе или посредством собственно катализатора, или независимо от катализатора.
Следующий вариант осуществления представленного изобретения представляет собой основной реакционный раствор. Основной раствор может быть получен путем добавления одного или нескольких основных компонентов. Основной компонент может быть выбран из одного или нескольких реагентов, выбранных из соли металла и основной полимерной смолы. Основная полимерная смола может представлять собой, например, основную смолу из амберлиста.
Соль металла содержит ион металла. Предпочтительно ион металла выбирают из группы, состоящей из калия, натрия, лития, рубидия и цезия. Предпочтительно соль металла представляет собой соль щелочноземельного металла или щелочного металла, и анион выбирают из группы, состоящей из карбоната, нитрата, ацетата, лактата, хлорида, бромида и гидроксида. Еще более предпочтительно ион металла получают из одной или нескольких солей щелочноземельного металла или щелочного металла и выбирают из группы, состоящей из K2CO3, KNO3, KCl, ацетата калия (CH3CO2K), лактата калия (СН3СН(ОН)CO2K), Na2CO3, Li2CO3 и Rb2CO3.
Реакционный сосуд/раствор, который используют в процессе, нагревают до температуры меньше, чем 250°С.Предпочтительно сосуд нагревают до от 50°С до 180°С, от 60°С до 170°С, от 80°С до 150°С; более предпочтительно от 60°С до 140°С.
В соответствии со способом согласно представленному изобретению авторы изобретения неожиданно обнаружили, что выход аналога α-гидроксиметионина и его производных является больше, чем выход MVG. Если С4 сахарид представляет собой субстрат, то выход MVG составляет меньше, чем 5%, 4%, 3%, 2%, 1%.
Кроме того, авторы изобретения неожиданно обнаружили, что выход аналога α-гидроксиметионина и его производных, полученного в соответствии со способом согласно представленному изобретению, составляет больше, чем 15%.
Способ получения аналога α-гидроксиметионина и его производных может быть осуществлен в периодическом режиме реакции или по реакции непрерывного потока.
Один или несколько сахаров, или их производных, контактируют с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя в реакторе. Сахара или их производные постепенно превращаются в аналог α-гидроксиметионина и его производные. Предпочтительно реактор перемешивают, например, с помощью мешалки или с помощью потока через реактор. Превращение предпочтительно проводят при нагревании и в течение периода времени, достаточного для достижения высокой конверсии сахаров и их производных. Предпочтительно в течение периода времени от 10 минут до 12 часов, более предпочтительно от 20 до 300 минут. Аналог α-гидроксиметионина и его производных может быть выделен так, как есть, или может быть очищен, например, путем дистилляции.
Продукты, полученные из биоматериалов, таких как сахара, будут иметь значительно более высокое содержание 14С углерода, чем такие же продукты, полученные из нефтехимических источников. Ранее, метионин и его производные для использования в качестве пищевых добавок были получены из ископаемых видов топлива.
Соответственно, согласно представленному изобретению предусматривается продукт, который может быть получен в соответствии со способом получения аналога α-гидроксиметионина и его производных из сахаров, описанным выше. Такой продукт характеризуется тем. что он имеет содержание 14С выше 0,5 частей на триллион общего содержания углерода. Аналог α-гидроксиметионина и его производных может представлять собой 2-гидрокси-4-(метилтио)бутановую кислоту, ее соли и сложные эфиры и, по меньшей мере, 70% исходного углерода может быть выделено в такой форме.
Подписи к чертежам
Фигура 1. Выход метилового сложного эфира аналога α-гидроксиметионина (метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты) с использованием Sn-Beta в качестве катализатора, с использованием гликолевого альдегида в качестве сахара в реакции непрерывного потока. Состав исходной сырьевой композиции: 9 г/л гликолевого альдегида в метаноле в качестве растворителя, 10,7 масс. % воды, 0,9 г/л метантиола.
Фигура 2. Выход метилового сложного эфира аналога α-гидроксиметионина (метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты) с использованием Sn-Beta в качестве катализатора, с использованием гликолевого альдегида в присутствии соединений C1-C3 оксигената в реакции непрерывного потока. Состав исходной сырьевой композиции: 10,9 г/л гликолевого альдегида в метаноле в качестве растворителя, 8 масс. % воды, 0,7 г/л метантиола.
Примеры
Получение катализатора
Sn-BEA (Si/Sn = 125) получают в соответствии с модификацией процедуры, описанной в патенте US 4,933,161. Коммерческий цеолит Бета (Zeolyst, Si/Al 12.5, аммонийная форма) прокаливают (550°С в течение 6 ч) для получения формы Н (деалюминированная форма) и обрабатывают 10 граммами концентрированной азотной кислоты (Sigma-Aldrich, 65%) на грамм порошка цеолита бета в течение 12 ч при 80°С. Полученное в результате твердое вещество фильтруют, промывают достаточным количеством воды и прокаливают (550°С в течение 6 ч), получая деалюминированный Бета. Данное твердое вещество пропитывают с использованием методологии начальной влажности с соотношением Sn/Si 125. С этой целью хлорид олова (II) (0,128 г, Sigma-Aldrich, 98%) растворяют в воде (5,75 мл) и добавляют к деалюминированному Бета (5 г). После процесса пропитки, образцы сушат в течение 12 ч при 110°С и снова прокаливают (550°С в течение 6 ч).
Пример 1: Каталитическая реакция в периодическом режиме реакции
В сосуд высокого давления из нержавеющей стали (40 см3, Swagelok) загружают 15,0 г метанола (Sigma-Aldrich, >99,8%), 0,450 г сахарозы (Fluka, >99.0%) и 0,150 г катализатора. Затем реактор заполняют 75 мл метантиола при 1,7 бар, создают повышенное давление 11 бар с N2 и закрывают. Реактор нагревают на масляной бане при 170°С при перемешивании (700 об./мин.). Реакцию продолжают в течение требуемого времени, и после этого периода реакцию гасят путем погружения сосуда в холодную воду. Образцы из реакционного сосуда фильтруют и анализируют с использованием HPLS (Agilent 1200, колонка Biorad Aminex НРХ-87Н при 65°С, 0,05 М H2SO4, 0,6 мл мин-1) для того, чтобы количественно определить неконвертированные гексозы и дигидроксиацетон (DHA), глицеральдегид (GLA); и GS (Agilent 7890 с колонкой Phenomenex Solgelwax) использовали для количественного определения: металлактата (ML), метилвинилгликолята (MVG, метил 2-гидрокси-3-бутеноата), диметилацеталя гликолевого альдегида (GADMA) и МНА (аналога α-гидроксиметионина и его производных).
Сложный эфир аналога α-гидроксиметионина, полученный в соответствии с Примером 1, может быть подвергнут взаимодействию в основном водном растворе, таком как водный раствор NaOH или KOH, или кислотном водном растворе, таком как водный раствор HCl, или твердый кислотный катализатор, с получением солей и кислотных производных сложного эфира аналога α-гидроксиметионина.
Таблица 1: Превращение сахаров в аналог α-гидроксиметионина и его производных в присутствии металлосиликатной композиции и соединения серы. МНА означает аналог α-гидроксиметионина и его производных. В случае растворителей А, В и С, МНА означает метиловый сложный эфир 2-гидрокси-4-(метилтио)бутановой кислоты. В случае H2O в качестве растворителя, МНА означает 2-гидрокси-4-(метилтио)бутановую кислоту. В случае IPA, МНА означает изопропиловый сложный эфир 2-гидрокси-4-(метилтио)бутановой кислоты. В случае этанола, МНА означает этиловый сложный эфир 2-гидрокси-4-(метилтио)бутановой кислоты.
Figure 00000003
Figure 00000004
Как видно из таблицы 1, С4 и С2 сахара (эритрулоза и гликолевый альдегид) обеспечивают самый высокие выходы аналога α-гидроксиметионина и его производных. Метанол и этанол обеспечивали аналогичные выходы соответствующих сложных эфиров.
Пример 2: Каталитическая реакция в реакции непрерывного потока
Композиции, содержащие гликолевый альдегид в присутствии соединений С1-С3 оксигената, могут быть получены путем приролиза биомассы или С56 сахаров, таких как глюкоза, сахароза, фруктоза или ксилоза. Иллюстративные реакции пиролиза представлены в US 7,094,932 В2 и РСТ/ЕР 2014/053587.
Композицию, содержащую гликолевый альдегид или соединения С13 оксигената с 814 г/л гликолевого альдегида, растворяли в метаноле (Sigma-Aldrich, 99,9%) при комнатной температуре до достижения концентрации 10,9 г/л. Кроме
того, к исходному раствору добавляли метантиол (Sigma, 1,7 бар) и, если необходимо, воду. Катализатор Sn-Beta (Si:Sn 125), полученный в соответствии с указанным выше способом получением, фракционировали (0,25 г, 300-600 мкм.) и загружали в реактор 0,25 дюйма из нержавеющей стали. Для удерживания катализатора на месте использовали стеклянную вату. Реактор вводили в печь, и температуру реактора повышали до 160°С. Когда температура составляла выше 140°С, запускали насос с потоком 0,05 мл/мин.
Как видно из фигур 1 и 2, стабильные выходы метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты (более 30%) были получены из гликолевого альдегида в воде и метаноле с использованием Sn-Beta в качестве катализатора. Присутствие других С1-С3 оксигенатов (Фигура 2) не влияло на реакцию получения метилового сложного эфира аналога α-гидроксиметионина.
Варианты осуществления
Представленное изобретение, кроме того, может быть описано в соответствии со следующими вариантами осуществления:
Вариант осуществления 1. Способ получения аналогов α-гидроксиметионина, включающий контактирование одного или нескольких сахаров, или их производных, с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя.
Вариант осуществления 2. Способ в соответствии с вариантом осуществления 1, в котором соединение, содержащее серу, выбирают из группы, состоящей из С15 алкилтиола, С15 алкилтиоловой соли, диметилмеркаптана, диметил-дисульфида и сероводорода.
Вариант осуществления 3. Способ в соответствии с каким-либо одним из вариантов осуществления 1 и 2, где соединение, содержащее серу, выбирают из группы, состоящей из метантиола, диметилмеркаптана, диметилдисульфида и сероводорода.
Вариант осуществления 4. Способ в соответствии с каким-либо одним из вариантов осуществления 1-3, в котором один или несколько сахаров, или их производных, выбирают из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, триозы, гликолевого альдегида и 2-гидрокси-γ-бутиролактона.
Вариант осуществления 5. Способ в соответствии с каким-либо одним из вариантов осуществления 1-3, в котором один или несколько сахаров, или их производных, представляют собой производные, полученные путем подвергания воздействию одного или нескольких сахаров, выбранных из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, треозы; стадии пиролиза для получения продукта пиролиза и с последующим контактированием продукта пиролиза с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя.
Вариант осуществления 6. Способ в соответствии с каким-либо одним из вариантов осуществления 1-5, в котором металлосиликатная композиция представляет собой материал цеотипа.
Вариант осуществления 7. Способ в соответствии с вариантом осуществления 6, в котором материал цеотипа представляет собой один или несколько материалов, выбранных из группы, состоящей из Sn-BEA, Sn-MFI, Sn-FAU, Sn-MCM-41 и Sn-SBA-15.
Вариант осуществления 8. Способ в соответствии с каким-либо одним из вариантов осуществления 1-7, в котором растворитель выбирают из одной или нескольких групп, состоящих из метанола, этанола, 1-пропанола, 1-бутанола, 2-пропанола, 2-бутанола, DMCO и воды.
Вариант осуществления 9. Способ в соответствии с каким-либо одним из вариантов осуществления 1-8, в котором аналоги α-гидроксиметионина выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, ее солей и сложных эфиров.
Вариант осуществления 10. Способ в соответствии с каким-либо одним из вариантов осуществления 1-9, в котором аналоги α-гидроксиметионина выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты и этилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты.
Вариант осуществления 11. Способ в соответствии с каким-либо одним из вариантов осуществления 1-10, в котором температура процесса составляет меньше, чем 200°С, предпочтительно в пределах от 50 до 200°С.
Вариант осуществления 12. Способ в соответствии с каким-либо одним из вариантов осуществления 1-11, в котором реакционный раствор содержит один или несколько основных компонентов, выбранных из группы, состоящей из соли металла и полимерной смолы.
Вариант осуществления 13. Способ в соответствии с каким-либо одним из вариантов осуществления 1-12, в котором выход аналогов α-гидроксиметионина составляет больше, чем метилвинилгликолята (MVG).
Вариант осуществления 14. Способ в соответствии с каким-либо одним из вариантов осуществления 1-13, в котором выход аналогов α-гидроксиметионина составляет больше, чем 15%.
Вариант осуществления 15. Способ в соответствии с каким-либо одним из вариантов осуществления 1-14, где способ представляет собой непрерывный процесс.
Вариант осуществления 16. Способ в соответствии с каким-либо одним из вариантов осуществления 1-15, в котором аналоги α-гидроксиметионина очищают путем дистилляции.
Вариант осуществления 17. Способ по варианту 9, в котором гидролизуют сложные эфиры 2-гидрокси-4-(метилтио)бутановой кислоты.
Вариант осуществления 18. Применение 2-гидрокси-4-(метилтио)бутановой кислоты, ее солей и сложных эфиров, полученных согласно способу по пунктам 9-17, для пищевой добавки.

Claims (23)

1. Способ получения аналога α-гидроксиметионина и его производных формулы
Figure 00000005
,
в котором R выбирают из группы, состоящей из Н, C1-C8 алкила, щелочного или щелочноземельного металлов; и R' выбирают из группы, состоящей из Н и метила; и где
способ включает стадию контактирования одного или нескольких cахаров или их производных, выбранных из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, треозы, гликолевого альдегида, метилвинилгликолята, винилгликолевой кислоты и 2-гидрокси-γ-бутиролактона, с металлосиликатной композицией в присутствии соединения, содержащего серу формулы RSR', где R и R' имеют такие же значения, как указано выше, и растворителя при нагревании до температуры от 60 до 140°С.
2. Способ по п. 1, в котором соединение, содержащее серу, выбирают из группы, состоящей из С15алкилтиола, С15алкилтиоловой соли, диметилмеркаптана, диметилдисульфида и сероводорода.
3. Способ по п. 2, в котором соединение, содержащее серу, выбирают из группы, состоящей из метантиола, щелочных солей метантиолята, диметилмеркаптана, диметилдисульфида и сероводорода.
4. Способ по п. 1, в котором один или несколько сахаров или их производных представляют собой производные, полученные путем подвергания воздействию одного или нескольких сахаров, выбранных из группы, состоящей из глюкозы, фруктозы, галактозы, маннозы, сахарозы, ксилозы, эритрозы, эритрулозы, треозы; стадии пиролиза с получением продукта пиролиза и последующего контактирования продукта пиролиза с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя.
5. Способ по п. 1, в котором металлосиликатная композиция представляет собой материал цеотипа.
6. Способ по п. 5, в котором материал цеотипа представляет собой один или несколько материалов, выбранных из группы, состоящей из Sn-BEA, Sn-MFI, Sn-FAU, Sn-MCM-41 и Sn-SBA-15.
7. Способ по п. 1, в котором растворитель выбирают из одного или нескольких из группы, состоящей из метанола, этанола, 1-пропанола, 1-бутанола, 2-пропанола, 2-бутанола, DMSO и воды.
8. Способ по п. 1, в котором аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, её солей и сложных эфиров.
9. Способ по п. 1, в котором аналог α-гидроксиметионина и его производных выбирают из группы, состоящей из 2-гидрокси-4-(метилтио)бутановой кислоты, метилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты и этилового сложного эфира 2-гидрокси-4-(метилтио)бутановой кислоты.
10. Способ по п. 1, в котором температура нагревания лежит между 80 и 120°С.
11. Способ по п. 1, в котором нагревание продолжают в течение периода времени от 10 минут до 12 часов, предпочтительно от 20 до 300 минут.
12. Способ по п. 1, в котором один или несколько сахаров или их производных контактируют с металлосиликатной композицией в присутствии соединения, содержащего серу, и растворителя и в присутствии одного или нескольких основных компонентов, выбранных из группы, состоящей из соли металла и полимерной смолы.
13. Способ по п. 1, в котором выход аналога α-гидроксиметионина и его производных является больше, чем выход метилвинилгликолята (MVG).
14. Способ по п. 1, в котором выход аналога α-гидроксиметионина и его производных составляет больше чем 15%.
15. Способ по п. 1, в котором способ представляет собой непрерывный процесс.
16. Способ по п. 15, в котором среднечасовая скорость подачи сырья лежит между 0,005 и 10 ч-1, предпочтительно между 0,1 и 1 ч-1.
17. Способ по п. 1, в котором выделяют аналог α-гидроксиметионина и его производные.
18. Способ по п. 1, в котором аналог α-гидроксиметионина и его производные выделяют посредством очистки.
19. Способ по любому из пп. 1-18, в котором аналог α-гидроксиметионина и его производные очищают посредством дистилляции.
20. Способ по п. 8, в котором гидролизуют сложные эфиры 2-гидрокси-4-(метилтио)бутановой кислоты.
RU2017141609A 2015-04-30 2016-04-29 Способ получения аналогов альфа-гидроксиметионина и его производных из сахаров RU2719517C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201500265 2015-04-30
DKPA201500265 2015-04-30
PCT/EP2016/059661 WO2016174231A1 (en) 2015-04-30 2016-04-29 A process for the preparation of methionine alpha-hydroxy analogues from sugars and derivatives thereof

Publications (3)

Publication Number Publication Date
RU2017141609A RU2017141609A (ru) 2019-05-30
RU2017141609A3 RU2017141609A3 (ru) 2019-10-21
RU2719517C2 true RU2719517C2 (ru) 2020-04-20

Family

ID=55910245

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017141609A RU2719517C2 (ru) 2015-04-30 2016-04-29 Способ получения аналогов альфа-гидроксиметионина и его производных из сахаров

Country Status (15)

Country Link
US (1) US10189778B2 (ru)
EP (1) EP3288920B1 (ru)
JP (1) JP6908529B2 (ru)
CN (1) CN107531619B (ru)
AR (1) AR104498A1 (ru)
BR (1) BR112017020877B1 (ru)
CA (1) CA2983397C (ru)
DK (1) DK3288920T3 (ru)
ES (1) ES2751048T3 (ru)
MX (1) MX2017012457A (ru)
RU (1) RU2719517C2 (ru)
SG (1) SG11201708637RA (ru)
TW (1) TWI713520B (ru)
WO (1) WO2016174231A1 (ru)
ZA (1) ZA201706480B (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016016238A (es) * 2014-06-19 2017-03-31 Topsoe Haldor As Conversion mediada por material microporoso cristalino de compuestos oxigenados c1-c3 a compuestos oxigenados c4.
US11882852B2 (en) * 2018-02-09 2024-01-30 Haldor Topsøe A/S Process of producing alpha-hydroxy compounds and uses thereof
AR115388A1 (es) 2018-05-18 2021-01-13 Haldor Topsoe As Desmetilación de éster metílico de metionina y su análogo hidroxi

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2367652C2 (ru) * 2005-01-28 2009-09-20 Дегусса Гмбх Способ получения 3-(алкилтио)пропаналя
EP2184270A1 (en) * 2008-11-11 2010-05-12 Haldor Topsoe A/S Zeolite-catalyzed preparation of alpha-hydroxy carboxylic acid compounds and esters thereof
US20110229626A1 (en) * 2008-11-20 2011-09-22 Arkema France Method for Manufacturing Methylmercaptopropionaldehyde and Methionine Using Renewable Raw Materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933161A (en) 1987-02-04 1990-06-12 Exxon Research And Engineering Company Tin substitution into zeolite frameworks
US5973200A (en) 1997-01-23 1999-10-26 Novus International, Inc. Process for the preparation of 2-hydroxy-4-(methylthio) butanoic acid or methionine by mercaptan addition
CA2326471A1 (en) 2000-11-20 2002-05-20 Resource Transforms International Ltd. Production of glycolaldehyde by hydrous thermolysis of sugars
CN101506153A (zh) * 2006-08-24 2009-08-12 赢创德固赛有限责任公司 制备d,l-2-羟基-4-烷基硫代丁酸的方法
FR2919607B1 (fr) 2007-07-31 2012-10-12 Adisseo Ireland Ltd Procede pour la conversion catalytique de 2-hydroxy-4- methylthiobutanenitrile (hmtbn) en 2-hydroxy-4- methylthiobutanamide (hmtbm).
WO2012101471A1 (en) * 2011-01-28 2012-08-02 Arkema France Improved process for manufacturing acrolein/acrylic acid
CN105473227B (zh) 2013-08-20 2018-04-27 托普索公司 用于在金属-硅酸盐材料和金属离子的存在下将糖转化为乳酸和2-羟基-3-丁烯酸或其酯的方法
EP3461806B1 (en) 2014-11-28 2020-08-05 Haldor Topsøe A/S Process for preparing alfa-hydroxy methionine analogues from sugars

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2367652C2 (ru) * 2005-01-28 2009-09-20 Дегусса Гмбх Способ получения 3-(алкилтио)пропаналя
EP2184270A1 (en) * 2008-11-11 2010-05-12 Haldor Topsoe A/S Zeolite-catalyzed preparation of alpha-hydroxy carboxylic acid compounds and esters thereof
US20110229626A1 (en) * 2008-11-20 2011-09-22 Arkema France Method for Manufacturing Methylmercaptopropionaldehyde and Methionine Using Renewable Raw Materials

Also Published As

Publication number Publication date
DK3288920T3 (da) 2019-11-25
RU2017141609A3 (ru) 2019-10-21
EP3288920B1 (en) 2019-09-25
JP6908529B2 (ja) 2021-07-28
WO2016174231A1 (en) 2016-11-03
BR112017020877A2 (pt) 2018-07-24
ZA201706480B (en) 2021-01-27
US10189778B2 (en) 2019-01-29
TWI713520B (zh) 2020-12-21
CA2983397A1 (en) 2016-11-03
CN107531619A (zh) 2018-01-02
CN107531619B (zh) 2020-07-07
US20180118673A1 (en) 2018-05-03
SG11201708637RA (en) 2017-11-29
AR104498A1 (es) 2017-07-26
RU2017141609A (ru) 2019-05-30
TW201702220A (zh) 2017-01-16
MX2017012457A (es) 2018-01-30
JP2018517678A (ja) 2018-07-05
ES2751048T3 (es) 2020-03-30
CA2983397C (en) 2023-04-04
EP3288920A1 (en) 2018-03-07
KR20180002647A (ko) 2018-01-08
BR112017020877B1 (pt) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6826225B2 (ja) 糖から乳酸及び2−ヒドロキシ−3−ブテン酸又はα−ヒドロキシメチオニン類似体のエステルを製造する方法
RU2719517C2 (ru) Способ получения аналогов альфа-гидроксиметионина и его производных из сахаров
BRPI0904364B1 (pt) processo para a produção de ácido láctico e ácido 2-hidróxi-3-butenóico ou ésteres dos mesmos
KR102673087B1 (ko) 당으로부터 메티오닌 알파-하이드록시 유사체 및 이들의 유도체의 제조를 위한 방법
EP2550251A1 (en) Process for producing sulfur-containing amino acid or salt thereof
NZ732280B2 (en) Process for preparing esters of lactic acid, and 2-hydroxy-3-butenoic acid or alfa-hydroxy methionine analogues from sugars
NZ732809A (en) Antenna for identification tag and identification tag with antenna
NZ732365B2 (en) Process for preparing esters of lactic acid, and 2-hydroxy-3-butenoic acid or alfa-hydroxy methionine analogues from sugars
NZ732365A (en) Solar collector
NZ732809B2 (en) Solar collector