RU2716771C2 - Армированная съемная тепловая изоляция (асти) - Google Patents

Армированная съемная тепловая изоляция (асти) Download PDF

Info

Publication number
RU2716771C2
RU2716771C2 RU2017111880A RU2017111880A RU2716771C2 RU 2716771 C2 RU2716771 C2 RU 2716771C2 RU 2017111880 A RU2017111880 A RU 2017111880A RU 2017111880 A RU2017111880 A RU 2017111880A RU 2716771 C2 RU2716771 C2 RU 2716771C2
Authority
RU
Russia
Prior art keywords
blocks
asti
heat
elastic
hook
Prior art date
Application number
RU2017111880A
Other languages
English (en)
Other versions
RU2017111880A3 (ru
RU2017111880A (ru
Inventor
Борис Владимирович Крайнов
Original Assignee
Публичное Акционерное Общество "Машиностроительный Завод "Зио-Подольск"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2017111880A priority Critical patent/RU2716771C2/ru
Application filed by Публичное Акционерное Общество "Машиностроительный Завод "Зио-Подольск" filed Critical Публичное Акционерное Общество "Машиностроительный Завод "Зио-Подольск"
Priority to HUE18781759A priority patent/HUE064515T2/hu
Priority to CA3059340A priority patent/CA3059340C/en
Priority to PCT/RU2018/000222 priority patent/WO2018186773A1/ru
Priority to JOP/2019/0238A priority patent/JOP20190238B1/ar
Priority to FIEP18781759.8T priority patent/FI3608579T3/fi
Priority to EA201992391A priority patent/EA201992391A1/ru
Priority to EP18781759.8A priority patent/EP3608579B1/en
Priority to BR112019021091-1A priority patent/BR112019021091B1/pt
Priority to JP2019554990A priority patent/JP7249083B2/ja
Priority to CN201880023610.XA priority patent/CN111601998B/zh
Priority to US16/603,542 priority patent/US11708934B2/en
Publication of RU2017111880A3 publication Critical patent/RU2017111880A3/ru
Publication of RU2017111880A publication Critical patent/RU2017111880A/ru
Priority to ZA2019/07363A priority patent/ZA201907363B/en
Application granted granted Critical
Publication of RU2716771C2 publication Critical patent/RU2716771C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Abstract

Изобретение относится к теплоизоляции трубопроводов и цилиндрических сосудов. Армированная съемная тепловая изоляция (АСТИ) содержит размещенные на внешней поверхности теплоизоляционного оборудования вплотную друг к другу теплоизоляционные блоки, состыкованные между собой продольными боковыми стенками и включающие короба, выполненные из нержавеющей стали и заполненные теплоизоляционным материалом. Короб выполнен в виде прочной армирующей каркасной решетки, изготовленной из скрепленных неподвижно между собой прутков круглого сечения диаметром 0,2-5,0 мм или эквивалентных им по прочности прутков другого профиля сечения, а также тонкостенного нержавеющего облицовочного листа, штампованных рифленых нержавеющих стальных шайб с желобами с небольшим сужением входной части для стыковки с перекрестками прутков армирующей решетки, которая полочками рифленых шайб скреплена с тонкостенным стальным нержавеющим листом с помощью контактной сварки, образуя блок АСТИ. Блоки АСТИ скреплены между собой с помощью замков-защелок, устанавливаемых на угловых перекрестках наружного и внутреннего оснований, сопрягаемых между собой блоков АСТИ и состоящих из переносных захватов и неподвижных камер зацепов, размещаемых внутри блоков АСТИ. Стенки зацепа образуют створы с наклонной плоскостью е, взаимно контактирующей при стыковке с поверхностью пластин захвата с закруглением, размещаемого соосно линии стыков углов боковых стенок блоков. Захваты соединены между собой кольцевой пружиной, скрепленной с упругими пластинами захвата и соединяющей их симметрично относительно оси симметрии захватов таким образом, что ближайшая внутренняя упругая стенка каждого захвата находится от оси симметрии захватов на расстоянии b, которое меньше расстояния а. За счет разности расстояний с=а-b, называемой гарантированным натягом, получаемым в результате взаимодействия захвата и зацепа, обеспечивается постоянная фиксация боковых граней блоков друг с другом, при этом компенсирующий гибкий натяг получается за счет возникающих упругих деформаций, изгиба пластин захвата, упругого кручения и выпрямления упругой кольцевой пружины, образуя гибкую обратную связь, компенсирующую перемещение блоков АСТИ при температурных расширениях теплоизолируемой поверхности оборудования. 2 з.п. ф-лы, 14 ил.

Description

Изобретение относится к теплоизоляционной технике, а более конкретно к конструкциям теплоизоляции трубопроводов и цилиндрических сосудов.
Из достигнутого уровня техники известна сборная теплоизоляционная конструкция, содержащая, плотно охватывающую трубопровод, цилиндрическую оболочку из расположенных последовательно по его длине и соединенных между собой секций, каждая из которых выполнена из состыкованных и соединенных между собой N-теплоизолирующих элементов с поперечным сечением в форме кольцевого сектора (см. патент RU - U1 - №40433, 2004).
Известна блочная съемная тепловая изоляция (далее - БСТИ) (прототип), представляющая собой короб, выполненный из стали. Полость короба заполнена теплоизоляционным материалом. В качестве теплоизоляционного материала используются маты из стеклянного или базальтового штапельного волокна. От перемещений внутри короба теплоизоляционный материал фиксируется с помощью специальных штифтов и клипс. После укладки теплоизоляционного материала короб закрывается пуклеванной нержавеющей фольгой, которая приваривается с внутренней стороны блока. Крепление всех элементов блока между собой выполнено контактной сваркой. Блоки имеют возможность повторять поверхность теплоизолируемого оборудования. Крепление БСТИ на оборудовании и трубопроводах осуществляется с помощью специальных натяжных замков, заранее установленных на блоках примерно 60%, а остальные - 40% замков крепятся с помощью сварки на монтаже БСТИ (ПАО «ЗиО-Подольск», «KAEFER» https://www.kaefer.com/Insulation-for-Nuclear-Facilities.html по состоянию на 22.11.2018)
Недостатком является то, что толстостенная сталь короба (1,0 мм и 0,5 мм), обусловленная прочностными характеристиками в связи с большими размерами блоков и креплением на их поверхности большого количества тугих натяжных замков, приводит к нерациональному применению стали и теплоизоляционного материала.
Соотношение веса теплоизоляционного материала к весу блоков БСТИ составляет 31,3% (19тн - теплоизоляционный материал и 41,7тн - сталь), что приводит к выводу о не рациональном наличии стали (68,7%) в теплоизоляционной конструкции блоков.
Наличие тугих натяжных замков на поверхности блоков приводит к большой толщине стали короба и к возникновению моментов сил, стремящихся за счет изгибающих моментов вывернуть блоки и раскрыть зазоры поверхностей блоков, обращенных к тепло изолируемой поверхности, что может привести к дополнительному повышению температуры и ухудшению теплоизоляционных свойств.
Целью данного изобретения является снижения веса нержавеющей стали теплоизоляционных блоков и созданию гарантированных минимальных зазоров боковых поверхностей блоков, экранирующих тепловые выделения оборудования.
Поставленная задача решается за счет того, что армированная съемная тепловая изоляция (АСТИ), содержит, размещенные на внешней поверхности теплоизоляционного оборудования вплотную друг к другу теплоизоляционные блоки, состыкованные между собой продольными боковыми стенками и включающие короба, выполненные из нержавеющей стали и заполненные теплоизоляционным материалом, при этом конструкция короба выполнена в виде соединения, состоящего из прочной армирующей каркасной решетки, изготовленной из скрепленных неподвижно между собой прутков круглого сечения диаметром 0,2-5,0 мм или эквивалентных им по прочности прутков другого профиля сечения, а также тонкостенного нержавеющего облицовочного листа, штампованных рифленых нержавеющих стальных шайб с желобами с небольшим сужением входной части для стыковки с перекрестками прутков армирующей решетки, которая полочками рифленых шайб скреплена с тонкостенным стальным нержавеющим листом с помощью контактной сварки, образуя блок АСТИ, при этом блоки АСТИ скреплены между собой с помощью замков - защелок, устанавливаемых на угловых перекрестках наружного и внутреннего оснований, сопрягаемых между собой блоков АСТИ и состоящих из переносных захватов и неподвижных камер зацепов, размещаемых внутри блоков АСТИ, каждый зацеп выполнен в виде штампованных стенок, закрепленных к каркасу блока с помощью ребер жесткости и нержавеющей пластины, стенки зацепа образуют створы с наклонной плоскостью е, взаимно контактирующую при стыковке с поверхностью пластин захвата с закруглением, размещаемого соосно линии стыков углов боковых стенок блоков, захваты соединены между собой разъемной или неразъемной кольцевой пружиной, скрепленной с упругими пластинами захвата и соединяющей их симметрично относительно оси симметрии захватов таким образом, что ближайшая внутренняя упругая стенка каждого захвата находится от оси симметрии захватов на расстоянии b, которое меньше расстояния а, расположенного на биссектрисе угла нижнего основания стыкуемого блока, и измеряемого от вершины угла до ближней стенки камеры зацепа, с которого происходит взаимодействие упругой стенки захвата, и за счет разности расстояний с=а-b, называемой гарантированным натягом, получаемым в результате взаимодействия захвата и зацепа, обеспечивается постоянная фиксация боковых граней блоков друг с другом, при этом компенсирующий гибкий натяг получается за счет возникающих упругих деформаций изгиба пластин захвата, упругого кручения и выпрямления упругой кольцевой пружины, образуя гибкую обратную связь, компенсирующую перемещение блоков АСТИ при температурных расширениях теплоизолируемой поверхности оборудования, при этом захваты выполнены в виде закругленных гибких и упругих пластин, которые проходя через створы камеры зацепа сжимаются, а пройдя створы разжимаются и с помощью ответных им стенок камеры зацепа фиксируют гибкую связь между захватом и зацепом. Каркасная армирующая решетка выполнена из нержавеющей стали. В составе каркасной решетки присутствует один усиленный профиль прутка решетки, расположенный линейным размером параллельно оси цилиндрической поверхности теплоизолируемого тела и соединенный контактным способом неподвижно со вторым прутком - полосой, позволяющий унифицировано собирать несущие каркасы блоков АСТИ для тепловой изоляции любой кривизны поверхности теплоизолируемого оборудования.
Конструкция сборки замка-защелки с кольцевой пружиной обеспечивает надежный контакт поверхностей блоков АСТИ за счет гарантированного натяга в недоступной внутренней части соприкасающихся боковых граней блоков для обеспечения их плотного прилегания между собой. За внутреннее основание теплоизоляционного блока принято недоступное основание блока, обращенное к теплоизолируемой поверхности, а более холодное, обслуживаемое основание теплоизоляционного блока считаем наружным основанием.
Использование замков-защелок в теплоизоляционных блоках позволяет сэкономить вес нержавеющего металла тепловой изоляции, повысить прочность теплоизоляционных блоков, максимально исключить раскрытие тепловых зазоров между боковыми гранями теплоизоляционных блоков со стороны недоступных внутренних оснований тепловой изоляции, а так же повысить теплоизоляционную надежность, достигаемую надежным контактом боковых граней теплоизоляционных блоков за счет применения гарантированных натягов между зацепами теплоизоляционных блоков и захватами замков-защелок, упрощает конструкцию и сокращает количество натяжных замков в два раза.
Размещение зацепов в углах на пересечении боковых граней блока АСТИ в заводских условиях исключает многочисленные подгоночные работы и сварку ~ 6400 натяжных замков на поверхности блоков АСТИ, устанавливаемых индивидуально по месту при монтажно-сборочных работах на оборудовании.
При размещении зацепов внутри теплоизоляционных блоков АСТИ, отсутствует деформация зацепов в процессе транспортировки съемных теплоизоляционных блоков в затесненных условиях при первичном монтаже, демонтаже и в процессе эксплуатации, а также при проведении плановых осмотров и контроля металла теплообменных поверхностей атомных электростанций.
На Фиг. 1 изображены составные части каркаса, выполненные из нержавеющей решетки с квадратной ячейкой.
На Фиг. 2 изображены составные части каркаса с установленными в перекрестьях решетки рифлеными шайбами.
На Фиг. 3 изображены каркасные части теплоизоляционного блока, облицованные тонкостенной нержавеющей стальной оболочкой с припуском по периметру, и приваренным контактной сваркой к полочкам рифленых шайб.
На Фиг. 4 изображен собранный и сваренный контактной сваркой на припусках тонкостенной нержавеющей стальной оболочки пустотелый блок АСТИ без теплоизоляции и заключительного внутреннего основания из нержавеющего листа-пуклевки.
На Фиг. 5 показан вид пустотелого блока АСТИ со стороны внутреннего основания.
На Фиг. 6 изображена рифленая шайба.
На Фиг. 7 изображен объемный вид рифленой шайбы.
На Фиг. 8 изображен захват замка-защелки
На Фиг. 9 изображен объемный вид захвата замка-защелки.
На Фиг. 10 изображен объемный вид зацепа замка-защелки, закрепленный на треугольной пластине.
На Фиг. 11 показан вид сверху зацепа, закрепленного на блоке АСТИ.
На Фиг. 12 изображена стыковка теплоизоляционных блоков АСТИ и фиксация их с помощью замка-защелки.
На Фиг. 13 изображены зацепы, установленные на блоках.
На Фиг. 14 изображен каркас блока, выполненный из решетки с профильным усилением одного прутка и второго прутка-полосы, соединенных контактным способом.
АСТИ содержит размещенные на внешней поверхности теплоизоляционного оборудования вплотную друг к другу теплоизоляционные блоки, состыкованные между собой продольными боковыми стенками. Блоки включают короба, выполненные из нержавеющей стали и заполненные теплоизоляционным материалом. Конструкция короба выполнена в виде соединения, состоящего из прочной армирующей каркасной решетки 1 с боковыми стенками 2 и фронтальными стенками 3 (Фиг. 1), изготовленной из скрепленных неподвижно между собой прутков 20 (Фиг. 2) круглого сечения диаметром 0,2-5,0 мм или эквивалентных им по прочности прутков другого профиля сечения, тонкостенного нержавеющего облицовочного листа 5 (Фиг. 4), из нержавеющей штампованной рифленой шайбы 4 (Фиг. 2, 5) с полочками 7 для контактной сварки, желобов 8 с небольшим сужением входной части для стыковки с перекрестками прутков армирующей каркасной решетки 1, которая полочками рифленых шайб 4 (Фиг. 6, 7) скреплена с тонкостенным стальным нержавеющим листом 5 толщиной 0,1-0,4 мм (Фиг. 3) с помощью контактной сварки, образуя блок АСТИ.
Армирующая каркасная решетка 1 (Фиг. 1) в исходном состоянии для удобства и наглядности изображения выбрана с квадратной ячейкой и круглым сечением прутка, полностью плоская с двух сторон. Также она может быть выполнена с трех, пяти, шестиугольной и прямоугольной ячейкой с различным сечением прутка 20 (фиг. 2). Предпочтительно использовать решетку с круглым сечением прутка диаметром 0,2-5,0 мм.
Прутки 20 армирующей каркасной решетки (Фиг. 2) могут быть выполнены из материала, отличного от нержавеющей стали и различного профиля, но по прочности не уступающих прочности стальным нержавеющим пруткам и соединяемых с нержавеющим облицовочным листом с помощью рифленых шайб 4.
Рифленые шайбы 4, выполненные методом штамповки, имеют конструкцию, позволяющую при сборке их с перекрестными узлами армирующей каркасной решетки 1 неподвижно фиксироваться и устанавливаться полочками 7 (Фиг. 6) заподлицо с плоскостью решетки. Для этого входная часть желобов 8 имеет небольшое сужение. Полочки 7 служат для контактной сварки рифленых шайб 4 с тонкостенной стальной оболочкой блока. При армирующей каркасной решетке малой кривизны, что характерно для тепловой изоляции оборудования больших диаметров, рифленые шайбы практически плоские, при малых же диаметрах теплоизолируемых трубопроводов при штамповке рифленых шайб следует учитывать кривизну поверхности трубопроводов.
После монтажа рифленых шайб 4 на армирующую каркасную решетку 1 производят гибку решетки и нержавеющей металлической тонкостенной стальной оболочки 6 по шаблону. При этом нержавеющая металлическая тонкостенная стальная оболочка 6 (Фиг. 3) выбирается с соответствующим припуском по периметру. При помощи прутка с профилем швеллера, тавра и других профилей 21 (Фиг. 14), соединенных с прутком-полосой 22, с минимальными усилиями производят изгибы решетки и соединяют прутки с применением профильных рифленых шайб 4 с формой желобов 8, соответствующих форме армирующей каркасной решетки 1, что позволяет унифицировано собрать несущий каркас блока АСТИ для тепловой изоляции любой кривизны поверхности оборудования без применения дополнительных конструктивных частей. Каркасная армирующая решетка 1 может быть выполнена из усиленного профиля прутка разных модификаций. При изготовлении решетки с соответствующим шагом d усиленного профиля прутка 21 (Фиг. 14) и прутка-полосы 22 и линейными размерами решетки l1 и l2, где l1 - высота радиального прутка фронтальной боковой поверхности каркаса блока, совпадающая с толщиной теплоизоляционного слоя блока минус две толщины облицовочной стали, а l2 - линейная длина блока АСТИ, параллельная оси изолируемого тела или трубопровода, делают разрез укрепляющих полочек профиля (швеллера, тавра и т.д.) на границе размеров l1 и l2, согнув под углом 90° полосу профиля на этой границе и, соединив между собой контактным способом разрезанные полочки профиля, получают предварительную заготовку для каркаса фронтальной боковой поверхности блока. Для получения окончательной фронтальной поверхности разрезают соответствующим образом полосы 22 решетки, соединяющие радиальные заготовки усиленного прутка 21, производят изгиб решетки по наружной поверхности в соответствие с требуемой кривизной блока АСТИ и фиксируют контактным способом разрезанные полосы решетки между собой, получая, таким образом, фронтальную боковую поверхность каркаса блока. Таким же образом поступают с фронтальной боковой поверхностью с другой стороны блока. Сгибая под необходимым углом полосы каркасной решетки, получают две смежные боковые поверхности, граничащие с фронтальными боковыми поверхностями, которые затем контактно соединяют между собой, фиксируя всю боковую поверхность каркаса блока.
Конструкция армирующей каркасной решетки 1 с разными по профилю прутками 21, позволяет выполнить несущий каркас блока АСТИ любой кривизны, оставляя постоянными и одинаковыми по шагу и размерам расчетные ячейки наружной поверхности каркаса, уменьшая, консервативно, в запас прочности, шаг и размеры ячейки внутренней поверхности каркаса блока АСТИ. Такая конструкция создает заранее определенную унификацию несущего каркаса практически любого блока АСТИ.
Блоки АСТИ скреплены между собой с помощью замков - защелок, устанавливаемых на угловых перекрестках наружного и внутреннего оснований, сопрягаемых между собой блоков АСТИ и состоящих из переносных захватов 10 и неподвижных камер зацепов 12, размещаемых внутри блоков АСТИ,
Замок - защелка состоит из неподвижной части - зацепа 12 и переносной части - захвата 10 (Фиг. 8, 10). Замок-защелка устанавливается на перекрестках блоков АСТИ, то есть один замок на один перекресток или один замок на один блок АСТИ.
Зацеп 12 (Фиг. 10) выполнен в виде штампованных стенок и с помощью ребер жесткости 13 крепится к треугольной пластине 14 перпендикулярно к ее биссектрисе 15 прямого угла. Затем, до заполнения пустотелого блока АСТИ теплоизоляционным материалом, с помощью сварки зацеп 12 крепится к каркасу блока. Необходимо отметить, что, при небольших размерах зацепа (25 мм по высоте и 20 × 30 мм по ширине и длине), после его монтажа сверху необходимо установить дополнительно локальную тепловую изоляцию.
Размер а - это расстояние на биссектрисе угла от нижнего основания стыкуемого блока и измеряется от вершины угла до ближней стенки камеры 19 (Фиг. 13) зацепа 12, с которой происходит взаимодействие поверхности упругой стенки захвата 18 (Фиг. 8). Это расстояние - постоянный размер.
Размер b - это расстояние от оси симметрии захватов 17 до поверхности упругой стенки захвата 18, взаимодействующей со стенкой створов камеры 19 зацепа 12. Это изменяющийся размер, возникающий за счет кручения сечения и упругого натяжения кольцевой пружины 9.
Размер с - это расстояние гарантированного натяга, рассматриваемое в статике до взаимодействия (стыковки) захвата и зацепа.
Размер с = а - b - гарантированный натяг, компенсируемый в процессе взаимодействия (стыковки) захвата 10 и зацепа 12 за счет деформации кольцевой пружины 9, образуя гибкую обратную связь при температурных расширениях или охлаждениях тепло изолируемого тела. Размер с получается при стыковке в результате скольжения лепестков захвата (Фиг. 8) с закруглением радиуса R по наклонной плоскости е камеры зацепа и взаимодействия поверхности упругой стенки захвата со стенкой камеры зацепа.
Кольцевая пружина 9 (Фиг. 8), проходящая через основания захватов 11 и служащая для натяжения захватов и создания устойчивой жесткости сборки захватов с пружиной, может быть выполнена плоской, цилиндрической или иной формы, с разъемом или без разъема. В штатном режиме натяжение захвата происходит за счет возникающих упругих деформаций: изгиба пластин захвата, упругого кручения и выпрямления дуг неразъемной пружины между основаниями захвата блоков АСТИ, так как хорда всегда меньше длины дуги окружности, соединяющей хорду. В конструкции замка-защелки с тремя захватами в предельном натяжении неразъемная пружина принимает форму треугольника, с четырьмя захватами - форму квадрата или прямоугольника и так далее.
За счет компенсируемого гарантированного гибкого натяга обеспечивается плотный контакт и фиксация боковых граней теплоизоляционных блоков АСТИ, образуя гибкую обратную связь при температурных расширениях теплоизолируемой поверхности оборудования.
Угол наклона плоскости е камеры зацепа зависит от угла охвата поверхности блока АСТИ теплоизолирующей поверхности.
Камера зацепа 12 (Фиг. 10) имеет створы 19, проходя которые при стыковке лепестки и поверхность упругой стенки захвата фиксируют подвижный зацеп относительно первого блока АСТИ. Подвижный захват контактирует основаниями с теплоизолируемой поверхностью тела. После его стыковки с зацепом, между теплоизолируемым телом и блоками АСТИ возникает 3-5 мм изотермичный тепловой зазор, исключающий локальные температурные расширения на поверхности тела. Второй блок, стыкуемый с захватом этого же замка-защелки, повторяет предыдущую операцию. Таким же образом стыкуется третий и четвертый блоки с одним замком-защелкой. Идентично стыкуются пятый, шестой и так далее блоки АСТИ. Замыкаясь по периметру цилиндрической части трубопровода или цилиндрического аппарата блоки АСТИ образуют замкнутую цепь блоков, самоудерживающую их на теплоизолируемой поверхности.
Если устанавливается замок-защелка с наружного основания блоков АСТИ, то есть движется замок-защелка к съемным теплоизоляционным блокам для их фиксации, то у камеры зацепа наклонная плоскость е становится вертикальной. При этом все рассуждения относительно размеров а и b, а также размера с остаются прежними.
После производства сборки конструкции, установки зацепа 12 и контактной сварки на припусках облицовочного листа, пустотелый блок АСТИ 16 (Фиг. 11) наполняют теплоизоляционным материалом, а затем с помощью контактной сварки на припусках фиксируют нержавеющий пуклеванный лист.
Использование замков-защелок в теплоизоляционных блоках позволяет сэкономить вес нержавеющего металла тепловой изоляции, повысить прочность теплоизоляционных блоков, максимально исключить раскрытие тепловых зазоров между боковыми гранями теплоизоляционных блоков со стороны недоступных внутренних оснований тепловой изоляции, а так же повысить теплоизоляционную надежность, достигаемую надежным контактом боковых граней теплоизоляционных блоков за счет применения гарантированных натягов между зацепами теплоизоляционных блоков и захватами замков-защелок, упрощает конструкцию и сокращает количество натяжных замков в два раза.
Размещение зацепов в углах на пересечении боковых граней блока АСТИ в заводских условиях исключает многочисленные подгоночные работы и сварку ~ 6400 натяжных замков на поверхности блоков АСТИ, устанавливаемых индивидуально по месту при монтажно-сборочных работах на оборудовании.
При размещении зацепов внутри теплоизоляционных блоков АСТИ, отсутствует деформация зацепов в процессе транспортировки съемных теплоизоляционных блоков в затесненных условиях при первичном монтаже, демонтаже и в процессе эксплуатации, а также при проведении плановых осмотров и контроля металла теплообменных поверхностей атомных электростанций.
Для примера выполнен расчет применения армированной каркасной решетки диаметром прутка 1,2 мм (для сравнения - толщина нержавеющей стали короба (БСТИ) равна 1 мм) и шагом квадратной ячейки 60 мм, стальной оболочки толщиной 0,2 мм, рифленых шайб толщиной 0,5 мм, диаметром 15 мм получаются блоки АСТИ следующих данных:
Толщина нержавеющей тонкостенной стальной оболочки БСТИ равна
Figure 00000001
Толщина нержавеющей тонкостенной стальной оболочки (АСТИ) равна
Figure 00000002
Figure 00000003
сокращая радикалы, находим, что
Figure 00000004
где:
d - шаг ячейки каркасной армирующей решетки блока АСТИ,
D - Максимальный размер оболочки блока БСТИ;
S1 и S2 соответственно толщины тонкостенной нержавеющей стальной оболочки БСТИ и АСТИ;
k1 и k2 - коэффициенты, учитывающие способ закрепления края облицовочных стальных оболочек
(*) - Нормы расчета на прочность оборудования и трубопроводов атомных электростанций (ПНАЭ Г-7-002-86. Москва, 1989 г.).
Формулы расчета толщины оболочки АСТИ и БСТИ взяты консервативно в запас, как для плоского днища, работающего под небольшим наружным давлением, что наиболее реально отображает геометрию и режимы работы блоков;
Учитывая толщину наружного основания БСТИ равную S1=1,0 мм; k1=0,56; D=1000 мм;
k2=0,43; t=60 мм получим предварительную равнопрочную толщину нержавеющей тонкостенной стальной оболочки S2=0,078 мм. Приняв толщину нержавеющей стальной оболочки 0,2 мм, получаем запас прочности равный 2,56, то есть оболочка блока АСТИ в 2,56 раза прочнее оболочки БСТИ. По расчетам изгибающих моментов коэффициент запаса прочности еще выше так, как линейные размеры в формулах входят в квадратных соотношениях.
При расчете веса блоков АСТИ взята армирующая стальная решетка с квадратной ячейкой с шагом 60 мм и диаметром прутка решетки 2 мм.
Вычисленный вес нержавеющей стали блоков БСТИ составляет 41,7 тн.
Вычисленный вес нержавеющей стали блоков АСТИ составляет 15, 0 тн.
Экономия нержавеющей стали составляет 26,7 тн.
Вес теплоизоляционного материала составляет в обоих вариантах 19,0 тн.
Относительный процент доли теплоизоляционного материала в блоках БСТИ составляет 31,3%, доля нержавеющего металла составляет 68,7%.
Относительный процент доли теплоизоляционного материала в блоках АСТИ составляет 55,9%, доля нержавеющего металла составляет 44,1%.
Экономия нержавеющей стали составляет 64,0%.
Ориентировочная стоимость блоков АСТИ будет, как минимум, в два раза дешевле.
Учитывая применение рифленых стальных шайб для скрепления армирующей каркасной решетки с тонкостенной нержавеющей стальной оболочкой с помощью контактной сварки, можно с успехом заменить сталь прутка армирующей решетки на больший по сечению прутка, но равный по прочности сечения неметаллический материал, что приведет к еще большей экономии нержавеющей стали.

Claims (3)

1. Армированная съемная тепловая изоляция (АСТИ), содержащая размещенные на внешней поверхности теплоизоляционного оборудования вплотную друг к другу теплоизоляционные блоки, состыкованные между собой продольными боковыми стенками и включающие короба, выполненные из нержавеющей стали и заполненные теплоизоляционным материалом, отличающаяся тем, что конструкция короба выполнена в виде соединения, состоящего из прочной армирующей каркасной решетки, изготовленной из скрепленных неподвижно между собой прутков круглого сечения диаметром 0,2-5,0 мм или эквивалентных им по прочности прутков другого профиля сечения, а также тонкостенного нержавеющего облицовочного листа, штампованных рифленых нержавеющих стальных шайб с желобами с небольшим сужением входной части для стыковки с перекрестками прутков армирующей решетки, которая полочками рифленых шайб скреплена с тонкостенным стальным нержавеющим листом с помощью контактной сварки, образуя блок АСТИ, при этом блоки АСТИ скреплены между собой с помощью замков-защелок, устанавливаемых на угловых перекрестках наружного и внутреннего оснований, сопрягаемых между собой блоков АСТИ и состоящих из переносных захватов и неподвижных камер зацепов, размещаемых внутри блоков АСТИ, каждый зацеп выполнен в виде штампованных стенок, закрепленных к каркасу блока с помощью ребер жесткости и нержавеющей пластины, стенки зацепа образуют створы с наклонной плоскостью е, взаимно контактирующей при стыковке с поверхностью пластин захвата с закруглением, размещаемого соосно линии стыков углов боковых стенок блоков, захваты соединены между собой разъемной или неразъемной кольцевой пружиной, скрепленной с упругими пластинами захвата и соединяющей их симметрично относительно оси симметрии захватов таким образом, что ближайшая внутренняя упругая стенка каждого захвата находится от оси симметрии захватов на расстоянии b, которое меньше расстояния а, расположенного на биссектрисе угла нижнего основания стыкуемого блока и измеряемого от вершины угла до ближней стенки камеры зацепа, с которого происходит взаимодействие упругой стенки захвата, и за счет разности расстояний с=а-b, называемой гарантированным натягом, получаемым в результате взаимодействия захвата и зацепа, обеспечивается постоянная фиксация боковых граней блоков друг с другом, при этом компенсирующий гибкий натяг получается за счет возникающих упругих деформаций, изгиба пластин захвата, упругого кручения и выпрямления упругой кольцевой пружины, образуя гибкую обратную связь, компенсирующую перемещение блоков АСТИ при температурных расширениях теплоизолируемой поверхности оборудования, при этом захваты выполнены в виде закругленных гибких и упругих пластин, которые, проходя через створы камеры зацепа, сжимаются, а пройдя створы, разжимаются и с помощью ответных им стенок камеры зацепа фиксируют гибкую связь между захватом и зацепом.
2. Армированная съемная тепловая изоляция (АСТИ) по п. 1, отличающаяся тем, что каркасная армирующая решетка выполнена из нержавеющей стали.
3. Армированная съемная тепловая изоляция (АСТИ) по п. 1, отличающаяся тем, что в составе каркасной решетки присутствует один усиленный профиль прутка решетки, расположенный линейным размером параллельно оси цилиндрической поверхности теплоизолируемого тела и соединенный контактным способом неподвижно со вторым прутком-полосой, позволяющий унифицированно собирать несущие каркасы блоков АСТИ для тепловой изоляции любой кривизны поверхности теплоизолируемого оборудования.
RU2017111880A 2017-04-07 2017-04-07 Армированная съемная тепловая изоляция (асти) RU2716771C2 (ru)

Priority Applications (13)

Application Number Priority Date Filing Date Title
RU2017111880A RU2716771C2 (ru) 2017-04-07 2017-04-07 Армированная съемная тепловая изоляция (асти)
BR112019021091-1A BR112019021091B1 (pt) 2017-04-07 2018-04-06 Isolamento térmico removível compreendendo blocos de isolamento térmico de isolamento térmico de bloco destacável
PCT/RU2018/000222 WO2018186773A1 (ru) 2017-04-07 2018-04-06 Армированная съемная тепловая изоляция (асти)
JOP/2019/0238A JOP20190238B1 (ar) 2017-04-07 2018-04-06 عازل حراري معزز قابل للنزع
FIEP18781759.8T FI3608579T3 (fi) 2017-04-07 2018-04-06 Vahvistettu poistettava lämpöeriste
EA201992391A EA201992391A1 (ru) 2017-04-07 2018-04-06 Армированная съемная тепловая изоляция (асти)
HUE18781759A HUE064515T2 (hu) 2017-04-07 2018-04-06 Megerõsített eltávolítható hõszigetelés
CA3059340A CA3059340C (en) 2017-04-07 2018-04-06 Reinforced removable thermal insulation (asti)
JP2019554990A JP7249083B2 (ja) 2017-04-07 2018-04-06 補強された取り外し可能な断熱装置
CN201880023610.XA CN111601998B (zh) 2017-04-07 2018-04-06 加强型可移除隔热装置
US16/603,542 US11708934B2 (en) 2017-04-07 2018-04-06 Reinforced removable thermal insulation (ASTI)
EP18781759.8A EP3608579B1 (en) 2017-04-07 2018-04-06 Verstärkte bewegliche wärmedämmung
ZA2019/07363A ZA201907363B (en) 2017-04-07 2019-11-06 Reinforced removable thermal insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111880A RU2716771C2 (ru) 2017-04-07 2017-04-07 Армированная съемная тепловая изоляция (асти)

Publications (3)

Publication Number Publication Date
RU2017111880A3 RU2017111880A3 (ru) 2018-10-08
RU2017111880A RU2017111880A (ru) 2018-10-08
RU2716771C2 true RU2716771C2 (ru) 2020-03-16

Family

ID=63712520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111880A RU2716771C2 (ru) 2017-04-07 2017-04-07 Армированная съемная тепловая изоляция (асти)

Country Status (12)

Country Link
US (1) US11708934B2 (ru)
EP (1) EP3608579B1 (ru)
JP (1) JP7249083B2 (ru)
CN (1) CN111601998B (ru)
CA (1) CA3059340C (ru)
EA (1) EA201992391A1 (ru)
FI (1) FI3608579T3 (ru)
HU (1) HUE064515T2 (ru)
JO (1) JOP20190238B1 (ru)
RU (1) RU2716771C2 (ru)
WO (1) WO2018186773A1 (ru)
ZA (1) ZA201907363B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798333C1 (ru) * 2023-02-03 2023-06-21 Борис Владимирович Крайнов Металлическая блочная тепловая изоляция (МБТИ)
WO2024035272A1 (ru) * 2022-08-10 2024-02-15 Борис Владимирович КРАЙНОВ Тепловая изоляция воздушная (тив)
WO2024035273A1 (ru) * 2022-08-10 2024-02-15 Борис Владимирович КРАЙНОВ Металлическая тепловая изоляция (мти)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2229654C2 (ru) * 2001-12-29 2004-05-27 Федеральное государственное унитарное предприятие "Научно-исследовательский и конструкторский институт монтажной технологии" Сборная теплоизоляционная конструкция
RU2259510C1 (ru) * 2004-02-16 2005-08-27 Открытое акционерное общество "Тамбовский завод "Комсомолец" им. Н.С. Артемова" Быстросъемная тепловая изоляция
RU68645U1 (ru) * 2007-07-11 2007-11-27 Федеральное государственное унитарное предприятие "Инвестиционно-строительный концерн "Росатомстрой" (ФГУП "ИСК "Росатомстрой") Сборная теплоизоляционная конструкция
RU2493473C1 (ru) * 2012-03-21 2013-09-20 Борис Владимирович Крайнов Блочная съемная тепловая изоляция
RU2582034C2 (ru) * 2014-04-14 2016-04-20 Борис Владимирович Крайнов Блочная съемная тепловая изоляция

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187778A (en) * 1959-08-20 1965-06-08 Federal Mogul Bower Bearings Duct insulation
US3415408A (en) * 1965-09-14 1968-12-10 North American Rockwell Insulated tank
GB1257799A (ru) * 1968-09-04 1971-12-22
CA992011A (en) 1972-06-27 1976-06-29 Mitsubishi Jukogyo Kabushiki Kaisha Heat-insulation-lined tank for low temperature liquids and method of manufacturing the same
US3818949A (en) * 1973-02-05 1974-06-25 Transco Inc Removable insulated pipe jacket
US4170451A (en) * 1976-10-14 1979-10-09 Combustion Engineering, Inc. Skid pipe covering
JPS53101761A (en) 1977-02-18 1978-09-05 Mitsubishi Heavy Ind Ltd High temperature and pressure heat insulator
GB2021230B (en) * 1978-04-28 1982-05-19 Nippon Asbestos Co Ltd Heat insulation systems
GB2039829B (en) * 1979-01-10 1983-09-01 Isolite Babcock Refractories Insulating block
DE2910802A1 (de) * 1979-03-20 1980-10-02 Zipper Technik Kunststoff Umma Flexible umhuellung fuer rohre u.dgl.
FR2472716A1 (fr) 1979-12-27 1981-07-03 Spie Batignolles Canalisation pour le transport de fluides chauds ou froids
US4415184A (en) * 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
US4424027A (en) * 1982-06-14 1984-01-03 Suey Paul V Insulating tile for application to water cooled pipes and method for applying same to pipes
JPS59176644U (ja) 1983-05-13 1984-11-26 山崎 晴義 汚染防止洗ビン
US4852831A (en) * 1987-09-23 1989-08-01 Sandstrom Wayne R Pipe support system
SU1620768A1 (ru) 1989-03-13 1991-01-15 Специальное конструкторско-технологическое бюро с опытным производством при Белорусском государственном университете им.В.И.Ленина Устройство дл нанесени теплоизол ции на трубопровод
JPH0741192U (ja) * 1993-12-24 1995-07-21 ニチアス株式会社 金属被覆保温材
US5918644A (en) * 1996-05-23 1999-07-06 Haack; C. William Air duct and method of making same
US5960602A (en) 1997-02-14 1999-10-05 Transco Products, Inc. Shielded metallic reflective insulation assembly
GB2322406A (en) * 1997-02-20 1998-08-26 Coflexip Stena Offshore Ltd Clamp
US5996643A (en) * 1998-09-18 1999-12-07 Stonitsch; Lawrence J. Foam insulation system for pipes
JP2000088184A (ja) 1999-08-16 2000-03-31 Katsuyuki Kidokoro 真空防音断熱材
JP2001336693A (ja) * 2000-05-30 2001-12-07 Hitachi Ltd 配管防熱板構造
RU40433U8 (ru) 2004-06-15 2005-08-27 Общество с ограниченной ответственностью "ПЕНОПЛЭКС СПб" Теплоизоляционная конструкция
UA85919C2 (ru) * 2004-11-04 2009-03-10 Роквул Інтернешнл А/С Способ скрепления поверхностей материала из минерального волокна и устройство для его осуществления и устройство для удержания вместе двух поверхностей материала
US20060188705A1 (en) * 2005-01-25 2006-08-24 The Texas A&M University System Interstitial insulation
CN2846969Y (zh) * 2005-08-09 2006-12-13 彭跃龙 用于管路系统的安全防护罩
JP4260170B2 (ja) 2006-05-16 2009-04-30 三菱重工業株式会社 断熱パネル及びその配設方法
JP2006258301A (ja) 2006-06-08 2006-09-28 Nichias Corp 配管の保温方法
GB0719215D0 (en) * 2007-10-02 2007-11-14 Wellstream Int Ltd Thermal insulation of flexible pipes
ES2531099T3 (es) * 2009-06-09 2015-03-10 Siemens Ag Disposición de elemento de escudo térmico y procedimiento para el montaje de un elemento de escudo térmico
CN101691901A (zh) * 2009-09-12 2010-04-07 岑志超 一种真空保温管套
CN102687356B (zh) 2009-09-14 2015-11-25 罗杰.福克纳 地下模块化高压直流电力传输系统
CN202024030U (zh) * 2011-03-08 2011-11-02 北京天润康隆科技发展有限公司 扣装式保温装置
CN201992273U (zh) * 2011-03-08 2011-09-28 北京天润康隆科技发展有限公司 整体式保温层模块
DE102012209423A1 (de) 2012-06-04 2013-12-05 Robert Bosch Gmbh Kontakt mit widerstandsfähiger Primärlanze zum Verriegeln in einer Kontaktkammer eines Steckverbinders
US9915392B2 (en) * 2014-03-13 2018-03-13 Transco Products Inc. Internal thermal insulation for metal reflective insulation
US9958105B1 (en) * 2014-06-19 2018-05-01 Quest Thermal Group LLC Low thermally conductive spacer for hot and cold feedline insulation
JP5948377B2 (ja) * 2014-08-01 2016-07-06 明星工業株式会社 金属被覆断熱装置
CN104373756A (zh) * 2014-10-29 2015-02-25 浙江创想节能科技有限公司 一种金属反射保温罩及制作方法
CN204266450U (zh) * 2014-11-26 2015-04-15 江苏赛朗热能技术有限公司 隔热砖组合结构
CN105318143A (zh) 2015-01-05 2016-02-10 萍乡市通宇特种陶瓷有限责任公司 一种管道保温装置
CN204512808U (zh) * 2015-02-06 2015-07-29 重庆三二一绝热制品有限公司 覆盖件
CN205560130U (zh) * 2015-11-11 2016-09-07 浙江创想节能科技有限公司 一种m型保温盒支撑片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2229654C2 (ru) * 2001-12-29 2004-05-27 Федеральное государственное унитарное предприятие "Научно-исследовательский и конструкторский институт монтажной технологии" Сборная теплоизоляционная конструкция
RU2259510C1 (ru) * 2004-02-16 2005-08-27 Открытое акционерное общество "Тамбовский завод "Комсомолец" им. Н.С. Артемова" Быстросъемная тепловая изоляция
RU68645U1 (ru) * 2007-07-11 2007-11-27 Федеральное государственное унитарное предприятие "Инвестиционно-строительный концерн "Росатомстрой" (ФГУП "ИСК "Росатомстрой") Сборная теплоизоляционная конструкция
RU2493473C1 (ru) * 2012-03-21 2013-09-20 Борис Владимирович Крайнов Блочная съемная тепловая изоляция
RU2582034C2 (ru) * 2014-04-14 2016-04-20 Борис Владимирович Крайнов Блочная съемная тепловая изоляция

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024035272A1 (ru) * 2022-08-10 2024-02-15 Борис Владимирович КРАЙНОВ Тепловая изоляция воздушная (тив)
WO2024035273A1 (ru) * 2022-08-10 2024-02-15 Борис Владимирович КРАЙНОВ Металлическая тепловая изоляция (мти)
RU2809132C1 (ru) * 2022-12-05 2023-12-07 Борис Владимирович Крайнов Металлическая тепловая изоляция (МТИ)
RU2798333C1 (ru) * 2023-02-03 2023-06-21 Борис Владимирович Крайнов Металлическая блочная тепловая изоляция (МБТИ)

Also Published As

Publication number Publication date
US11708934B2 (en) 2023-07-25
EP3608579A4 (en) 2021-01-13
EP3608579B1 (en) 2023-07-12
US20200149675A1 (en) 2020-05-14
RU2017111880A3 (ru) 2018-10-08
RU2017111880A (ru) 2018-10-08
JP7249083B2 (ja) 2023-03-30
FI3608579T3 (fi) 2023-10-11
WO2018186773A1 (ru) 2018-10-11
ZA201907363B (en) 2021-05-26
JOP20190238A1 (ar) 2019-10-07
JP2020516821A (ja) 2020-06-11
CA3059340A1 (en) 2018-10-11
BR112019021091A2 (pt) 2020-07-21
EA201992391A1 (ru) 2020-08-11
EP3608579A1 (en) 2020-02-12
JOP20190238B1 (ar) 2023-09-17
CA3059340C (en) 2023-06-27
CN111601998A (zh) 2020-08-28
CN111601998B (zh) 2022-04-19
HUE064515T2 (hu) 2024-03-28

Similar Documents

Publication Publication Date Title
RU2716771C2 (ru) Армированная съемная тепловая изоляция (асти)
US8776472B1 (en) Insulated panel arrangement for welded structure
KR101615126B1 (ko) 외단열 시스템과 이를 이용한 외벽 설치방법
DK2994582T3 (en) PLATE FOR FLOOR HEATING
RU2259510C1 (ru) Быстросъемная тепловая изоляция
RU2728560C1 (ru) Унифицированная металлическая тепловая изоляция (УМТИ)
EA041086B1 (ru) Армированная съемная тепловая изоляция (асти)
JPS62502271A (ja) 土木工事に供するトンネル叉はパイプ構造体
RU2298131C2 (ru) Блочная съемная тепловая изоляция оборудования с цилиндрической частью поверхности
CN203859965U (zh) 一种机柜框架用型材
RU2680156C1 (ru) Конструкционная панель и соединительный элемент для указанной панели
CN203827670U (zh) 机柜框架用型材
CN210034655U (zh) 双层内保温烟道
BR112019021091B1 (pt) Isolamento térmico removível compreendendo blocos de isolamento térmico de isolamento térmico de bloco destacável
KR101762206B1 (ko) 스페이스 프레임 및 파이프 트러스의 멤버부재 보강 구조
KR101919348B1 (ko) 교량 구조물용 외장재 고정 설치구조
KR101572169B1 (ko) 직관용 단열재 보호커버
CN217482749U (zh) 一种用于大型电站锅炉的外护板支撑组件
CN103974594A (zh) 机柜框架用型材
JP2012193887A (ja) ボイラ火炉の支持装置
RU175436U1 (ru) Дверное полотно
CN109403500B (zh) 一种钢结构自保温墙体
KR101588871B1 (ko) 하중 지지력이 우수한 패널을 구비하는 유체 저장 탱크의 시공방법
RU65626U1 (ru) Корпус обогревателя (варианты)
RU156150U1 (ru) Сэндвич - панель с ребрами жесткости

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner