RU2718678C1 - Способ получения микропористого тримезиата меди(ii) - Google Patents

Способ получения микропористого тримезиата меди(ii) Download PDF

Info

Publication number
RU2718678C1
RU2718678C1 RU2019130085A RU2019130085A RU2718678C1 RU 2718678 C1 RU2718678 C1 RU 2718678C1 RU 2019130085 A RU2019130085 A RU 2019130085A RU 2019130085 A RU2019130085 A RU 2019130085A RU 2718678 C1 RU2718678 C1 RU 2718678C1
Authority
RU
Russia
Prior art keywords
copper
alkaline agent
solution
ethanol
mixture
Prior art date
Application number
RU2019130085A
Other languages
English (en)
Inventor
Константин Александрович Коваленко
Владимир Петрович Федин
Алексей Каусарович Сагидуллин
Богдан Михайлович Орлиогло
Всеволод Александрович Болотов
Алексей Сергеевич Князев
Илья Николаевич Мазов
Сергей Игоревич Горбин
Виктор Сергеевич Мальков
Original Assignee
Общество с ограниченной ответственностью "Инжиниринговый химико-технологический центр" (ООО "ИХТЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Инжиниринговый химико-технологический центр" (ООО "ИХТЦ") filed Critical Общество с ограниченной ответственностью "Инжиниринговый химико-технологический центр" (ООО "ИХТЦ")
Priority to RU2019130085A priority Critical patent/RU2718678C1/ru
Application granted granted Critical
Publication of RU2718678C1 publication Critical patent/RU2718678C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/307Monocyclic tricarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), включающему этапы, на которых в этиловом спирте растворяют тримезиновую кислоту и добавляют водный раствор соли меди(II) с получением смеси, в которой следующее соотношение компонентов, масс.%: 50–80% спирта, 5–10% тримезиновой кислоты, 10–20% соли меди, вода — остальное, причем смесь нагревают при 20–100°C в течение 0,5–5 часов с периодическим добавлением по каплям 0,5–2%-ого раствора щелочного агента или добавлением щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой или водным раствором этанола с концентрацией 10–30% и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета. Технический результат патентуемого решения заключается в увеличении сорбционной ёмкости по отношению к газам и парáм за счет увеличения площади поверхности и объёма пор готового продукта. 3 з.п. ф-лы, 4 ил., 4 пр.

Description

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной ёмкостью, в частности к способу получения микропористого тримезиата меди(II), который может быть использован для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.
Из уровня техники известны следующие решения.
В химии металлорганических координационных полимеров известен микропористый тримезиат меди(II) (синонимы HKUST-1, MOF-199) состава [Cu3(btc)2(H2O)3]3 (H3btc - бензол-1,3,5-трикарбоновая кислота), синтезируемый из спиртово-водного раствора нитрата меди(II) и тримезиновой кислоты при 150-180°C в течение 6-20 ч. Выход HKUST-1 по такому методу синтеза составляет около 50%. Площадь удельной поверхности получаемых образцов составляет 1000±100 м2/г [S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science, 1999, 283, 1148-1150].
Описаны также способы синтеза аналогов HKUST-1 в других реакционных условиях: спиртово-водную смесь тримезиновой кислоты и нитрата меди(II) нагревают фиксированное количество времени в микроволновой печи с мощностью 1200 Вт при 105°С в течение 3-8 ч [1. Nazmul Abedin Khan, Enamul Haque and Sung Hwa Jhung, Physical Chemistry Chemical Physics, 2010, 12(11), 2625-2631]. Площадь удельной поверхности материалов, получаемых в таком синтезе составляет 1000-1168 м2/г.
В патенте [US8372998B2, опубликован 12.02.2013] описан способ синтеза микропористого тримезиата меди(II) с использованием безводного сульфата меди(II) и тримезиновой кислоты в этиленгликоле в атмосфере азота при 110°С в течение 8-12 ч с последующим промыванием метанолом, продувкой азотом и высушиванием в вакууме. По такому способу получается материал с высокой удельной площадью поверхности (2000-2100 м2/г), но выход составляет всего 5-10%.
Наиболее близким синтетическим методом является способ получения HKUST-1, предложенный в работе [Jin-Liang Zhuang, Doris Ceglarek, Sangeetha Pethuraj, and Andreas Terfort, Adv. Func. Mater., 2011, 21(8), 1442-1447]. Способ синтеза - готовят прекурсор растворением при комнатной температуре Cu(NO3)2⋅3H2O (5,24 ммоль) и тримезиновой кислоты (2,74 ммоль) в 5 г димелисульфоксида (ДМСО), который по 200 мкл вносят при перемешивании в метанол (10 мл). Через 10 минут продукт реакции выделяют центрифугированием. HKUST-1, получаемый таким способом, образуется в виде очень тонкого порошка, пригодного для нанесения покрытий. Данный способ синтеза позволяет получать микропористый тримезиат меди(II) при комнатной температуре в результате чрезвычайно быстрой реакции, однако имеет следующие недостатки. Добавление прекурсора в метанол возможно лишь однократно (и выход продукта существенно падает вследствие увеличения концентрации ДМСО в метаноле), что приводит к резкому увеличению объёма продуктов реакции и времени на их отделение с помощью центрифугирования. Выход продукта составляет всего ~200-300 мг (менее 30%).
Схематичное строение координационных полимеров Cu-BTC и его аналогов приведены на фиг. 1: а) строение биядерного металлокластера - «китайский фонарик»; б) металлокластеры располагаются в вершинах октаэдра и соединяются посредством анионов тримезиновой кислоты, формируя первый тип микрополостей; в) октаэдрические фрагменты структуры соединяются друг с другом через вершины, образуя второй тип полостей; г) полости соединяются друг с другом через гексагональные окна, формируя 3D систему каналов размером ~10 Å.
Задачей изобретения является разработка упрощённого, быстрого и способного к масштабированию способа получения микропористого тримезиата меди(II) с высокой удельной поверхностью (более 1500 м2/г) и объёмом пор (более 0,6 мл/г) и высоким выходом продукта (более 90%) с использованием минимального количества реагентов и экологически безопасных растворителей. Высокие площадь поверхности и объём пор позволят обеспечить бóльшую сорбционную ёмкость по отношению к газам и парáм по сравнению с аналогами материала.
Заявленный технический результат обеспечивается за счет осуществления способа получения микропористого тримезиата меди(II), включающего этапы, на которых в водно-спиртовой смеси при соотношении или в воде растворяют тримезиновую кислоту и добавляют раствора соли меди (II) с получением смеси, в которой следующее соотношение компонентов, масс.%: 50-80% спирта, 5-10% тримезиновой кислоты, 10-20% соли меди, вода - остальное, отличающийся тем, что смесь нагревают при 20-100°C в течение 0,5-5 часов с периодическим добавлением по каплям 0,5-2%-ого раствора щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета.
В частном случае осуществления изобретения осадок из реакционной смеси выделяют посредством фильтрования на воронке Бюхнера.
В частном случае осуществления изобретения в качестве щелочного агента используют гидроксиды или карбонаты щелочных металлов.
Отличительными признаками изобретения являются условия проведения процесса, выход целевого продукта реакции и его текстурные характеристики (площадь удельной поверхности и объём пор).
Тримезиновую кислоту при комнатной температуре или нагреве растворяют в этаноле и приливают водный раствор нитрата меди(II). Небольшими порциями вводят фиксированное количество щелочного агента, обусловленное тем, что как при его избытке, так и при недостатке по отношению к основным реагентам образуются фазы другого состава.
Сравнение (фиг.2) данных порошковой рентгеновской дифракции для HKUST-1, полученного по способу, известному из уровня техники (S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science, 1999, 283, 1148-1150) и по патентуемому методу в наиболее характеристичной области малых углов доказывает изоструктурность получаемого микропористого тримезиата меди(II) и HKUST-1.
Подбор параметров синтеза позволяет получить микропористый тримезиат меди(II) с высокой удельной площадью поверхности (1500-2000 м2/г) и объёмом пор (0,6-0,7 мл/г) и, как следствие, большей сорбционной ёмкостью по отношению к другим газам (CO2, CH4) и парам органических соединений (бензол). Таким образом, получаемый данным способом микропористый тримезиат меди(II) способен адсорбировать большее количество углекислого газа, метана и паров бензола по сравнению с аналогами, что важно для применения данного координационного полимера в качестве адсорбента или уловителя углекислого газа.
Далее приведены примеры осуществления способа.
Пример 1 (NaOH в качестве щелочного агента)
Растворить в 50 мл этанола тримезиновую кислоту (5,26 г, 25 ммоль) при интенсивном перемешивании при 60°C. Приготовить раствор Cu(NO3)2⋅3H2O (10 г, 41,4 ммоль) в 10 мл воды. Прилить раствор нитрата меди к раствору тримезиновой кислоты и поднять температуру смеси до 80°C. Порциями по 0,32 г вносить в реакционную смесь NaOH (2,56 г, 64 ммоль) и оставить реакционную смесь (общий объём 80 мл) при 80°C и интенсивном перемешивании на 1 ч. Полученный продукт отфильтровать на воронке Бюхнера, на фильтре промыть вначале спиртом (10 мл), затем водно-спиртовой смесью 1:1 (10 мл), затем 10%-ным раствором спирта в воде (10 мл) и, наконец, водой (50 мл). Выход составляет 7,5 г (~90%).
Площадь удельной поверхности по модели БЭТ - 1652 м2/г.
Пример 2 (NaOH в качестве щелочного агента)
Растворить в 2,5 л этанола тримезиновую кислоту (263 г, 1,25 моль) при интенсивном перемешивании при 60°C. Приготовить раствор Cu(NO3)2⋅3H2O (500 г, 2,1 моль) в 500 мл воды. Прилить раствор нитрата меди к раствору тримезиновой кислоты. Медленно (отдельными каплями) приливать раствор NaOH (120 г, 3,0 моль) в воде (1 л) и оставить реакционную смесь при 60°C и интенсивном перемешивании на 2 ч. Полученный продукт отфильтровать на воронке Бюхнера, на фильтре промыть вначале спиртом (0,5 л), затем водно-спиртовой смесью 1:1 (0,5 л), и, наконец, водой (1 л). Полученный продукт высушить на воздухе при 80°C. Выход составляет 370 г (~90%).
Площадь удельной поверхности по модели БЭТ - 1815 м2/г.
Величина адсорбции при 273 К и 800 мм рт. ст. превышает для углекислого газа 9 ммоль/г, метана - 1,5 ммоль/г, азота - 0,5 ммоль/г. Насыщения адсорбции в экспериментальном диапазоне давлений (до 800 мм рт. ст.) не наблюдается.
Изотермы (рис. 3) адсорбции-десорбции углекислого газа, метана и азота полученным микропористым координацинным полимером HKUST-1 (пример 2) при 273 К.
Пример 3 (Na2CO3 в качестве щелочного агента)
Растворить в 50 мл воды при интенсивном перемешивании Cu(NO3)2⋅3H2O (10 г, 41,4 ммоль). Отдельно приготовить раствор тримезиновой кислоты (5,3 г, 25,2 ммоль) в 50 мл этанола. Смешать растворы при интенсивном перемешивании при температуре 40-50°C. Порциями по 0,3-0,5 г в течение 20-25 минут добавлять карбонат натрия Na2CO3 (3,5 г, 33 ммоль).После внесения последней порции смесь перемешивать ещё 20-30 минут, после чего отделить продукт с помощью фильтрования на воронке Бюхнера. Осадок промыть на фильтре 30 мл этилового спирта, а затем высушить на воздухе при 70°С. Выход составляет 8,5 г (94%).
Площадь удельной поверхности по модели БЭТ - 1206 м2/г.
Пример 4 (основный нитрат меди(II) в качестве исходного реагента)
Растворить в 250 мл этанола тримезиновую кислоту (26,3 г, 125 ммоль) при интенсивном перемешивании при 60°С. В раствор внести навеску основного нитрата меди(II) Cu(NO3)2⋅3CuO⋅3H2O (23 г, 48 ммоль) и добавить 150 мл воды. Образовавшуюся суспензию перемешивать при 60 °С в течение 30 минут. Полученный продукт отфильтровать на воронке Бюхнера, на фильтре дважды промыть по 100 мл 10-30% водного раствора этанола и сушить на воздухе при 80°С до появления характерного фиолетового цвета. Выход составляет 27 г (98%).
Площадь удельной поверхности по модели БЭТ - 1597 м2/г.
Величина сорбции бензола, согласно полученной изотерме, при 293 К составляет при насыщении 300 мг/г или 86 см3 паров бензола на 1 г активированного сорбента.
Изотермы адсорбции-десорбции паров бензола полученным микропористым координационным полимером HKUST-1 (пример 4) при 293 К приведены на фиг.4.
Сравнительный пример 5 (сольвотермальный синтез HKUST-1)
В стальном автоклаве объёмом 25 мл с тефлоновым вкладышем смешать Cu(NO3)2⋅3H2O (895 мг; 3,70 ммоль), тримезиновую кислоту (526 мг; 2,5 ), 7,5 мл этанола и 7,5 мл дистиллированной воды. Смесь нагреть в программируемой печи за 1 ч до 110°С, выдержать при этой температуре 20 ч и в течение 3 ч охладить до комнатной температуры. Полученный твёрдый осадок отфильтровать, промыть этанолом и высушить на воздухе. Дальнейшую очистку осуществлять добавлением к осадку 20 мл этанола и перемешиванием образовавшейся суспензии при температуре 70°С в течение 1,5 ч. После чего осадок отфильтровывают и сушат на воздухе при температуре 70°С. Выход HKUST-1 составляет около 0,6 г (75%).
Сравнительный пример 6 (синтез HKUST-1 при комнатной температуре смешиванием раствора прекурсора в ДМСО с метанолом)
Растворить в 5 мл ДМСО при комнатной температуре Cu(NO3)2⋅3H2O (1,266 г, 5,24 ммоль) и тримезиновую кислоту (0,575 г, 2,74 ммоль). Порциями по 200 мкл вносить раствор в 10 мл этанола. Полученный продукт реакции отделить через 10 мин с помощью центрифугирования, промыть этанолом и высушить на воздухе при 80°С. Выход: 250 мг (21%).
* * * * *
Таким образом использование предлагаемого способа получения микропористого тримезиата меди (II) обеспечивает по сравнению с прототипом и существующими способами следующие преимущества: скорость синтеза и высокий выход продукта, способность к масштабированию синтеза до промышленных масштабах, бóльшую адсорбционную способность к CO2, метану и парам бензола, а также обеспечивает возможность разделения газовых смесей CO2/N2, CO2/CH4.

Claims (4)

1. Способ получения микропористого тримезиата меди(II), включающий этапы, на которых в этиловом спирте растворяют тримезиновую кислоту и добавляют водный раствор соли меди(II) с получением смеси, в которой следующее соотношение компонентов, масс.%: 50–80% спирта, 5–10% тримезиновой кислоты, 10–20% соли меди, вода — остальное, отличающийся тем, что смесь нагревают при 20–100°C в течение 0,5–5 часов с периодическим добавлением по каплям 0,5–2%-ого раствора щелочного агента или добавлением щелочного агента в количестве от 0,5 до 2 мольных частей на каждую мольную часть соли меди, выделяют осадок, который охлаждают до 20-30°C, очищают последовательной обработкой этанолом и дистиллированной водой или водным раствором этанола с концентрацией 10–30% и высушивают на воздухе при 70-80°C до появления у порошка фиолетового цвета.
2. Способ по п.1, характеризующийся тем, что осадок из реакционной смеси выделяют посредством фильтрования на воронке Бюхнера.
3. Способ по п.1, характеризующийся тем, что в качестве щелочного агента используют гидроксиды или карбонаты щелочных металлов.
4. Способ по п.1, характеризующийся тем, что вместо добавления щелочного агента изначально используют оснóвный нитрат меди(II).
RU2019130085A 2019-09-25 2019-09-25 Способ получения микропористого тримезиата меди(ii) RU2718678C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019130085A RU2718678C1 (ru) 2019-09-25 2019-09-25 Способ получения микропористого тримезиата меди(ii)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019130085A RU2718678C1 (ru) 2019-09-25 2019-09-25 Способ получения микропористого тримезиата меди(ii)

Publications (1)

Publication Number Publication Date
RU2718678C1 true RU2718678C1 (ru) 2020-04-13

Family

ID=70277692

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019130085A RU2718678C1 (ru) 2019-09-25 2019-09-25 Способ получения микропористого тримезиата меди(ii)

Country Status (1)

Country Link
RU (1) RU2718678C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807778C1 (ru) * 2023-04-17 2023-11-21 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Способ получения бактерицидных материалов для средств защиты органов дыхания

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US372998A (en) * 1887-11-08 Knife for cutting barrel-staves

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US372998A (en) * 1887-11-08 Knife for cutting barrel-staves

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Jin-Liang Zhuang et al. "Rapid Room-Temperature Synthesis of Metal-Organic Framework HKUST-1 Crystals in Bulk and as Oriented and Patterned Thin Films", ADVANCED FUNCTIONAL MATERIALS, 2011, Vol. 21, No. 8, P. 1442-1447. *
Jin-Liang Zhuang et al. "Rapid Room-Temperature Synthesis of Metal-Organic Framework HKUST-1 Crystals in Bulk and as Oriented and Patterned Thin Films", ADVANCED FUNCTIONAL MATERIALS, 2011, Vol. 21, No. 8, P. 1442-1447. Stephen S.-Y. Chui et al. "A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2 (H2O)3]n", Science, 1999, Vol. 283, No. 5405, P. 1148-1150. Nazmul Abedin Khan et al. "Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses", Physical Chemistry Chemical Physics, 2010, Vol. 12, No. 11, P. 2625-2631. *
Nazmul Abedin Khan et al. "Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses", Physical Chemistry Chemical Physics, 2010, Vol. 12, No. 11, P. 2625-2631. *
Stephen S.-Y. Chui et al. "A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2 (H2O)3]n", Science, 1999, Vol. 283, No. *
Баркова М. И. "Получение и газоразделительные свойства композитных мембран на основе металл-органических координационных полимеров", диссертация, 2014, С.117. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807778C1 (ru) * 2023-04-17 2023-11-21 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Способ получения бактерицидных материалов для средств защиты органов дыхания

Similar Documents

Publication Publication Date Title
Schejn et al. Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations
Tannert et al. Robust synthesis routes and porosity of the Al-based metal–organic frameworks Al-fumarate, CAU-10-H and MIL-160
Deleu et al. Waste PET (bottles) as a resource or substrate for MOF synthesis
Nordin et al. Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine
US20160185806A1 (en) PROCESS FOR OBTAINING METAL-ORGANIC MATERIALS WITH STRUCTURE TYPE MIL-101 (Cr) AND MIL-101-Cr-Mx+
Peng et al. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol
KR102267930B1 (ko) 2종 이상의 리간드를 포함하는, 3차원 다공성 구조를 갖는 신규한 알루미늄-기반 금속-유기 골격체, 이의 제조방법 및 용도
Karimi et al. Modulated formation of metal-organic frameworks by oriented growth over mesoporous silica
EP3134202A1 (fr) Procede de preparation d'un materiau adsorbant en l'absence de liant comprenant une etape de traitement hydrothermal et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
JP5568726B2 (ja) 酸化チタン/層状複水酸化物複合体及びその製造方法
RU2719596C1 (ru) Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата цинка
WO2018037321A1 (en) Synthesis of a mesoporous three dimensional carbon nitride derived from cyanamide and its use in the knoevenagel reaction
Grigolo et al. Catalytic properties of a cobalt metal–organic framework with a zwitterionic ligand synthesized in situ
Madhav et al. Synthesis of nanoparticles of zeolitic imidazolate framework ZIF-94 using inorganic deprotonators
RU2718678C1 (ru) Способ получения микропористого тримезиата меди(ii)
KR20150104479A (ko) 이산화탄소 포집용 흡착제 및 그 제조방법
Xu et al. Reaction duration-dependent formation of two Cu (ii)-MOFs with selective adsorption properties of C 3 H 4 over C 3 H 6
EP3628040A1 (en) 3d cage type high nitrogen containing mesoporous carbon nitride from diaminoguanidine precursors for co2 capture and conversion
RU2578599C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КООРДИНАЦИОННОГО ПОЛИМЕРА NH2-MIL-101(Al) И ПОРИСТЫЙ КООРДИНАЦИОННЫЙ ПОЛИМЕР NH2-MIL-101(Al), ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
RU2578600C1 (ru) Способ получения пористых координационных полимеров mil-53
JP6578704B2 (ja) 多孔性配位高分子
CN108097200B (zh) 一种制备改性氧化铝的方法
JP5190953B2 (ja) 多孔性アルミノリン酸トリエチルアミン結晶及びその製造方法
CN108101081B (zh) 一种改性氧化铝的制备方法
RU2718677C1 (ru) Быстрый и масштабируемый способ получения мезопористого терефталата хрома(iii)