RU2716831C1 - Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA) - Google Patents

Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA) Download PDF

Info

Publication number
RU2716831C1
RU2716831C1 RU2019130553A RU2019130553A RU2716831C1 RU 2716831 C1 RU2716831 C1 RU 2716831C1 RU 2019130553 A RU2019130553 A RU 2019130553A RU 2019130553 A RU2019130553 A RU 2019130553A RU 2716831 C1 RU2716831 C1 RU 2716831C1
Authority
RU
Russia
Prior art keywords
sample
lactide
plga
acetone
ethyl acetate
Prior art date
Application number
RU2019130553A
Other languages
English (en)
Inventor
Никита Владимирович Понарин
Любовь Анатольевна Покровская
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2019130553A priority Critical patent/RU2716831C1/ru
Application granted granted Critical
Publication of RU2716831C1 publication Critical patent/RU2716831C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Materials For Medical Uses (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Изобретение относится к аналитической химии, а именно к способам количественного определения токсичных компонентов в имплантатах на основе полилактид-гликолида (PLGA) методом газовой хроматографии. Способ одновременного определения в одной пробе количественного определения токсичных компонентов (ацетона, этилацетата, лактида) в имплантатах из PLGA, в том числе скаффолдах для культивирования клеток на основе полилактид-гликолида PLGA и фосфатов кальция ФК (гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфата Са3(РО4)2), методом газовой хроматографии на капиллярной колонке на основе 100% полиэтиленгликоля включает фильтрацию раствора образца скаффолда в хлороформе с использованием шприцевого фильтра с размером пор 0,45 мкм, хроматографирование полученного раствора с использованием пламенно-ионизационного детектора с температурой испарителя и детектора 250°С и температурным режимом колонки: плато 80°С – 2 мин, нагрев 10°С/мин до 170°С – плато 1 мин, нагрев 20°С/мин до 220°С – плато 17,5 мин; давлением газа-носителя (азота) 40 кПа, делением потока 1:20, в испаритель микрошприцем вводят 0,5 мкл полученного раствора, строят градуировочные зависимости для ацетона (в диапазоне 8·10-4–0,2%), лактида (в диапазоне 6·10-3–0,25%), этилацетата (в диапазоне 1·10–4–0,075%), по которым рассчитывают содержание токсичных компонентов в пробе. Техническим результатом является возможность одновременного в одной пробе количественного определения ацетона, этилацетата, лактида в имплатнатах и скаффолдах. 3 ил., 6 табл.

Description

Изобретение относится к аналитической химии, а именно к способам количественного определения токсичных компонентов в имплантатах на основе полилактид-гликолида (PLGA), в том числе скаффолдах для культивирования клеток из PLGA с включенными в структуру композита фосфатов кальция (ФК) методом газовой хроматографии с предварительным растворением PLGA имплантата. Изобретение заключается в способе одновременного и в одной пробе количественного определения токсичных компонентов: остаточных растворителей (ацетона, этилацетата) и остаточного лактида (мономеры лактида) в имплантате из PLGA, в том числе в скаффолде на основе PLGA с включенными ФК: гидроксиапатитом Ca10(PO4)6(OH)2 и β-трикальций фосфатом Са3(РО4)2.
Данные токсичные компоненты: остаточный лактид и органические растворители (ацетон, этилацетат) могут быть определены также заявленным способом в других изделиях медицинского назначения на основе PLGA, например, в полимерных капсулах из PLGA, шовном материале, пинах и других, в процессе изготовления которых в качестве растворителя PLGA были использованы ацетон и/или этилацетат.
Известно, что полимерная основа PLGA по завершения процесса полимеризации может содержать остаточный лактид, высокое содержание которого повышает риск проявлений токсических реакций со стороны клеток и организма, вызывать отторжение имплантата организмом человека [1].
Содержание остаточного лактида в PLGA и изделиях на основе PLGA для медицинского назначения нормируется и указывается в спецификации. Допускается его содержание не выше 3% [2].
Ацетон и этилацетат используют для растворения гранул PLGA с целью возможности формирования изделия, т.е. они являются технологическими растворителями, наиболее применимыми в процессе производства медицинских изделий из PLGA. Поскольку ацетон и этилацетат являются растворителями третьего класса токсичности необходимо определять их остаточное содержание в скаффолдах, полимерных капсулах, шовном материале на основе PLGA и других изделиях – имплантатах из PLGA. [3].
Количественное определение остаточных растворителей и остаточного лактида в полимерах, в том числе PLGA, проводят методами инфракрасной спектроскопии (ИК), высокоэффективной жидкостной хроматографии (ВЭЖХ) и газовой хроматографии (ГХ).
Определение массовой доли лактида в полилактиде методом ИК-спектроскопии описано в патенте WO2013/187758. Недостатком данного метода является сложность приготовления стандартных образцов близких по своему составу и структуре к конкретной матрице скаффолда.
Количественное определение остаточных мономеров (лактида и гликолида) в PLGA методом ВЭЖХ проводят в обращено-фазовом режиме. В ходе пробоподготовки проводят гидролиз образца полимера с применением гидроксида натрия, затем следует этап дериватизации некоторого количества молочной и гликолевой кислот, полученных на этапе гидролиза. В качестве дериватизируещего агента используют 2,4'-дибромацетофенон и триэтаноламин. Недостатком данного метода является сложность пробоподготовки, невозможность определять ацетон и этилацетат, и дороговизна аналитической процедуры [4].
Основным способом количественного определения остаточных растворителей (ацетон, этилацетат) и альтернативным способом определения остаточного лактида является метод газовой хроматографии. В данном методе разделение смеси реагентов проводят на капиллярных колонках, количественный анализ проводят по зависимости площади хроматографического пика от концентрации (метод абсолютной градуировки) либо по соотношению площадей пиков исследуемых компонентов с площадью пика вещества-стандарта в образце сравнения и исследуемом образце (метод внутреннего стандарта). Площадь пика – аналитический сигнал, получаемый при прохождении потока газа-носителя с разделенными компонентами смеси через детектор. В качестве детектора используют пламенно-ионизационный детектор (ПИД), в качестве газа-носителя гелий или азот.
В качестве способа количественного определения летучих органических примесей (ацетон, лактид) в упаковочных материалах на основе полилактида предложено использовать способ твердофазной микроэкстракции с дальнейшим анализом методом газовой хроматографии с ПИД на капиллярной колонке DB-5 (95% диметилполисилоксан, 5% фенил, Agilent Technologies). Навеску образца нагревают в закрытой виале, далее с помощью твердофазного экстрактора отбирают летучую часть пробы. Десорбцию проводят в испарителе хроматографа в течение 5-20 мин с дальнейшим анализом. Недостатком данного метода является сложный процесс пробоподготовки с применением различных моделей волокон-экстрагентов, в зависимости от молекулярной массы экстрагируемого вещества [5].
В ряде работ предложено использовать парафазную приставку к газовому хроматографу для количественного определения остаточных растворителей. Способ заключается в нагревании виалы с раствором образца до 110°С, далее поток газа-носителя нагнетается в виалу, после чего смесь подается в испаритель хроматографа. Далее проводится хроматографическое разделение на капиллярной колонке. Таким способом можно определять остаточные растворители, но невозможно определить остаточный лактид [6].
Остаточный дихлорметан предложено количественно определять методом газовой хроматографии в наночастицах PLGA без предварительной пробоподготовки. В качестве растворителя используют N,N-диметилацетамид, хроматографическое разделение проводят на капиллярной колонке HP-5ms (95% диметилполисилоксан, 5% дифенил, Agilent Technologies). Использование в качестве растворителя N,N-диметилацетамида с температурой кипения (165°С) близкой к лактиду (~ 175°С) может повлиять на хроматографическое разделение, однако, в данной работе это не было рассмотрено [7].
Методика количественного определения остаточного лактида в полилактиде с использованием газового хроматографа на детекторе ПИД основана на использовании метода внутреннего стандарта. Для хроматографического разделения использовали капиллярную колонку DB-17ms (30м×0,25мм, толщина фазы (50%фенил-метилполисилоксан) 0,25мкм, Agilent Technologies). Этапы анализа: приготовление раствора внутреннего стандарта (2,6-диметил-γ-пирон в дихлорметане); приготовление стандартного раствора лактида в дихлорментане; приготовление рабочего раствора (смесь стандартного раствора лактида и внутреннего стандарта). На этапе приготовления стандартного рабочего раствора описано добавление ацетона, что не подходит для количественного определения остаточного ацетона в скаффолдах. [8].
Предложен способ количественного определения остаточного лактида в полилактиде с применением внутреннего стандарта (дифениловый эфир) методом газовой хроматографии. Анализ проводится на капиллярной колонке SPB-5 (95% диметилполисилоксан, 5% фенил, Sigma Aldrich), при температурах испарителя и детектора 250°С, температура колонки 140°С, поток газа-носителя (азота) 2 мл/мин, деление потока 1:20. Пробу образца полимера растворяют в дихлорметане, затем к раствору прибавляют гексан (осадитель) для проведения экстракции лактида из раствора полилактида. К полученному раствору добавляют внутренний стандарт, затем проводят газохроматографический анализ [9]. На основе описанных условий коллектив авторов предложил способ количественного определения остаточного лактида в полилактиде. Суть способа заключается в том, что лактид вступает в реакцию с абсолютизированным спиртом с образованием этил лактата. После растворения навески образца полимера в хлороформе к раствору добавляют внутренний стандарт и абсолютизированный спирт, затем проводят количественное определение методом газовой хроматографии [10]. Недостатком является то, что колонка на основе диметилполисилоксана не позволяет провести эффективное разделение пиков ацетона и этилацетата с растворителем (хлороформ, дихлорметан).
Прототипом заявленного способа является способ хроматографического разделения изомеров лактида на капиллярной колонке HP-Innowax (100% полиэтиленгликоль, Agilent Technologies) методом газовой хроматографии. Поскольку целью данного исследования было получить условия разделения изомеров лактида (мезо-лактид, L-лактид), разработка способа количественного определения не была проведена. Применение такого типа капиллярных колонок позволяет провести разделение остаточных растворителей и, как показано в данной работе, провести разделение изомеров лактида [11].
Техническим результатом настоящего изобретения является возможность одновременного и в одной пробе количественного определения ацетона, этилацетата, лактида в имплатнатах и скаффолдах на основе полилактид-гликолида (PLGA), в том числе в скаффолдах с включением ФК, заменителей костных тканей: гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфата Са3(РО4)2. Задача решается путем растворения композита PLGA в хлороформе (при этом минеральная составляющая не растворяется), далее следует очистка полученной суспензии от полимера PLGA и частиц гидроксиапатита и β-трикальций фосфата, других ФК (остаточные оксиды, переходные формы ФК) с последующим анализом очищенного раствора в специально подобранных оптимизированных хроматографических условиях на содержание остаточного ацетона, этилацетата, лактида в одной пробе одновременно.
Заявленное изобретение по одновременному в одной пробе определению ацетона, лактида, этилацетата в скаффолдах из PLGA с ФК и других имплантатах на основе PLGA состоит из следующих этапов:
1 Растворение: перевод PLGA из твердого состояния в жидкое (раствор) путем растворения образца композитной матрицы (скаффолда) из PLGA (иного имплантата на основе PLGA) в хлороформе. Образец имплантата взвешивают на аналитических весах, записывают навеску с точностью ~ 0,0001 г, к навеске прибавляют хлороформ и доводят массу до соотношения 1:30 (минимальная масса исследуемого раствора 0,7 г), фиксируя итоговую массу с точностью ~ 0,0001 г. Процесс растворения образца длится не менее 30 мин до образования гомогенного раствора.
В случае растворения скаффолда из PLGA с включенными фосфатами кальция (ФК) минеральные компоненты не растворяются в хлороформе и суспензия фильтруется.
2 Очистка фильтрацией и разделение раствора PLGA: проводят очистку суспензии от неорганической части гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфатом Са3(РО4)2 и полимерной части (PLGA) с использованием шприцевых фильтров (размер пор не более 0,45 мкм). Фильтрация растворенной полимерной фракции исследуемого раствора происходит за счет разницы молекулярных масс токсичных компонентов, растворителя (хлороформа) и PLGA. От неорганической части (фосфаты кальция) очистка раствора образца происходит за счет подобранного размера пор (0,45 мкм).
Анализируется проба фильтрата с органическими компонентами и остаточным лактидом.
3 Построение градуировочных зависимостей в диапазонах: градуировочные кривые зависимости по площади пиков от концентрации компонента в следующих диапазонах: ацетон (8·10-4–0,2%), лактид (0,006–0,25%), этилацетат (1·10–4–0,075%) в хлороформе;
4 Анализ пробы: анализируют полученную пробу образца в следующих условиях:
Капиллярная колонка DB-WAX, 100% полиэтиленгликоль 30м × 0,25мм, толщина фазы 0,25мкм, производитель Agilent Technologies;
Газ-носитель: азот;
Детектор: пламенно-ионизационный;
Температура испарителя: 250°С;
Температура детектора: 250°С;
Давление: 60 кПа; деление потока: 1:20;
Температурный режим колонки: плато 80°С – 2 мин, нагрев 10°С/мин до 170°С – плато 1 мин, нагрев 20°С/мин до 220°С – плато 17,5 мин;
Объем вводимой пробы: 0,5 мкл.
Разработанные хроматографические условия позволяют разделить ацетон, лактид и этилацетат. Способ, на основе данных хроматографических условий с предварительной фильтрацией раствора образца, позволяет проводить одновременное количественное определение токсических компонентов: технологических растворителей (ацетон и этилацетат) и остаточного лактида в имплантате из PLGA, а именно, в скаффолде, в том числе с неорганической основой, фосфатами кальция (смесью гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфата Са3(РО4)2), а также в иных имплантатах на основе PLGA: полимерных капсулах и шовном материале и др.
На фиг. 1 приведена хроматограмма разделения модельной смеси в хлороформе: ацетон 3,0 мин; этилацетат 3,2 мин; хлороформ (растворитель) 3,6 мин; лактид 17,7 мин.
В таблице 1 указаны хроматографические параметры разделения.
В таблице 2 указаны диапазоны количественного определения токсичных компонентов в пробах скаффолдов.
Таблица 1 – Хроматографические параметры разделения
Figure 00000001
Для каждого градуировочного образца определяют площади хроматографических пиков компонентов (ацетон, лактид, этилацетат). Каждый образец анализируют не менее трех раз. Полученную зависимость массовой доли компонентов от площади хроматографического пика методом линейного регрессионного анализа интерполируют уравнением прямой. Градуировочная зависимость считается пригодной при коэффициенте корреляции не менее 0,995.
Массовую долю токсичных компонентов (ацетона, лактида, этилацетата) в анализируемом растворе рассчитывают по формуле:
Figure 00000002
,
где Сi — массовая доля токсичных компонентов (ацетона, лактида, этилацетата) в растворе, %;
Si — площадь хроматографического пика токсичных компонентов, мВ·с;
a, b — коэффициенты градуировочной зависимости.
Массовую долю определяемых компонентов в пробе скаффолда рассчитывают по формуле:
Figure 00000003
где Xi — массовая доля компонента в пробе, %;
Сi — массовая доля компонента в анализируемом растворе, %;
mр-ра — масса приготовленного раствора, г;
mпр — навеска пробы, г.
Таблица 2 – Диапазоны количественного определения токсичных компонентов в пробах скаффолдов
Figure 00000004
Ниже приведены примеры конкретного осуществления изобретения.
Пример 1. Количественное определение ацетона и этилацетата в образце скаффолда
Навеску образца скаффолда «PGLA 75/25 + ФК» 99,56 мг растворили в 1,5026 г хлороформа. Затем раствор отобрали шприцем на 5 мл и пропустили через PTFE фильтр (размер пор 0,45 мкм). Процедуру повторили 2 раза. Полученный раствор был гомогенным без видимых включений и опалесценции. Раствор хроматографировали по приведенным условиям. Были построены градуировочные зависимости на ацетон и этилацетат (табл. 3).
Таблица 3 – Диапазоны градуировочных зависимостей массовой доли от площади хроматографического пика
Figure 00000005
Результат расчета содержания ацетона, этилацетата в образце скаффолда приведен в табл. 4.
Таблица 4 –– Содержание ацетона и этилацетата в образце «PGLA 75/25 + GAP»
Figure 00000006
На фиг. 2 представлена хроматограмма образца «PGLA 75/25 + GAP» в хлороформе: ацетон 3,3 мин; этилацетат 3,4 мин; хлороформ (растворитель) 3,6 мин; (давление газа-носителя 40 кПа).
Пример 2. Количественное определение ацетона, этилацетата и лактида в образце скаффолда
Две параллельные навески образца скаффолда «Scaffold TSU» 0,0142 г (навеска 1) и 0,0174 г (навеска 2), массу раствора довели хлороформом до 0,7500 г (1) и 0,8015 г (2). Затем раствор отобрали шприцем на 5 мл и пропустили через PTFE фильтр (размер пор 0,45 мкм). Процедуру повторили 2 раза. Полученный раствор был гомогенным без видимых включений и опалесценции. Раствор хроматографировали по приведенным условиям.
На фиг. 3 представлена хроматограмма разделения образца «Scaffold TSU» в хлороформе: ацетон 3,0 мин; этилацетат 3,2 мин; хлороформ (растворитель) 3,6 мин; лактид 17,7 мин; (давление газа-носителя 60 кПа).
Были построены градуировочные зависимости на ацетон, этилацетат и лактид (табл. 5).
Таблица 5 –– Диапазоны градуировочных зависимостей массовой доли от площади хроматографического пика
Figure 00000007
Результат расчета содержания ацетона, лактида и этилацетата в образце скаффолда приведен в табл. 6.
Таблица 6 – Содержание определяемых компонентов в образце «Scaffold TSU»
Figure 00000008
Литература:
1. J. H. Hamman et al. Poly (D,L-lactide-co-glycolide) nanoparticles: Uptake by epithelial cells and cytotoxicity // eXPRESS Polymer Letters Vol.8, No.3 (2014) 197–206 10.3144/expresspolymlett.2014.23; F. W. Cordewener et al. Cytotoxicity of poly (96l/4d-lactide): the influence of degradation and sterilization // Biomaterials doi.org/10.1016/S0142-9612(00)00111-3; J Singha et al. Preparation, characterization, cytotoxicity and transfection efficiency of poly(d,l-lactide-co-glycolide) and poly(d,l-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA // International Journal of Pharmaceutics V. 343, 2007, P. 247-254
2. ASTM F2313-18 Standard Specification for Poly(glycolide) and Poly(glycolide-co-lactide) Resins for Surgical Implants with Mole Fractions Greater Than or Equal to 70 % Glycolide; ASTM F2579-18 Standard Specification for Amorphous Poly(lactide) and Poly(lactide-co-glycolide) Resins for Surgical Implants
3. ОФС.1.4.1.0026.18 Имплантаты; ОФС.1.1.0008.15 Остаточные органические растворители
4. M. Schneider et al. Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC // Journal of Pharmaceutical Analysis. V. 9, P.100-107
5. Ducrueta V. et al Quantitative determination of volatile organic compounds formed during Polylactide processing by MHS-SPME // Polymer Degradation and Stability. V.136, P.80–88; X. Zhang et al. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization // Journal of chromatography B. V. 810, P. 269-275
6. X. Wang et al. Quantitative determination of residual 1,4-dioxane in three-dimensional printed bone scaffold // Journal of Orthopedic Translation // doi.org/10.1016/j.jot.2017.06.004; S. Zhao. An easy solution to monitor printing residual solvents in packaging material using an Agilent 7820 GC system an Agilent 7697A headspace sampler // Agilent technologies
7. I.-J. Oh, E.-J. Han. Analysis of residual solvents in polylactide-co-glycolide) nanoparticles // Journal of Pharmaceutical Investigation. V. 42, P. 251-256
8. Quantification of Residual Lactide in Polylactide (PLA) by Gas Chromatography (GC) Using a Flame Ionization Detector (FID)-External Release Version // Nature works LLC
9. L. Feng et al. Quantification of residual monomer in polylactide by gas chromatographic internal standard method // Polymer Testing. V. 50, P. 79-82
10. L. Feng et al. An analytical method for determining residual lactide in polylactide by gas chromatography // Analytical sciences. V. 33, P. 235-238
11. В.Н. Глотова и др. Оптимизация газохроматографического разделения изомеров лактида // XVI Международная научно-практическая конференция имени профессора Л.П. Кулёва, стр. 254-255

Claims (1)

  1. Способ одновременного определения в одной пробе количественного определения токсичных компонентов (ацетона, этилацетата, лактида) в имплантатах из PLGA, в том числе скаффолдах для культивирования клеток на основе полилактид-гликолида PLGA и фосфатов кальция ФК (гидроксиапатита Ca10(PO4)6(OH)2 и β-трикальций фосфата Са3(РО4)2), методом газовой хроматографии на капиллярной колонке на основе 100% полиэтиленгликоля, отличающийся тем, что раствор образца скаффолда в хлороформе фильтруют с использованием шприцевого фильтра с размером пор 0,45 мкм, полученный раствор хроматографируют, используя пламенно-ионизационный детектор, задавая температуру испарителя и детектора 250°С и температурный режим колонки: плато 80°С - 2 мин, нагрев 10°С/мин до 170°С - плато 1 мин, нагрев 20°С/мин до 220°С - плато 17,5 мин; задают давление газа-носителя (азота) 40 кПа, деление потока 1:20, вводят 0,5 мкл полученного раствора в испаритель микрошприцем, строят градуировочные зависимости для ацетона (в диапазоне 8·10-4-0,2%), лактида (в диапазоне 6·10-3-0,25%), этилацетата (в диапазоне 1·10–4-0,075%), по которым рассчитывают содержание токсичных компонентов в пробе.
RU2019130553A 2019-09-27 2019-09-27 Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA) RU2716831C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019130553A RU2716831C1 (ru) 2019-09-27 2019-09-27 Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019130553A RU2716831C1 (ru) 2019-09-27 2019-09-27 Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA)

Publications (1)

Publication Number Publication Date
RU2716831C1 true RU2716831C1 (ru) 2020-03-17

Family

ID=69898330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019130553A RU2716831C1 (ru) 2019-09-27 2019-09-27 Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA)

Country Status (1)

Country Link
RU (1) RU2716831C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740103A (zh) * 2022-03-16 2022-07-12 天津键凯科技有限公司 一种聚多卡醇低聚物分布检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1332221A1 (ru) * 1983-06-22 1987-08-23 Всесоюзный научно-исследовательский институт синтетических смол Способ определени микроколичеств летучего вещества в жидких средах

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1332221A1 (ru) * 1983-06-22 1987-08-23 Всесоюзный научно-исследовательский институт синтетических смол Способ определени микроколичеств летучего вещества в жидких средах

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASTM F2313 - 18 "Standard Specification for Poly(glycolide) and Poly(glycolide-co-lactide) Resins for Surgical Implants with Mole Fractions Greater Than or Equal to 70 % Glycolide", 2018. *
ASTM F2313 - 18 "Standard Specification for Poly(glycolide) and Poly(glycolide-co-lactide) Resins for Surgical Implants with Mole Fractions Greater Than or Equal to 70 % Glycolide", 2018. ОФС.1.4.1.0026.18 "Имплантаты" Государственная фармакопея, изд. XIV, 31.10.2018. ОФС.1.1.0008.15 "Остаточные органические растворители" Государственная фармакопея, изд. XIV, 31.10.2018. *
ОФС.1.1.0008.15 "Остаточные органические растворители" Государственная фармакопея, изд. XIV, 31.10.2018. *
ОФС.1.4.1.0026.18 "Имплантаты" Государственная фармакопея, изд. XIV, 31.10.2018. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740103A (zh) * 2022-03-16 2022-07-12 天津键凯科技有限公司 一种聚多卡醇低聚物分布检测方法
CN114740103B (zh) * 2022-03-16 2023-06-23 天津键凯科技有限公司 一种聚多卡醇低聚物分布检测方法

Similar Documents

Publication Publication Date Title
DK2198007T3 (en) PHARMACEUTICAL COMPOSITIONS CONTAINING CLOSTRIDIUM DIFFICILE TOXOIDS A AND B
CN102791255B (zh) 胶束组合物及其制备方法
RU2716831C1 (ru) Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (PLGA)
CN101095697A (zh) 水蛭和/或地龙分子量5800道尔顿以下的提取物
Dybowski et al. Conversion of cannabidiol (CBD) to Δ9-tetrahydrocannabinol (Δ9-THC) during protein precipitations prior to plasma samples analysis by chromatography–troubles with reliable CBD quantitation when acidic precipitation agents are applied
CN105181823B (zh) 一种采用高效液相色谱法测定样品中甲卡西酮含量的方法
KR20130043196A (ko) 글라티라머 아세테이트 분자량 마커
Umapathi et al. Development and validation of a dissolution test method for artemether and lumefantrine in tablets
Li et al. Quantitative determination of residual 1, 4-dioxane in three-dimensional printed bone scaffold
KR101906321B1 (ko) 수난용성 약물을 포함하는 고분자 미셀 제제의 시험관 내 방출시험 및 평가 방법
EP3152573A1 (de) Verfahren zur analytischen authentizitätsprüfung von inhaltsstoffen in lebensmitteln unter verwendung künstlicher antikörper
Long et al. Preclinical evaluation of acute systemic toxicity of magnesium incorporated poly (lactic-co-glycolic acid) porous scaffolds by three-dimensional printing
Brunner et al. QS-21 adjuvant: laboratory-scale purification method and formulation into Liposomes
CN104833753B (zh) Edc残留的hplc‑elsd检测方法
EP3132790A1 (en) Exenatide-containing composition and preparation method therefor
CN104730166B (zh) 一种赤胫散中3,3’-二甲基鞣花酸、3,3’,4’-三甲基鞣花酸的定量检测方法
CN103932992B (zh) 一种含有艾塞那肽的组合物
CN103340830B (zh) 注射用更昔洛韦纳米囊冻干制剂及其制备方法
CN109771544B (zh) 一种龙血竭总黄酮的制备方法及应用
CN109580812B (zh) 聚酯材料中的单体残留的检测方法
CN110749679A (zh) 一种三甲基吡嗪残留的检测方法
CN101108841B (zh) 一种化合物及其应用
Zhao et al. Determination of curcumol in rat plasma by capillary gas chromatography with a hydrogen flame ionization detector
Hu et al. A validated, stability-indicating HPLC method for the determination of felodipine and its related substances
CN114295757B (zh) 一种鼠妇虫hplc特征图谱构建方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200608

Effective date: 20200608