RU2716129C1 - Способ управления вентильно-индукторным электрическим двигателем - Google Patents

Способ управления вентильно-индукторным электрическим двигателем Download PDF

Info

Publication number
RU2716129C1
RU2716129C1 RU2019118843A RU2019118843A RU2716129C1 RU 2716129 C1 RU2716129 C1 RU 2716129C1 RU 2019118843 A RU2019118843 A RU 2019118843A RU 2019118843 A RU2019118843 A RU 2019118843A RU 2716129 C1 RU2716129 C1 RU 2716129C1
Authority
RU
Russia
Prior art keywords
phase
current
time
rotor
determined
Prior art date
Application number
RU2019118843A
Other languages
English (en)
Inventor
Игорь Сергеевич Полющенков
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2019118843A priority Critical patent/RU2716129C1/ru
Application granted granted Critical
Publication of RU2716129C1 publication Critical patent/RU2716129C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в электроприводах различных механизмов. Техническим результатом является повышение качества управления вентильно-индукторным электрическим двигателем. В способе управления вентильно-индукторным электрическим двигателем, включающем при каждом цикле управления измерение питающего напряжения, коррекцию частоты дискретизации токов фаз в зависимости от измеренной величины питающего напряжения, включение очередной фазы в зависимости от определенного ранее момента времени, измерение тока в ней, задание тока в ней, накопление дискретной по времени выборки тока этой фазы при его нарастании на измерительном интервале, формирование в этой фазе тока в зависимости от его заданного и измеренного значений по релейному закону, отключение этой фазы в зависимости от определенного ранее момента времени, выборку тока очередной включенной фазы последовательно группируют с выборкой тока предшествующей включенной фазы, далее определяют гармонический состав сгруппированной выборки, затем определяют нормированное рассогласование положения зубцов статора и ротора в момент включения фазы, затем корректируют нормированное рассогласование, далее определяют момент времени для последующего включения очередной фазы и момент времени для отключения этой фазы, причем момент времени для включения фазы определяют таким образом, чтобы он соответствовал рассогласованному положению зубцов статора и ротора для этой фазы, момент времени для отключения фазы определяют таким образом, чтобы он имел упреждение по отношению к переходу фазы в генераторный режим, а зависимость между гармоническим составом сгруппированных выборок токов очередной включенной фазы и предшествующей включенной фазы и нормированным рассогласованием положения зубцов статора и ротора вентильно-индукторного электрического двигателя устанавливают заранее. 5 ил.

Description

Изобретение относится к области электротехники и может быть использовано в электроприводах различных механизмов, в том числе, в электроприводах насосов, компрессоров, вентиляторов, бытовой техники.
Известен способ управления вентильно-индукторным электрическим двигателем (Krishnan R. Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design and Applications. The Bradley Department of Electrical and Computer Engineering Fellow, Center for Organizational and Technological Advancement (COTA) Virginia Tech, Blacksburg. - 2001. pp. 375-400), в котором при каждом цикле управления включают очередную фазу вентильно-индукторного электрического двигателя в зависимости от ранее определенного момента времени, задают напряжение на очередной включенной фазе, измеряют ток во включенной фазе, формируют напряжение на включенной фазе в зависимости от заданного напряжения по закону широтно-импульсной модуляции, определяют производную тока во включенной фазе, далее детектируют переход включенной фазы в двигательный режим, затем определяют момент времени для отключения очередной включенной фазы и момент времени для последующего включения следующей фазы, далее отключают очередную включенную фазу в определенный ранее момент времени, причем скважность широтно-импульсной модуляции напряжения задают постоянной в течение включенного состояния фазы, переход включенной фазы в двигательный режим детектируют по смене знака производной тока с положительного на отрицательный, момент времени для отключения очередной включенной фазы определяют таким образом, чтобы он имел упреждение по отношению к переходу ее в генераторный режим, момент времени для включения следующей фазы определяют таким образом, чтобы он имел упреждение по отношению к ее переходу в двигательный режим.
Недостатком данного технического решения являются пониженные энергетические характеристики.
Также известен способ управления вентильно-индукторным электрическим двигателем (Аракелян А.К., Глухенький Т.Г. Определение положения ротора в высокоскоростных бездатчиковых вентильно-индукторных электроприводах // Электричество. 2003. - №4. - С. 27-30), в котором при каждом цикле управления включают очередную фазу вентильно-индукторного электрического двигателя в зависимости от ранее определенного момента времени, задают ток в очередной включенной фазе, измеряют ток во включенной фазе, формируют ток во включенной фазе в зависимости от его заданного и измеренного значений по релейному закону, далее закорачивают включенную фазу в зависимости от определенного ранее момента времени, определяют производную тока в закороченной фазе, далее детектируют переход закороченной фазы в генераторный режим, детектируют согласованное положение зубцов статора и ротора вентильно-индукторного электрического двигателя, далее отключают закороченную фазу, затем определяют момент времени для последующего включения следующей фазы и момент времени для ее закорачивания, причем переход фазы в генераторный режим детектируют по смене знака производной тока с отрицательного на положительный, момент времени для включения следующей фазы определяют таким образом, чтобы он соответствовал рассогласованному положению зубцов статора и ротора для этой фазы, а момент времени для закорачивания фазы определяют таким образом, чтобы он имел упреждение по отношению к переходу ее в генераторный режим.
Недостатком данного технического решения являются пониженные энергетические характеристики.
Наиболее близким по технической сущности к заявляемому изобретению является способ управления вентильно-индукторным электрическим двигателем (Полющенков И.С. Разработка бездатчикового вентильно-индукторного электропривода с искусственной нейронной сетью. Автореферат диссертации на соискание ученой степени кандидата технических наук. ФГБОУ ВПО «НИУ «МЭИ». 2013), в котором при каждом цикле управления измеряют питающее напряжение, корректируют частоту дискретизации токов фаз в зависимости от измеренной величины питающего напряжения, включают очередную фазу в зависимости от определенного ранее момента времени, задают ток в ней, измеряют ток в ней, накапливают дискретную по времени выборку тока этой фазы при его нарастании на измерительном интервале, далее формируют в этой фазе ток в зависимости от его заданного и измеренного значений по релейному закону, далее отключают эту фазу в ранее определенный момент времени, затем включают следующую фазу в зависимости от ранее определенного момента времени, задают ток в ней, измеряют ток в ней, накапливают дискретную по времени выборку тока этой фазы при его нарастании на измерительном интервале, далее формируют в этой фазе ток в зависимости его от заданного и измеренного значений по релейному закону, затем отключают эту фазу в зависимости от определенного ранее момента времени, далее выборки токов очередной фазы и следующей за ней фазы последовательно группируют, затем определяют гармонический состав сгруппированной выборки, затем определяют нормированные рассогласования положений зубцов статора и ротора в моменты времени включения фаз, затем корректируют нормированные рассогласования в зависимости от конструкции вентильно-индукторного электрического двигателя, далее определяют моменты времени для последующих включений очередной фазы и следующей за ней фазы и моменты времени для отключения этих фаз, причем моменты времени для включения фаз определяют таким образом, чтобы они соответствовали рассогласованным положениям зубцов статора и ротора для этих фаз, моменты времени для отключения фаз определяют таким образом, чтобы они имели упреждение по отношению к переходу фаз в генераторный режим, а зависимость между гармоническим составом сгруппированных выборок токов очередной включенной фазы и следующей за ней включенной фазы и нормированным рассогласованием положения зубцов статора и ротора вентильно-индукторного электрического двигателя устанавливают заранее.
Недостатком данного технического решения являются пониженные энергетические характеристики.
Технической задачей предлагаемого изобретения является улучшение энергетических характеристик при управлении вентильно-индукторным электрическим двигателем.
Технический результат заключается в повышении качества управления вентильно-индукторным электрическим двигателем.
Это достигается тем, что в известном способе управления вентильно-индукторным электрическим двигателем, включающем при каждом цикле управления измерение питающего напряжения, коррекцию частоты дискретизации токов фаз в зависимости от измеренной величины питающего напряжения, включение очередной фазы в зависимости от определенного ранее момента времени, измерение тока в ней, задание тока в ней, накопление дискретной по времени выборки тока этой фазы при его нарастании на измерительном интервале, формирование в этой фазе тока в зависимости от его заданного и измеренного значений по релейному закону, отключение этой фазы в зависимости от определенного ранее момента времени, при этом выборку тока очередной включенной фазы последовательно группируют с выборкой тока предшествующей включенной фазы, далее определяют гармонический состав сгруппированной выборки, затем определяют нормированное рассогласование положения зубцов статора и ротора в момент включения фазы, затем корректируют нормированное рассогласование в зависимости от конструкции вентильно-индукторного электрического двигателя, далее определяют момент времени для последующего включения очередной фазы и момент времени для отключения этой фазы, причем момент времени для включения фазы определяют таким образом, чтобы он соответствовали рассогласованному положению зубцов статора и ротора для этой фазы, момент времени для отключения фазы определяют таким образом, чтобы он имел упреждение по отношению к переходу фазы в генераторный режим, а зависимость между гармоническим составом сгруппированных выборок • токов очередной включенной фазы и предшествующей включенной фазы и нормированным рассогласованием положения зубцов статора и ротора вентильно-индукторного электрического двигателя устанавливают заранее.
Сущность предлагаемых технических решений поясняется чертежами, где на фиг. 1 изображена функциональная схема устройства, реализующего заявленный способ управления вентильно-индукторным электрическим двигателем; на фиг. 2 показано поперечное сечение вентильно-индукторного электрического двигателя, который имеет число фаз m=3, число зубцов статора zs=6 и число зубцов ротора zr=4; на фиг. 3 показаны зависимости индуктивностей двух соседних фаз вентильно-индукторного электрического двигателя от углового положения ротора; на фиг. 4 показаны формы токов фаз при их нарастании от нуля до заданного значения в зависимости от взаимного положения зубцов статора и ротора в момент включения фаз; на фиг. 5 показано группирование выборки тока очередной включенной фазы с выборкой тока предшествующей включенной фазы; на фиг. 6 показаны временные диаграммы зависимостей индуктивностей фаз от углового положения ротора, временные диаграммы токов фаз и моментов, создаваемых фазами при протекании по ним токов, а также временная диаграмма скорости вращения ротора при способе управления вентильно-индукторным электрическим двигателем с улучшенными энергетическими характеристиками; на фиг. 7 показаны временные диаграммы зависимостей индуктивностей фаз от углового положения ротора, временные диаграммы токов фаз и моментов, создаваемых фазами при протекании по ним токов, а также временная диаграмма скорости вращения ротора при способе управления вентильно-индукторным электрическим двигателем по прототипу.
На графических изображениях приняты следующие обозначения: ΔΘr - ширина зубцовой зоны ротора; t - время; Θ - угловое положение ротора вентильно-индукторного электрического двигателя; ΔΘs - ширина зубцовой зоны статора; ΔΘτ - полюсное деление; Θτ - зубцовое деление; j - порядковый номер фазы вентильно-индукторного электрического двигателя; k - порядковый номер цикла управления; Lmax - индуктивность фаз при согласованном положении зубцов статора и ротора; Lmin - индуктивность фаз при рассогласованном положении зубцов статора и ротора; Lj(Θ) - зависимость индуктивности j-той фазы от углового положения ротора; Θc.j - согласованное положение зубцов статора и ротора для j-той фазы; Θp.j - рассогласованное положение зубцов статора и ротора для j-той фазы; Mj - момент, создаваемый j-той фазой; dLj/dΘ - производная индуктивности j-той фазой по угловому положению ротора; ΘI.j, ΘII.j - границы участка Li(Θ) с минимальной индуктивностью j-той фазы; ΘIII.j - граница участка двигательного участка Lj(Θ) j-той фазы; ΘIV.j - граница участка участка Lj(Θ) с максимальной индуктивностью j-той фазы; ΘV.j - граница участка генераторного участка Lj(Θ) j-той фазы; Tz - измерительный интервал; Ts - период дискретизации токов фаз; Ij - измеренный ток j-той фазы; Iз.j - заданный ток j-той фазы;
Figure 00000001
- угол включения j-той фазы при k-том цикле управления;
Figure 00000002
- угол отключения j-той фазы при k-том цикле управления;
Figure 00000003
- рассогласованное положение зубцов статора и ротора для j-той фазы при k-том цикле управления;
Figure 00000004
- согласованное положение зубцов статора и ротора для j-той фазы при k-том цикле управления; ϕj.k - рассогласование (отклонение) угла включения j-той фазы и согласованного положения зубцов статора и ротора при k-том цикле управления;
Figure 00000005
- нормированное рассогласование угла включения j-той фазы и согласованного положения зубцов статора и ротора при k-том цикле управления; n - порядковый номер элемента в выборке токов фаз; ik[n] - выборка тока j-той фазы при его нарастании на измерительном интервале при k-том цикле управления; xk[n] - массив сгруппированных выборок токов фаз при k-том цикле управления; Xk[h] - массив гармонических составляющих; Uп - напряжение источника питания; Uдн - выходной сигнал датчика напряжения; Uлп.j - выходной сигнал логического переключателя для j-той фазы; Upт.j - выходной сигнал регулятора токов для j-той фазы; Uy.j - выходной сигнал блока коммутации фаз для j-той фазы;
Figure 00000006
- интервал времени вращения ротора от начала (k-1)-го цикла управления до включения j-той фазы при k-том цикле управления;
Figure 00000007
- интервал времени вращения ротора от начала (k-1)-го цикла управления до отключения j-той фазы при k-том цикле управления; ωr - средняя скорость вращения ротора в течение цикла управления; Δωr - изменение средней скорости вращения ротора;
Figure 00000008
- длительность включенного состояния j-той фазы при k-том цикле управления;
Figure 00000009
- протяженность включенного состояния j-той фазы при k-том цикле управления;
Figure 00000010
- прогнозируемый угол отключения j-той фазы при k-том цикле управления; Тд - момент времени изменения скорости вращения ротора; Θд - угловое положение ротора в момент времени Тд; γj.k - отклонение угла отключения j-той фазы от прогнозируемого угла отключения при k-том цикле управления;
Figure 00000011
- момент времени включения j-той фазы при k-том цикле управления;
Figure 00000012
- момент времени отключения j-той фазы при k-том цикле управления;
Figure 00000013
- момент времени включения (j+1)-вой фазы при (k+1)-вом цикле управления;
Figure 00000014
- момент времени отключения (j+1)-вой фазы при (k+1)-том цикле управления.
Устройство, реализующее способ управления вентильно-индукторным электрическим двигателем с улучшенными энергетическими характеристиками, содержит блок задатчиков токов (БЗТ) 1, выход которого соединен с первым входом блока регуляторов токов (БРТ) 2, выход блока регуляторов токов 2 соединен с первым входом логического переключателя (ЛП) 3, второй вход которого соединен с выходом блока коммутации фаз (БКФ) 4, выход логического переключателя 3 соединен с первым (управляющим) входом силового преобразователя (СП) 5, второй (силовой) вход силового преобразователя 5 соединен с первым выходом источника питания (ИП) 6, второй выход которого соединен со входом датчика напряжения (ДН) 7, выход силового преобразователя 5 соединен со входом блока датчика токов (БДТ) 8, первый (силовой) выход блока датчика токов 8 соединен с цепью питания вентильно-индукторного электрического двигателя (ВИД) 9, второй (информационный) выход блока датчика токов 8 соединен со вторым входом блока регулятора токов 2, третий (информационный) выход блока датчика токов 8 соединен с первым входом элемента выборки-хранения (ЭВХ) 10, второй вход которого соединен с выходом датчика напряжения 7, выход элемента выборки-хранения 10 соединен со входом вычислителя спектра (ВС) 11, выход которого соединен со входом вычислителя рассогласования (BP) 12, выход вычислителя рассогласования 12 соединен со входом корректора рассогласования (КР) 13, выход которого соединен со входом вычислителя моментов коммутации фаз (ВМК) 14, первый выход вычислителя моментов коммутации фаз 14 соединен с первым входом элемента задержки (ЭЗ) 15, а второй его выход соединен со вторым входом элемента задержки 15, первый выход элемента задержки 15 соединен с первым входом блока коммутации фаз 4, а второй его выход соединен со вторым входом блока коммутации фаз 4.
Блок задатчиков токов 1 может быть реализован на основе цифровой или аналоговой техники. Он может быть самостоятельным элементом или элементом замкнутой системы регулирования. Вентильно-индукторный электрический двигатель 9 должен иметь конструкцию с самоподмагничиванием и может иметь любое число фаз m и любые числа зубцов статора zs и ротора zr, которые связаны следующим соотношением с помощью целого числа β:
Figure 00000015
Силовой преобразователь 5 должен быть выполнен на основе полупроводниковой техники и может иметь любую конструкцию, допускающую соединение с цепью питания вентильно-индукторного электрического двигателя 9. Источник питания 6 должен иметь выходное напряжение постоянного или выпрямленного тока и должен быть выполнен на основе полупроводниковой техники или аккумуляторной батареи. Датчик напряжения 7 и блок датчиков токов 8 должны быть реализованы на основе измерительных устройств любого типа. Блок релейных регуляторов токов 2 и логический переключатель 3, блок коммутации фаз 4, элемент выборки-хранения 10, вычислитель спектра 11, вычислитель рассогласования 12, корректор рассогласования 13, вычислитель моментов коммутации фаз 14, элемент задержки 15 должны быть реализованы на основе программно-аппаратных средств вычислительной техники.
Поперечное сечение трехфазного m=3 вентильно-индукторного электрического двигателя с соотношением зубцов статора и ротора zs/zr=6/4 показано на фиг. 2. Конструкция вентильно-индукторного электрического двигателя такова, что зависимость индуктивности каждой из фаз Lj(Θ) от углового положения ротора Θ является периодической и имеет характерные участки, как показано на фиг. 3. Для j-той фазы на участке от ΘI.j до ΘII.j вблизи рассогласованного положения зубца ротора и зубца статора Θp.j индуктивность Lj имеет минимальную величину Lmin, а производная Lj(Θ) по угловому положению ротора Θ равна нулю. При протекании тока на этом участке через j-тую фазу вентильно-индукторного электрического двигателя она не создает момент (Mj=0). На участке от ΘII.j до ΘIII.j производная Lj(Θ) по угловому положению ротора Θ положительна. При протекании тока на этом участке через j-тую фазу она создает двигательный момент (Mj>0). На участке от ΘIII.j до ΘIV.j вблизи согласованного положения зубца ротора и зубца статора Θc.j индуктивность Lj имеет максимальную величину Lmax, а производная Lj(Θ) по угловому положению ротора Θ равна нулю. При протекании тока через j-тую фазу она не создает момент (Mj=0). На участке от ΘIV.j до ΘV.j производная Lj(Θ) по угловому положению ротора Θ отрицательа. При протекании тока на этом участке через j-тую фазу она создает генераторный момент (Mj<0) противоположного направления по отношению к двигательному моменту. После углового положению ротора ΘV.j зависимость Lj(Θ) повторяется с периодом, равным зубцовому делению Θτ, а зависимости Lj(Θ) и Lj+1(Θ) для соседних j-той и (j+1)-той фаз смещены на величину полюсного деления ΔΘτ:
Figure 00000016
Взаимное расположение угловых положений ΘI.j, ΘII.j, ΘIII.j, ΘIV.j, ΘV.j для всех фаз, величины углов Θτ и ΔΘτ, а также индуктивности Lmax и Lmin зависят от конструкции вентильно-индукторного электрического двигателя, а именно, от числа фаз m, ширины зубцовой зоны ротора ΔΘr и ширины зубцовой зоны статора ΔΘs. Момент, создаваемый каждой из фаз, зависит от величины тока, протекающего по ней, а также от производной Lj(Θ) по Θ, а момент вентильно-индукторного электрического двигателя равен сумме этих моментов:
Figure 00000017
Устройство, показанное на фиг. 1, реализует способ управления вентильно-индукторным электрическим двигателем с улучшенными энергетическими характеристиками следующим образом. При каждом k-том цикле управления с помощью датчика напряжения 7 измеряют напряжение источника питания 6. Сигнал Uдн на выходе датчика напряжения связан с величиной напряжения Uп на его входе следующим соотношением:
Figure 00000018
где kдн - коэффициент датчика напряжения.
Далее с помощью элемента выборки-хранения 10 осуществляют коррекцию частоты дискретизации ƒs токов фаз в зависимости от измеренной величины питающего напряжения следующим образом:
Figure 00000019
где Uпн - номинальная величина питающего напряжения; ƒ - частота дискретизации токов фаз при номинальном питающем напряжении.
При этом период дискретизации токов фаз Ts связан с частотой дискретизации ƒs токов фаз, длительностью измерительного интервала Tz и числом отсчетов N в выборке токов следующим образом:
Figure 00000020
Включение и отключение очередной j-той фазы вентильно-индукторного электрического двигателя в зависимости от ранее определенных моментов времени
Figure 00000021
и
Figure 00000022
при k-том цикле управления осуществляют логическим переключателем 3 и блоком коммутации фаз 4 по следующему закону:
Figure 00000023
Figure 00000024
Figure 00000025
Выходной сигнал логического переключателя Uлп.j - используют для управления силовым преобразователем 5, который подключает очередную j-тую фазу вентильно-индукторного электрического двигателя к напряжению источника питания 6 при Uлп.j=1 и отключает эту фазу при Uлп.j=0.
Момент времени
Figure 00000021
таков, что при нем угловое положение ротора при ωk-1r имеет величину
Figure 00000026
рассогласованного положения зубцов статора и ротора для j-той фазы:
Figure 00000027
где ωk-1 - вычисленная средняя скорость вращения ротора при (k-1)-вом цикле управления.
Если же ωk-1≠ωr, что имеет место в динамических процессах, то в момент времени
Figure 00000028
вращение ротора опережает оптимальное для включения по энергетическим характеристикам угловое положение
Figure 00000029
на угол ϕj.k либо отстает от него:
Figure 00000030
При
Figure 00000031
фаза переходит в нежелательный генераторный режим.
Ток Ij во включенной j-той фазе при k-том цикле управления измеряют с помощью блока датчиков токов 8. Величину тока Iз.j в этой фазе задают с помощью блока задатчиков токов 1. Далее с помощью элемента выборки-хранения 10 накапливают дискретную по времени выборку ik[n] тока Ij в j-той фазе при его нарастании на измерительном интервале Tz.
Figure 00000032
Так как по фиг. 3 индуктивности фаз зависят от углового положения ротора, то форма токов фаз при нарастании на измерительном участке определяется электромагнитными переходными процессами и зависит от углов включения фаз, что показано на фиг. 4.
Затем в j-той включенной фазе с помощью блока регуляторов токов 2 формируют ток в зависимости от его заданного Iз.j и измеренного Ij значений по релейному закону:
Figure 00000033
Так как зависимости Lj(Θ) являются периодическими функциями и смещены на угол ΔΘτ, то для однозначного определения рассогласования положения зубцов статора и ротора в момент включения фазы требуется выборка токов двух фаз.
Далее с помощью элемента выборки-хранения 10 выборку тока очередной включенной j-той фазы при k-том цикле управления последовательно группируют с выборкой тока предшествующей включенной (j-1)-той фазы при (k-1)-том цикле управления, как показано на фиг. 5:
Figure 00000034
Figure 00000035
Согласно способу по прототипу выборку тока очередной включенной j-той фазы при k-том цикле управления последовательно группируют с выборкой тока следующей за ней (j+1)-той фазы при k-том цикле управления:
Figure 00000036
Figure 00000037
Figure 00000038
Далее с помощью вычислителя спектра 11 определяют гармонический состав Xk[h] сгруппированной выборки в виде вещественных (Re) и мнимых (Im) частей гармонических составляющих по формулам дискретного преобразования Фурье:
Figure 00000039
где h - порядковый номер гармонической составляющей в спектре, 0≤h<N.
Затем с помощью вычислителя рассогласования 12 определяют нормированное рассогласование
Figure 00000040
положения зубцов статора и ротора в момент включения j-той фазы:
Figure 00000041
Зависимость (20) между гармоническим составом ReXk[h] и ImXk[h] сгруппированных выборок токов очередной включенной j-ой фазы и предшествующей включенной (j-1)-той фазы и нормированным рассогласованием
Figure 00000042
положения зубцов статора и ротора в момент включения j-ой фазы устанавливают заранее. Аналитическая форма зависимости (20) неизвестна и поэтому ее аппроксимируют с использованием математического аппарата искусственных нейронных сетей. Кроме того, для универсальности зависимости (20) при использовании ВИД разной конструкции, ее аппроксимируют для нормированной зависимости Lj(Θ).
Далее с помощью корректора рассогласования 13 нормированное рассогласование
Figure 00000043
корректируют в зависимости от конструкции ВИД:
Figure 00000044
где Z и В - коэффициенты, учитывающие отличие зависимостей Lj(Θ) для каждого конкретного ВИД от нормированной зависимости Lj(Θ).
В момент времени
Figure 00000022
отключают j-тую фазу в соответствии с (9). В этот момент времени угловое положение ротора при ωk-1r равно
Figure 00000045
:
Figure 00000046
Если же ωk-1≠ωr, что имеет место в динамических процессах, то в момент времени
Figure 00000047
вращение ротора опережает прогнозируемое угловое положение
Figure 00000048
на угол γj.k либо отстает от него:
Figure 00000049
При
Figure 00000050
фаза переходит в нежелательный генераторный режим.
Затем с помощью вычислителя моментов коммутации фаз 14 рассчитывают интервал времени вращения ротора от момента времени включения j-той фазы при k-том цикле управления до включения (j+1)-той фазы при (k+1)-том цикле управления следующим образом:
Figure 00000051
где q - целое число, которое задают таким образом, чтобы при расчете по (24) величина
Figure 00000052
имела минимальную положительную величину.
При этом скорость вращения ротора при k-том цикле управления считают постоянной и определяют по следующей формуле:
Figure 00000053
Прогнозируют, что при включении очередной (j+1)-той фазы при (k+1)-вом цикле управления ротор имеет положение
Figure 00000054
, равное рассогласованному положению
Figure 00000055
зубцов ротора и статора для этой фазы, что оптимально по энергетическим характеристикам для ее включения. Для этого с помощью вычислителя моментов коммутации фаз 14 определяют момент времени для включения (j+1)-вой фазы при (k+1)-вом цикле управления:
Figure 00000056
Прогнозируют, что при отключении очередной (j+1)-той фазы при каждом (k+1)-том цикле управления ротор имеет угловое положение, которое имеет упреждение по отношению к переходу фазы в генераторный режим:
Figure 00000057
С помощью вычислителя моментов коммутации 14 рассчитывают интервал времени вращения ротора от момента времени включения j-той фазы при k-том цикле управления до отключения (j+1)-той фазы при (k+1)-том цикле управления следующим образом:
Figure 00000058
С помощью вычислителя моментов коммутации фаз 14 определяют момент времени для отключения (j+1)-вой фазы при (k+1)-вом цикле управления с упреждением по отношению к переходу фазы в генераторный режим:
Figure 00000059
Элемент задержки 15 осуществляет временное разделение переменных для последовательных циклов управления. Для (k+1)-го цикла управления повторяют последовательность (4)-(29).
При управлении согласно способу по прототипу определяют моменты времени для последующего включения очередной фазы и следующей за ней фазы, а также моменты времени для их отключения. Для этого прогнозируют вращение ротора при k-том цикле управления по имеющейся информации о вращении ротора при (k-1)-вом цикле управления. Согласно способу по прототипу при k-том цикле управления в моменты времени
Figure 00000060
и
Figure 00000061
включают очередную j-ую фазу и следующую за ней (j+1)-вую фазу. В эти моменты времени угловые положения ротора при ωk-1r равны
Figure 00000062
и
Figure 00000063
, то есть рассогласованным положениям зубцов ротора и статора:
Figure 00000064
Figure 00000065
Если же ωk-1≠ωr, что имеет место в динамических процессах, то в моменты времени
Figure 00000066
и
Figure 00000067
вращение ротора опережает оптимальные по энергетическим характеристикам угловые положения
Figure 00000068
и
Figure 00000069
на углы ϕj.k и ϕj+1.k соответственно либо отстает от них:
Figure 00000070
Figure 00000071
При
Figure 00000072
и
Figure 00000073
фазы переходят в нежелательный генераторный режим.
Далее определяют нормированные рассогласования
Figure 00000074
и
Figure 00000075
зубцов статора и ротора в моменты времени включения фаз по заранее установленной зависимости:
Figure 00000076
Нормированные рассогласования
Figure 00000077
и
Figure 00000078
корректируют в зависимости от конструкции ВИД:
Figure 00000079
В моменты времени
Figure 00000080
и
Figure 00000081
при k-том цикле управления отключают j-тую и (j+1)-вую фазы. В эти моменты времени угловые положения ротора при ωk-1r имеют величины
Figure 00000082
и
Figure 00000083
:
Figure 00000084
Figure 00000085
Если же ωk-1≠ωr, что имеет место в динамических процессах, то в моменты времени
Figure 00000086
и
Figure 00000087
вращение ротора опережает прогнозируемые угловые положения
Figure 00000088
и
Figure 00000089
на углы γj.k и γj+1.k соответственно либо отстает от них:
Figure 00000090
Figure 00000091
При
Figure 00000092
и
Figure 00000093
фазы переходят в нежелательный генераторный режим.
Затем определяют интервал времени вращения ротора от момента времени включения (j+1)-той фазы при k-том цикле управления до включения (j+2)-ой фазы и до включения (j+3)-ей фазы при (k+1)-том цикле управления следующим образом:
Figure 00000094
При этом скорость вращения ротора при k-том цикле управления считают постоянной и определяют по следующей формуле:
Figure 00000095
Прогнозируют, что при включении (j+2)-той и (j+3)-той фаз при (k+1)-том цикле управления ротор имеет положения
Figure 00000096
и
Figure 00000097
, равное рассогласованным положениям
Figure 00000098
и
Figure 00000099
зубцов статора и ротора для этих фаз, что оптимально по энергетическим характеристикам для их включения. Для включения (j+2)-вой и (j+3)-вой фаз при (k+1)-ом цикле управления определяют моменты времени
Figure 00000100
и
Figure 00000101
для их включения:
Figure 00000102
Прогнозируют, что при отключении (j+2)-той и (j+3)-той фаз при (k+1)-том цикле управления ротор имеет угловые положения с упреждениями к переходам фаз в генераторный режим
Figure 00000103
,
Figure 00000104
:
Figure 00000105
Для этого рассчитывают интервалы времени вращения ротора от момента времени включения (j+1)-ой фазы при k-том цикле управления до отключения (j+2)-ой фазы и до отключения (j+3)-ой фазы при (k+1)-том цикле управления следующим образом:
Figure 00000106
Для (k+1)-го цикла управления определяют момент времени для отключения (j+2)-ой и (j+3)-ой фаз
Figure 00000107
и
Figure 00000108
:
Figure 00000109
Figure 00000110
Из сопоставления формул (11), (23), (33) и (39) следует, что при одинаковой величине Δωk при управлении согласно способу с улучшенными энергетическими характеристиками величины ϕj.k и γj.k существенно меньше, чем величины ϕj+1.k и γj+1.k при управлении согласно способу по прототипу. Это связано с тем, что при для k-том цикле управления информация об угловом положении ротора обновляется быстрее, и
Figure 00000111
по (24) и
Figure 00000112
по (28) при управлении согласно способу с улучшенными энергетическими характеристиками имеют меньшие величины, чем
Figure 00000113
по (40) и
Figure 00000114
по (44) при способе управления по прототипу. За меньшие интервалы времени накапливаются меньшие рассогласование ϕj.k и отклонение γj.k. Кроме того, за большие интервалы времени
Figure 00000115
и
Figure 00000116
при способе управления по прототипу возможны большие отклонения скорости вращения ротора ωr от рассчитанной скорости вращения ротора ωk-1 под действием динамического момента, что увеличивает накопление рассогласований и отклонений. Меньшие отклонения от оптимальных углов включения и углов отключения фаз при управлении согласно способу с улучшенными энергетическими характеристиками приводят к меньшей длительности протекания токов на генераторных участках Lj(Θ) и к меньшей величине нежелательного генераторного момента, что означает повышение энергетических характеристик ВИД при управлении.
Вентильно-индукторный электрический двигатель имеет число фаз m=3 (j=1, 2, 3), число зубцов статора zs=6 и число зубцов ротора zr=4. Диаграммы при управлении согласно способу с улучшенными энергетическими характеристиками показаны на фиг. 6 для (k-2)-го, (k-1)-го, k-го и (k+1)-го циклов управления, а диаграммы при управлении согласно способу по прототипу показаны на фиг. 7 для (k-1)-го, k-го и (k+1)-го циклов управления.
При управлении согласно способу с улучшенными энергетическими характеристиками фазу j=1 при (k-2)-ом цикле управления включают в момент времени
Figure 00000117
, а фазу j=2 при следующем (k-1)-ом цикле управления включают в момент времени
Figure 00000118
таким образом, что
Figure 00000119
и
Figure 00000120
. При этом ϕ1.k-2=0, ϕ2.k-1=0, ωk-2r. Эти же фазы отключают в моменты времени
Figure 00000121
соответственно таким образом, что
Figure 00000122
и
Figure 00000123
. Токи этих фаз I1.k-2 и I2.k-1 протекают главным образом на двигательных участках характеристик L1(Θ) и L2(Θ), создавая при этом двигательные моменты и M1.k-2 и М2.k-1.
В момент времени Тд, которому соответствует угловое положение ротора Θд, происходит уменьшение скорости вращения ротора ωr на величину Δωr. Выявить изменение скорости согласно способу с улучшенными энергетическими характеристиками, как и согласно способу по прототипу, возможно только в последующих за моментом времени Тд циклах управления. Поэтому очередную фазу j=3 при k-том цикле управления включают в момент времени
Figure 00000124
, который был спрогнозирован без учета изменения скорости вращения ротора и ωk-1r:
Figure 00000125
Угол включения этой фазы вследствие изменения скорости вращения ротора не соответствует прогнозированному значению
Figure 00000126
:
Figure 00000127
Фазу j=3 отключают в момент времени
Figure 00000128
и угол отключения этой фазы не равен прогнозируемой величине
Figure 00000129
:
Figure 00000130
Figure 00000131
Ток этой j=3 фазы I3.k протекает в значительной мере при рассогласованном положении зубцов статора и ротора и в меньшей мере на двигательном участке характеристики L3(Θ) по сравнению с (k-2)-рым и (k-1)-вым циклами управления. Ток создает двигательный момент М3.k, который по среднему значению меньше, чем М1.k-2 и M2.k-1.
Рассогласование зубцов ротора и статора ϕ3.k выявляется устройством для осуществления способа управления с улучшенными энергетическими характеристиками. Далее при (k+1)-ом цикле управления включение и отключение фазы j=1 происходит при оптимальных углах:
Figure 00000132
При управлении согласно способу по прототипу при (k-1)-ом цикле управления фазы j=1 и j=2 включают в моменты времени
Figure 00000133
и
Figure 00000134
таким образом, что
Figure 00000135
,
Figure 00000136
, ϕ1.k-2=0, ϕ2.k-1=0 и ωk-1r. Эти фазы отключают в моменты времени
Figure 00000137
и
Figure 00000138
таким образом, что
Figure 00000139
и
Figure 00000140
. Токи I1.k-1 и I2.k-1 этих фаз протекают главным образом на двигательных участках характеристик L1(Θ) и L2(Θ), создавая при этом двигательные моменты M1.k-1 и M2.k-1. В момент времени Тд, которому соответствует угловое положение ротора Θд, происходит уменьшение скорости вращения ротора ωr на величину Δωr. Выявить это изменение скорости согласно способу по прототипу возможно только в последующих за моментом времени Tд циклах управления. Поэтому очередную фазу j=3 при k-том цикле управления включают в момент времени
Figure 00000141
, который был спрогнозирован без учета изменения скорости вращения ротора и ωk-1r:
Figure 00000142
Угол включения этой фазы вследствие изменения скорости вращения ротора не соответствует прогнозированному значению
Figure 00000143
:
Figure 00000144
Фазу j=3 отключают в момент времени
Figure 00000145
, но угол отключения этой фазы не равен прогнозируемой величине
Figure 00000146
:
Figure 00000147
Figure 00000148
Вследствие этого I3.k создает двигательный момент М3.k, который по среднему значению меньше, чем M1.k-1 и M2.k-1.
Далее при текущем k-том цикле управления в момент времени
Figure 00000149
включают следующую фазу j=1 таким образом, что
Figure 00000150
С течением времени вследствие изменения скорости вращения ротора рассогласование накапливается, а именно, ϕ1.k3.k и γ1.k3.k.
Фазу j=1 отключают в момент времени
Figure 00000151
, но угол отключения этой фазы не равен прогнозируемой величине
Figure 00000152
:
Figure 00000153
Figure 00000154
Ток этой j=1 фазы I1.k начинает протекать на генераторном участке характеристики L1(Θ), протекает на всем участке рассогласованного положения зубцов статора и ротора и в меньшей мере на двигательном участке характеристики L1(Θ) по сравнению с токами при предыдущих циклах управления, а момент M1.k, значительно меньше, чем М1.k-1, М2.k-1 и М3.k. Происходит нежелательный переход фазы j=1 в генераторный режим, а при рассогласованном положении зубцов ротора и статора фаза не создает момент. Это вызывает снижение энергетических характеристик.
Рассогласования зубцов ротора и статора ϕ3.k и ϕ1.k выявляется устройством для осуществления способа управления по прототипу и при следующем (k+1)-ом цикле управления для фазы j=2:
Figure 00000155
Можно показать достижение заявленного технического результата при увеличении скорости вращения ротора ωr, на величину Δωr, когда при увеличении γj.k может исчезнуть упреждение при отключении фаз по отношению к их переходу в генераторный режим
Figure 00000156
.
Средняя величина М3.k при k-том цикле управления при способе управления с улучшенными энергетическими характеристиками больше, чем средние значения моментов М3.k и М1.k при k-том цикле управления согласно способу по прототипу, так как при способе управления с улучшенными энергетическими характеристиками в меньшей степени происходит нежелательный переход фаз в генераторный режим, а также фазы быстрее выводятся из этого режима. Следовательно, способ управления с улучшенными энергетическими характеристиками позволяет повысить качество управления вентильно-индукторным электрическим двигателем.
Использование изобретения позволяет улучшить энергетические характеристики при управлении вентильно-индукторным электрическим двигателем в электроприводах различных механизмов, в том числе, в электроприводах насосов, компрессоров, вентиляторов, бытовой техники.

Claims (1)

  1. Способ управления вентильно-индукторным электрическим двигателем, включающий при каждом цикле управления измерение питающего напряжения, коррекцию частоты дискретизации токов фаз в зависимости от измеренной величины питающего напряжения, включение очередной фазы в зависимости от определенного ранее момента времени, измерение тока в ней, задание тока в ней, накопление дискретной по времени выборки тока этой фазы при его нарастании на измерительном интервале, формирование в этой фазе тока в зависимости от его заданного и измеренного значений по релейному закону, отключение этой фазы в зависимости от определенного ранее момента времени, отличающийся тем, что выборку тока очередной включенной фазы последовательно группируют с выборкой тока предшествующей включенной фазы, далее определяют гармонический состав сгруппированной выборки, определяют нормированное рассогласование положения зубцов статора и ротора в момент включения фазы, корректируют нормированное рассогласование, далее определяют момент времени для последующего включения очередной фазы и момент времени для отключения этой фазы, причем момент времени для включения фазы определяют таким образом, чтобы он соответствовал рассогласованному положению зубцов статора и ротора для этой фазы, момент времени для отключения фазы определяют таким образом, чтобы он имел упреждение по отношению к переходу фазы в генераторный режим, а зависимость между гармоническим составом сгруппированных выборок токов очередной включенной фазы и предшествующей включенной фазы и нормированным рассогласованием положения зубцов статора и ротора вентильно-индукторного электрического двигателя устанавливают заранее.
RU2019118843A 2019-06-18 2019-06-18 Способ управления вентильно-индукторным электрическим двигателем RU2716129C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019118843A RU2716129C1 (ru) 2019-06-18 2019-06-18 Способ управления вентильно-индукторным электрическим двигателем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019118843A RU2716129C1 (ru) 2019-06-18 2019-06-18 Способ управления вентильно-индукторным электрическим двигателем

Publications (1)

Publication Number Publication Date
RU2716129C1 true RU2716129C1 (ru) 2020-03-06

Family

ID=69768493

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019118843A RU2716129C1 (ru) 2019-06-18 2019-06-18 Способ управления вентильно-индукторным электрическим двигателем

Country Status (1)

Country Link
RU (1) RU2716129C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113672863A (zh) * 2021-07-08 2021-11-19 南京国电南自电网自动化有限公司 一种发电机启机保护的简化相量计算方法及系统
RU2795851C2 (ru) * 2021-08-04 2023-05-12 Научно-Производственное Предприятие "Машины Индукторные Реактивные" (Ооо "Нпп "Мир") Способ управления индукторным реактивным двигателем с максимальной энергоэффективностью

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4314211A1 (de) * 1993-04-30 1994-11-03 Daimler Benz Ag Verfahren zur Steuerung des Abschaltvorgangs in den Strängen eines Reluktanzmotors
US5903127A (en) * 1997-03-20 1999-05-11 Samsung Electronics Co., Ltd. Method and apparatus for controlling current in a switched reluctance motor
EP1023768A2 (en) * 1997-08-18 2000-08-02 Emotron AB Method and regulator for electrical reluctance machines
GB2329770B (en) * 1997-09-26 2002-02-20 Dana Corp Sensorless switched reluctance motor control
RU2182743C1 (ru) * 2000-09-27 2002-05-20 Московский энергетический институт (Технический университет) Способ управления вентильно-индукторным электроприводом и устройство для его осуществления
JP2002354881A (ja) * 2001-05-25 2002-12-06 Lg Electronics Inc スイッチドリラクタンスモータの運転制御方法
RU2260243C1 (ru) * 2003-12-17 2005-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Эметрон" Способ управления реактивным индукторным двигателем
RU2402148C1 (ru) * 2009-04-06 2010-10-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления индукторным двигателем

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4314211A1 (de) * 1993-04-30 1994-11-03 Daimler Benz Ag Verfahren zur Steuerung des Abschaltvorgangs in den Strängen eines Reluktanzmotors
US5903127A (en) * 1997-03-20 1999-05-11 Samsung Electronics Co., Ltd. Method and apparatus for controlling current in a switched reluctance motor
EP1023768A2 (en) * 1997-08-18 2000-08-02 Emotron AB Method and regulator for electrical reluctance machines
GB2329770B (en) * 1997-09-26 2002-02-20 Dana Corp Sensorless switched reluctance motor control
RU2182743C1 (ru) * 2000-09-27 2002-05-20 Московский энергетический институт (Технический университет) Способ управления вентильно-индукторным электроприводом и устройство для его осуществления
JP2002354881A (ja) * 2001-05-25 2002-12-06 Lg Electronics Inc スイッチドリラクタンスモータの運転制御方法
RU2260243C1 (ru) * 2003-12-17 2005-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Эметрон" Способ управления реактивным индукторным двигателем
RU2402148C1 (ru) * 2009-04-06 2010-10-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления индукторным двигателем

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113672863A (zh) * 2021-07-08 2021-11-19 南京国电南自电网自动化有限公司 一种发电机启机保护的简化相量计算方法及系统
CN113672863B (zh) * 2021-07-08 2024-05-28 南京国电南自电网自动化有限公司 一种发电机启机保护的简化相量计算方法及系统
RU2795851C2 (ru) * 2021-08-04 2023-05-12 Научно-Производственное Предприятие "Машины Индукторные Реактивные" (Ооо "Нпп "Мир") Способ управления индукторным реактивным двигателем с максимальной энергоэффективностью

Similar Documents

Publication Publication Date Title
Gallegos-Lopez et al. High-grade position estimation for SRM drives using flux linkage/current correction model
US9071180B2 (en) Electric drive unit
US20030163296A1 (en) Predictive control system and method
CN103516284B (zh) 一种永磁同步电机电流增量预测算法
CN108712127B (zh) 一种开关磁阻电机无位置传感器控制方法及装置
Ebersberger et al. Identification of differential inductances of permanent magnet synchronous machines using test current signal injection
CN109391199B (zh) 死区补偿方法、电机驱动器及计算机可读存储介质
Zhang et al. On-line identification methods of parameters for permanent magnet synchronous motors based on cascade MRAS
GB2455123A (en) Control of electrical machines
CN105141201A (zh) 一种磁悬浮控制力矩陀螺高速电机无位置换相误差校正控制系统及方法
Zeinaly et al. Trajectory extension methods for model predictive direct torque control
CN103633904A (zh) 无位置传感器的无刷直流电机控制方法及控制系统
RU2716129C1 (ru) Способ управления вентильно-индукторным электрическим двигателем
JP2007060899A (ja) 永久磁石モータの駆動システム
BAI et al. Speed Sensorless Control Scheme of Induction Motor against Rotor Resistance Variation
Topal et al. Sensorless speed control of a BLDC motor using improved sliding mode observer technique
CN109617468A (zh) 两矢量调制永磁同步电动机预测控制优化方法
Janiszewski Load torque estimation for sensorless PMSM drive with output filter fed by PWM converter
CN109586625A (zh) 一种无刷直流电机的驱动方法及装置
Harashima et al. A design method for digital speed control system of motor drives
Hrbac et al. Estimation of on-fly phase resistance of on 8/6 switched reluctance motor for sensorless control
Wang et al. A simple single shunt current reconstruction approach for low-cost permanent magnet synchronous motor drives
RU2428784C1 (ru) Способ бездатчиковой оценки углового положения ротора многофазного электродвигателя
Farhan et al. Encoderless Current Predictive Control of Synchronous Reluctance Motor by Extended Kalman Filter based State Estimation
CN113364366B (zh) 一种无位置传感器高速永磁电机换相点快速自校正装置及方法